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Abstract. Search-based advertising allows the advertisers to run special campaigns targeted to

different groups of potential consumers at low costs. Google, Yahoo and Microsoft advertising

programs allow the advertisers to bid for an ad position on the result page of a user when the

user searches for a keyword that the advertiser relates to its products or services. The expected

revenue generated by the ad depends on the ad position, and the ad positions of the advertisers

are concurrently determined after an instantaneous auction based on the bids of the advertisers.

The advertisers are charged only when their ads are clicked by the users. To avoid excessive ad

expenditures due to sudden surges in the keyword-search activities, each advertiser reserves a fixed

finite daily budget, and the ads are not shown in the remainder of the day when the budget is de-

pleted. Arrival times of keyword-search instances, ad positions, ad selections, and sales generated

by the ads are random. Therefore, an advertiser faces a dynamic stochastic total net revenue opti-

mization problem subject to a strict budget constraint. Here we formulate and solve this problem

using stochastic dynamic programming. We show that there is always an optimal dynamic bidding

policy. We describe an iterative numerical approximation algorithm that uniformly converges to

the optimal solution at an exponential rate of the number of iterations. We illustrate the algo-

rithm on numerical examples. Because the curse of dimensionality of the dynamic programing may

sometimes disallow the calculations of the optimal bidding policies, we also propose both static and

dynamic alternative bidding policies. We numerically compare the performances of optimal and

alternative bidding policies by systematically changing each input parameter. The relative percent-

age total net revenue losses of the alternative bidding policies increases with budget loading, but

were never more than 3.5% of maximum expected total net revenue. The best alternative to the

optimal bidding policy turned out to be a static greedy bidding policy.

1. Introduction

The history of the Internet dates back to the 1950s when point-to-point communication was made pos-

sible by mainframe computers and terminals. In later years, as a result of the research conducted by the

Defense Advanced Research Projects Agency (DARPA) supported by the US Department of Defense, this

type of communication was expanded which allowed communication between (or among) computers. The

network funded by DARPA was not commercialized as it was used mainly by universities and other research

laboratories in the US. The commercial Internet service providers emerged only in the late 1980s and the

Internet was fully commercialized in the early 1990s.

As reported at http://www.internetworldstats.com/emarketing.htm/, the Internet users in 1990 to-

talled about 2.6 million, but by 2010 this number reached 1.6 billion which translates to an annual growth
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rate of about 38%. With the advent of the Internet which became a new source of information and enter-

tainment for millions of people, marketing professionals began paying attention to the new medium to invent

new methods of advertising. The first recorded online advertising was a “banner ad” for Hotwire and AT&T

in 1994 (Özlük [6]) where an advertisement is embedded into a web page so that it can attract traffic to

a website by linking to the website of the advertiser. The “affiliates” which host the advertisements earn

money every time a web visitor clicks on the ad.

Banner ads are, however, considered an annoyance by many web users, and their use has been eclipsed

by another, and more profitable, form of advertising, i.e., search engine advertisements (also known as

keyword ads). These ads appear next to unsponsored (organic) search results, and the advertiser is charged

only if a user clicks on the advertisement, taking the user to the advertiser’s webpage. It is estimated

by Emarketer.com [2] that keyword ads in the U.S. have generated $12.4 billion of revenue in 2010 with

three quarters of the U.S. market belonging to Google. Although other search engines such as Yahoo! and

Bing/MSN operate similarly, in this paper we focus on the advertisers’ bids as submitted to Google.

Suppose a web user is interested in traveling to Italy and visit the countryside on a bicycle, so she searches

the keyword “Bike Tours Italy.” As soon as the keyword is entered Google holds an instantaneous generalized

second price auction among the advertisers bidding on that keyword and lists, (i) sponsored results, and (ii)

organic (unsponsored) search results. If the user clicks on a sponsored link she is directed to the advertiser’s

website, and Google charges the advertiser for the click. While there is no guarantee of a sale if the user

clicks on a link, Google immediately charges the advertiser for each click which could result in very large

bills for the advertiser. To avoid this event, the advertisers are allowed to impose a budget so that if the

number of clicks during the day exceeds the budget, the ad is no longer displayed for the rest of the day,

even if new visitors search for that keyword “Bike Tours Italy.”

Given the uncertainties involved (i.e., the random arrival of the search requests for a keyword, the random

revenue generated from each click, and the random position of the sponsored ad), the problem of how much

to bid to maximize the expected profit subject to a budget constraint appears to be a challenging one. In

this paper we consider a dynamic version of the keyword bid problem and attempt to determine the optimal

bid price(s) subject to the budget constraint using stochastic dynamic programming. It is worth noting that

a similar problem has been examined by Cholette, et al. [1] who consider a static version of this problem,

i.e., they find the constant optimal bid for each day which maximizes the expected profit under some soft

budget constraint. They consider different versions of the problem, i.e., the problem (i) with no constraint,

(ii) with a budget constraint where the expected cost of clicks must not exceed the available budget, (iii) with

a budget constraint where the probability of exceeding the budget does not exceed a fraction, say, 0.10, and

(iv) where the “ideal” bid amount is chosen after selecting a point on the efficient frontier of, (i) expected

profit, and (ii) probability of exceeding the budget. Our paper generalizes the Cholette, et al. [1] models

by allowing the possibility of dynamically selecting the bid prices after observing the remaining budget and

the remaining time until the end of the period (usually a day) under hard budget constraint (namely, with

probability one, the budget is never exceeded).

In the meantime, Fruchter and Dou [3] solve a different problem with dynamic programming: they find

a dynamic strategy to optimally allocate a limited budget between a generic Web portal and a specialized

Web portal using keyword-activated banner ads. They concluded that, in the long run, an advertiser must

always spend more ad money at the specialized portal.

Kitts and Leblanc [5] formulate an integer program to find optimal bids for multiple keywords on a time

grid in an open bid system. They discuss in detail how two key functions appearing in the integer program,

namely, the unknown number of clicks as a function of the ad position on the result page and the ad position

as a function of the bid amount, can be estimated from the historical data. They report that in a live
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Figure 1. The spiral perspective (left) and contour plots (middle, right) of a typical opti-

mal dynamic bidding policy function found by the methods of our paper, and 100 simulated

budget processes starting at some high (middle) and low (right) initial budget values. Op-

timal dynamic bidding amounts remain constant with high probability if the initial budget

is large (middle), but change quickly if it is not (right).

Overture auction their optimal solution generated four times more web traffic than keyword-specific and

rule-based management methods did. Used by Yahoo’s Overture advertising system, the open bid system

allows an advertiser to see the competitors’ bids before bidding for the same keyword and updates the bids at

some specified frequency. In the Google’s Adwords bidding system that we focus in this paper, however, the

bids are sealed (namely, a bidder cannot see others’ bids) and are updated only at the times of the related

keyword search. Moreover, the optimal bid amounts are not truly dynamical, because they are concurrently

calculated at time zero for all future times and therefore do not utilize the information on the remaining

budget amounts, which only reveal immediately before the actual future bidding times. The formulation of

this interesting work guarantees only that the expected total cost is less than or equal to the budget. This

work is one of the examples with a soft budget constraint in the literature.

Rusmevichientong and Williamson [8] develop an adaptive method of selecting the most profitable key-

words at the face of unknown keyword click-through-rates. Their method sorts the keywords in descending

profit-to-cost ratios and bids in each period for the maximum number of top keywords that the remaining

budget can buy. The keyword click-through-rates are updated at the end of each period. The authors assume

that the bid amount, ad position, and cost per click for each keyword remain constant over short periods of

time. Our numerical results suggest that the optimal dynamic bid amounts, found by the methods of our

paper, remain constant if the initial budget is large, but change quickly over time if the initial budget is

small; compare how optimal bidding amounts change along 100 simulated budget processes in Figure 1 for

large (middle figure) and low (right figure) initial budget values. More in-dept discussion of Figure 1 is given

below in this section as we outline our own contributions.

Özlük and Cholette [7] also assume that one bid price is used for each keyword over the entire time

period. By solving a constrained nonlinear optimization problem, they find the optimal bidding amounts

that maximize the expected total net revenue subject to a soft budget constraint: the expected total cost

should not exceed the budget. Later Cholette et al. [1] enhanced the same model by explicitly modeling

the stochastic ad positions, which we are adopting here as well, and by considering a probabilistic budget

exceedance constraint, which is also a soft budget constraint.

Under soft budget constraints, the expected total cost must be less than the available budget or the

probability that the total cost exceeds the available budget must be small, but the actual spendings may
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occasionally exceed the budget with positive probability. In reality, however, the ad is not displayed in

the remainder of the period after the budget is depleted. Therefore, optimal bidding under soft budget

constraints will overestimate the true maximum expected total net revenue. In our paper, we solve the

optimal bidding problem under a strict budget constraint and calculate the un-inflated maximum expected

total net revenue.

The strict budget constraint and stochastic ad positions also force the optimal strategy to dynamically

respond to stochastically fluctuating budget process: if the budget is underutilized in excess amounts for

a while due to slow click traffic, then optimal strategy should raise the bid amounts in order to drive

ad positions and click-through rates up. If the budget is overutilized because of frequent clicks, then the

optimal strategy should check if the same traffic can be generated with lower bid amounts and lower the bid

amounts if necessary. The optimal bidding strategy should therefore depend on the remaining budget and

the remaining time. It should balance the trade-off between the maximum traffic (and therefore revenue)

that can be generated in the remainder of time and the total cost of doing that. The highly nonlinear

relation between bid amount, ad position, and ad clickability make impossible to further speculate on the

behavior of optimal bidding strategies. Our stochastic dynamic programming solution first of all proves the

existence of an optimal bidding strategy and provides an exponentially fast uniformly converging algorithm

to find provably nearly-optimal bidding strategies. Moreover, the numerical illustrations uncover the simple

very intuitive spiral look of optimal bidding amounts on the space spanned by the remaining budget and

remaining time variables; see Figure 1. The optimal bidding amounts increase along any horizontal line

drawn on the contour plot as the line is traced from right to left. Namely, if for a long time no clicks are

received and budget does not decrease, then the optimal bid amounts increase. The optimal bidding amounts

decrease along any vertical line drawn on the contour plot as the line is traced from top to down. Namely, if

excessive number of clicks are received over a very short time period, then the optimal bid amounts decrease.

Both observations are consistent with our expectations.

Despite the fact that the stochastic dynamic programming provides optimal solution and valuable insights

about the structure of the optimal bidding strategy, the computational time grows with the size of the grid on

budget-time space. We therefore propose and then examine two intuitive dynamic bidding strategies that can

be calculated fast. The first strategy is the dynamical version of “budget-constrained” (BC) bidding strategy

of Cholette et al. [1]. S. Cholette and her colleagues proposed a static BC bidding strategy which bids all the

time the same amount that initially maximizes the expected total net revenue subject to the constraint that

the expected total cost should not exceed the budget. They show that the problem can easily be solved with

Lagrangian relaxation. Here we propose the dynamic BC (DBC) bidding strategy, which recalculates the BC

bid amount after the values of the remaining budget and time in the budget constraint are updated after

every keyword search. We alternatively define a static greedy (G) bidding strategy that bids all the time the

same bid amount that maximize the expected total net revenue subject to strict budget constraint. Finding

this amount boils down to solving an unconstrained nonlinear optimization problem on a compact bounded

interval. We finally introduce the dynamic greedy (DG) bidding strategy that recalculates the greedy bid

amount after the remaining budget and remaining time in the budget constraint are updated following every

keyword search.

In an extensive numerical study, we compared the performances of optimal dynamic bidding policy,

optimal static and dynamic BC bidding policies, and optimal static and dynamic greedy bidding strategies.

The dynamic greedy bidding strategy performs slightly better than the dynamic BC bidding strategy in

general. Both strategies however perform quite well and achieve expected total net revenues not falling short

more than 3.5% of that of the optimal bidding strategy in the numerical experiments. We noticed that the

largest revenue losses occur at high budget loadings (fraction of the initial budget spent on bidding). Figure
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Figure 2. Comparison of static and dynamic bidding policies

2 shows the smoothed percentage revenue losses of the static/dynamic BC/greedy bidding policies relative

to the optimal dynamic bidding policy (see Figure 7 for individual data points). All policies perform close

to optimal if the budget loading is less than 0.7 ∼ 0.8. As the budget loading increases to 1, the percentage

revenue losses sharply increase. The simple static greedy bidding policy performs as good as the dynamic BC

and greedy bidding policies and outperforms the static BC bidding policy. Moreover, unlike for the dynamic

BC and greedy policies, the percentage revenue losses for static greedy policy seems to be a bounded function

of budget loading. When the optimal dynamic bidding policy is difficult to calculate or has to be frequently

recalculated because of changing/reestimated parameters, the static greedy bidding policy looks the best

alternative among all other static and dynamic bidding policies studied in this paper.

In Section 2, we formulate the dynamic bidding problem and solve it with stochastic dynamic program-

ming. We show that the dynamic bidding problem always admits an optimal bidding policy. After we define

a value function and heuristically derive a dynamic programming equation, we show that the equation has

unique solution and verify that the solution coincides with the value function of the dynamic bidding problem.

The verification is done with appropriate martingales. In the meantime, we derive decreasing and increasing

successive approximations of the value function, and they lead to an iterative numerical solution algorithm

that converges uniformly and at an exponential rate. Section 3 introduces simple and fast static/dynamic

budget-constrained/greedy bidding policies as alternatives to optimal bidding policy for those cases when

the dynamic programming’s curse of dimensionality disallows the calculation of optimal bidding policy. In

Section 4, the numerical solution algorithm is described and illustrated on several examples. The maximum

total expected net revenues for optimal and BC/greedy policies are systematically compared as each of the

parameters B, a, λ,m, µ is changed one at a time over a five-point grid. The relative percentage losses of

static/dynamic BC/greedy policies are compared as the estimated budget loading changes. Finally, the

lemmas we used in Section 2 are given in the appendix.

2. Problem formulation and solution

We formulate the optimal bidding problem as it is faced by an advertiser who works with a web search

company similar to Google. When a keyword is searched by a search-engine user, a generalized second price

auction immediately takes place among all advertisers whose lists contain the keyword. Each bid is sealed

and is not seen by the others. Every bid is then multiplied by some quality score of the bidder, which is
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proportional to the bidder’s ability to consistently generate high internet traffic. Here we assume that all of

the advertisers take all necessary steps to get top quality scores (e.g., relevant keywords are carefully chosen,

ads are attractive, landing web pages are well designed) so that after multiplication by the quality scores the

ordering of the bids does not change. Google [4] provides detailed information about how the quality score

is calculated and how it can be improved; see also Szetela and Kerschbaum [9, Chapter 9].

The bids of all advertisers are then sorted in descending order, and their messages are placed on the result

page according to the same order. Therefore, the ad position of each ad is a random variable and determines

the probability that the user will click that ad. The closer to the top of the result page the ad is, the more

likely is the ad to be clicked by the user. The advertiser is not charged unless the user clicks the ad.

According to the generalized second price auction, each bidder pays the largest bid received for the same

keyword less than or equal to her own bid. However, the difference between those bids is often negligible,

and therefore, we assume that each bidder pays her bid amount if the user clicks her ad. Finally, we assume

that the revenue realized after each click is a random variable independent of the bid amount, ad position,

number and times of keyword search events.

Let X(t) be the number of keywords in our advertiser’s list typed in (0, t] for every t ≥ 0. We assume that

the users from all over the world search for the keywords independently of each other. Because the Internet

services are available throughout the day and one part of the world is always awake even if the other parts

are in rest, we also assume that the keyword search activity resumes on average at the same pace on any

typical day. Therefore, we assume that X = {X(t); t ≥ 0} follows a homogeneous Poisson process with

some constant rate λ > 0 and with arrival times T1, T2, . . .. The advertiser starts with some initial budget

B0 and bids bn for an ad position on the result page that will be generated by the nth keyword search. Let

Bn be the remaining budget before the nth keyword search.

Let Ln be the ad position on the result page and Zn be 1/0 if the ad is clicked/not clicked after the nth

keyword search. We denote the top and bottom of a result page by 0 and 1, respectively, and identify the

entire page with the interval [0, 1]. Hence, Ln is a random variable taking values in [0, 1]. Then we have

Bn = Bn−1 − Zn−1bn−1, n ≥ 1,

and we assume that

P{Zn = 1 | Ln = `} = (p0 − p1)(1− `)m + p1, ` ∈ [0, 1], n ≥ 0,

P{Ln ∈ d` | bn = b} =
Γ(a+ b)

Γ(a)Γ(b)
`a−1(1− `)b−1d`, ` ∈ [0, 1], n ≥ 0

for some real numbers 0 ≤ p1 ≤ p0 ≤ 1, m ≥ 0, and a > 0. The probability that an ad is clicked by the

user decreases with the ad’s position on the result page. This probability takes its maximum value p0 if the

ad is placed at the top and its minimum value p1 if is placed at the bottom of the page. The parameter a

may be thought as the average bid amount of all other competing advertisers bidding on the same keyword.

Because in a sealed bidding scheme an advertiser cannot see the other bids, this representation of the

competitors’ average bidding behavior is reasonable. The ad position is a Beta distributed random variable

with parameters a and b (our advertiser’s bid amount). As b increases (respectively, decreases), the ad is

more likely to be placed closer to the top (respectively, bottom) of the result page. Figure 3 shows some

examples of the click probability and ad position’s probability density function as, respectively, ad position

and bid amount change.

Suppose finally that the users potentially generate revenues W1,W2, . . ., which are i.i.d. random variables

with common finite mean µ independent of Z1, Z2, . . .. A potential revenue Wi realizes if and only if the ith

user clicks the ad; namely, if and only if Zi = 1, for every i ≥ 0.
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2.1. The dynamic programming formulation. Assume that the first keyword search takes place at time

0. We make this assumption in order to be able to evoke the optimality principle and will later relax it. Let

V (B, T ) be the maximum expected total net revenue obtainable with budget B to be used in the remaining

T units of time. Then

V (B, T ) = sup
(bi)i≥0∈D(B,T )

E
[ ∞∑
i=0

(Wi − bi)Zi1{Ti≤T}

]
,(1)

where the supremum is taken over the collection of admissible bidding strategies,

D(B, T ) =
{

(bi)i≥0; bi ≥ 0 for every i ≥ 0, and

∞∑
i=0

biZi1{Ti≤T} ≤ B
}
.

Suppose that we are interested in bidding problem for every 0 ≤ B ≤ Bmax and 0 ≤ T ≤ Tmax for any

arbitrary but fixed and finite Bmax > 0 and Tmax > 0. The problem is to find V (B, T ) and an optimal

bidding strategy, if there is one, for every (B, T ) ∈ [0, Bmax] × [0, Tmax]. The principle of optimality of the

dynamic programming suggests that

V (B, T ) = sup
0≤b≤B

E
[
(W0 − b)Z0 + V (B − Z0b, T − T1)1{T1≤T}

]
, B, T ≥ 0(2)

with the boundary conditions V (0, T ) = 0 for every T ≥ 0 and

V (B, 0) = max
0≤b≤B

E[(W0 − b)Z0] = max
0≤b≤B

(µ− b)G(b) for every B ≥ 0,
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where the conditional click probability, given the bid amount, is denoted by

G(b) := P{Z0 = 1 | b0 = b} =

∫
P{Z0 = 1 | L0 = `}P{L0 ∈ d` | b0 = b}

=

∫ 1

0

[(p0 − p1)(1− `)m + p1]
Γ(a+ b)

Γ(a)Γ(b)
`a−1(1− `)b−1d` = (p0 − p1)

Γ(a+ b)Γ(b+m)

Γ(a+ b+m)Γ(b)
+ p1

≈ (p0 − p1)

√
(a+ b+m)b

(a+ b)(b+m)

(
a+ b

a+ b+m

)a+b(
b+m

b

)b(
b+m

a+ b+m

)m
+ p1,

which follows from the Stirling’s approximation Γ(z) ≈
√

2π/z (z/e)z, z > 0 of the Gamma function, where

f(x) ≈ g(x) in the sense that limx↑∞ f(x)/g(x) = 1. If a+b+m is large, then the numerator and denominator

of the exact expression for G(b) can be extremely large. The approximation limits the potential numerical

problems because the quotients inside power functions are either less than or close to one as long as b is

small or m� b.

Because (bi)i≥0 with bi = 0, i ≥ 0 is in D(B, T ), and G(0) = 0 implies that under bidding strategy (bi)i≥0

we have Z0 = Z1 = . . . = 0 and obtain zero net revenue with probability one, we have V (B, T ) ≥ 0 for every

(B, T ) ∈ [0, Bmax]× [0, Tmax]. On the other hand,

E
[ ∞∑
i=0

(Wi − bi)Zi1{Ti≤T}

]
≤ E

[ ∞∑
i=0

Wi1{Ti≤T}

]
= EW0[1 + EX(T )] = µ(1 + λT ).

Hence, the value function in (1) is finite, and

0 ≤ V (B, T ) ≤ µ(1 + λT ) for every (B, T ) ∈ [0, Bmax]× [0, Tmax].(3)

We shall show that i) the problem (1) always admits an optimal bidding strategy, and ii) the value function

V (·, ·) and an optimal bidding strategy attaining the supremum in (1) can be calculated numerically with

successive approximations.

2.2. A dynamic programming operator and successive approximations. Let C([0, Bmax]× [0, Tmax])

be the collection of all continuous functions from [0, Bmax]× [0, Tmax] to R, equipped with sup-norm ‖w‖ =

sup(B,T )∈[0,Bmax]×[0,Tmax] |w(B, T )| for every w ∈ C([0, Bmax]× [0, Tmax]). Let M be an operator acting on C
defined by

(Mw)(B, T ) := sup
0≤b≤B

E
[
(W0 − b)Z0 + w(B − Z0b, T − T1)1{T1≤T}

]
(4)

for every (B, T ) ∈ [0, Bmax] × [0, Tmax]. Since the form of the righthand side is suggested by the dynamic

programming optimality principle, M is often called a dynamic programming operator. Because E[(W0 −
b)Z0 + w(B − Z0b, T − T1)1{T1≤T}] equals

(5) (M1w)(b, B, T ) := E[(W0 − (b ∧B)Z0 + w(B − Z0(b ∧B), T − T1)1{T1≤T}]

= [µ− (b ∧B)]G(b ∧B) +

∫ T

0

λe−λt
[
w((B − b)+, T − t)G(b ∧B) + w(B, T − t)(1−G(b ∧B))

]
dt

=

∫ T

0

λe−λtw(B, T − t)dt+G(b ∧B)

{
µ− (b ∧B) +

∫ T

0

λe−λt
[
w((B − b)+, T − t)− w(B, T − t)

]
dt

}
,
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which is defined for all 0 ≤ b ≤ Bmax, we can write (4) more explicitly as

(6) (Mw)(B, T ) = sup
0≤b≤Bmax

(M1w)(b, B, T ) = sup
0≤b≤B

(M1w)(b, B, T ) =

∫ T

0

λe−λtw(B, T − t)dt

+ sup
0≤b≤B

G(b)

{
µ− b+

∫ T

0

λe−λt
[
w(B − b, T − t)− w(B, T − t)

]
dt

}
.

We shall show that M is a contraction mapping, and that the value function V (·, ·) in (1) is the unique fixed

point of operator M , and that V (·, ·) can be calculated as the limit of the increasing (V )n≥0 or decreasing

(V )n≥0 successive approximations, respectively defined by

V0(B, T ) ≡ 0 and Vn(B, T ) := (MVn−1)(B, T ), (B, T ) ∈ [0, Bmax]× [0, Tmax],

V 0(B, T ) = µ(1 + λT ) and V n(B, T ) := (MV n−1)(B, T ), (B, T ) ∈ [0, Bmax]× [0, Tmax].
(7)

Below Proposition 1 and Theorem 1 identify some key properties of operator M and successive approxima-

tions (V )n≥0, (V )n≥0 that will be needed to show the existence of an optimal bidding policy and a uniformly

and exponentially convergent numerical algorithm to calculate both the value function and nearly-optimal

bidding policies.

Proposition 1. Let w,w1, w2 be in C([0, Bmax]× [0, Tmax]).

(i) M1w ∈ C([0, Bmax]2 × [0, Tmax]) and Mw ∈ C([0, Bmax]× [0, Tmax]).

(ii) All three suprema in (6) are attained.

(iii) If w1 ≤ w2, then Mw1 ≤ Mw2. If w(B, T ) ≤ µ(1 + λT ) for every (B, T ) ∈ [0, Bmax] × [0, Tmax],

then (Mw)(B, T ) ≤ µ(1 + λT ) for every (B, T ) ∈ [0, Bmax]× [0, Tmax].

(iv) M is a contraction mapping on C([0, Bmax]×[0, Tmax]) and ‖Mw1−Mw2‖ ≤ (1−e−λTmax)‖w1−w2‖.
If M has a fixed point, then it must be unique.

Proof. (i) The continuity of M1w and Mw is proved with Lemma 4 in the appendix. (ii) Because b 7→
(M1w)(b, B, T ) is continuous on compact [0, Bmax], all three suprema in (6) are attained. (iii) The monotonic-

ity of operator M in w immediately follows from its definition in (4). Suppose now that w(B, T ) ≤ µ(1+λT )

for every (B, T ) ∈ [0, Bmax] × [0, Tmax]. By the memorilessness property of exponentially distributed inter-

arrival times of X,

E
[
(T − T1)1{T1≤T}

]
= E

[
(T − T1)

(
1− 1{T1>T}

)]
= E[T − T1]− E

[
(T − T1)1{T1>T}

]
= T − ET1 + E[T1 − T | T1 > T ]P{T1 > T} = T − ET1 + ET1 P{T1 > T} = T − (1− e−λT )/λ,

and

(Mw)(B, T ) := sup
0≤b≤B

E
[
(W0 − b)Z0 + w(B − Z0b, T − T1)1{T1≤T}

]
≤ E

[
W0 + µ(1 + λ(T − T1))1{T1≤T}

]
= µ+ µP{T1 ≤ T}+ µλE[(T − T1)1{T1≤T}] = µ+ µ(1− e−λT ) + µλT − µ(1− e−λT ) = µ(1 + λT )

for every (B, T ) ∈ [0, Bmax] × [0, Tmax]. (iv) To show that M is a contraction mapping, take any w1, w2 ∈
C([0, Bmax] × [0, Tmax]) and any (B, T ) ∈ [0, Bmax] × [0, Tmax]. By the first part, there are b1, b2 ∈ [0, B] at

which the suprema in (6) are attained for w = w1 and w = w2, respectively. Then

(Mw1)(B, T )− (Mw2)(B, T ) ≤ (M1w1)(b1, B, T )− (M1w2)(b1, B, T )

= E
[
(W0 − b1)Z0 + w1(B − Z0b1, T − T1)1{T1≤T}

]
− E

[
(W0 − b1)Z0 + w2(B − Z0b1, T − T1)1{T1≤T}

]
≤ E

(∣∣w1(B − Z0b1, T − T1)− w2(B − Z0b1, T − T1)
∣∣1{T≤T1}

)
≤ (1− e−λTmax)‖w1 − w2‖.
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If we interchange the roles of w1 and w2 and replace b1 with b2 above, then we obtain (Mw2)(B, T ) −
(Mw1)(B, T ) ≤ (1 − e−λTmax)‖w2 − w1‖. Hence, |(Mw1)(B, T ) − (Mw2)(B, T )| ≤ (1 − e−λTmax)‖w1 − w2‖
for every (B, T ) ∈ [0, Bmax]× [0, Tmax], which implies that ‖Mw1−Mw2‖ ≤ (1− e−λTmax)‖w1−w2‖ and M

is a contraction mapping on C([0, Bmax]× [0, Tmax]). Finally, suppose that w1, w2 are two fixed points of M ;

namely, w1 = Mw1 and w2 = Mw2. Then ‖w1 − w2‖ = ‖Mw1 −Mw2‖ ≤ (1 − e−λTmax)‖w1 − w2‖ implies

that ‖w1 − w2‖ = 0 and w1 = w2. �

The relation (1) suggested by the optimality principle implies that the best candidate for the value function

(1) is a fixed point of operator M . The plan is to find the fixed points of operator M and then verify if any

of them coincides with the value function.

Theorem 1 (iv) below proves that M has unique continuous fixed point. We leave to Section 2.3 the

verification that the only fixed point of M is indeed the value function of (1). In applications, however,

it is also important to know how to calculate the fixed point of M and hence the value function (1). The

remainder parts of Theorem 1 state that the fixed point is the common limit point of the decreasing and

increasing successive approximations in (7). Moreover, for any arbitrarily small choice of a positive tolerance

number, both sequences can be terminated finitely and two approximations obtained in this way are pointwise

different from the fixed point not more than the preset tolerance number.

Theorem 1. Let (Vn)n≥0 and (V n)n≥0 be the sequences of successive approximations defined by (7).

(i) Vn, V n ∈ C([0, Bmax]× [0, Tmax]) for every n ≥ 0.

(ii) 0 = V0(B, T ) ≤ V1(B, T ) ≤ · · · ≤ V 1(B, T ) ≤ V 0(B, T ) = µ(1 + λT ), (B, T ) ∈ [0, Bmax]× [0, Tmax].

(iii) The limits V∞(B, T ) :=↑ limn→∞ Vn(B, T ) and V∞(B, T ) :=↓ limn→∞ V n(B, T ) exist for every

(B, T ) ∈ [0, Bmax]× [0, Tmax], and

‖V∞ − Vn‖ ≤ µ(1 + λTmax)eλTmax(1− e−λTmax)n for every n ≥ 0,

‖V∞ − V n‖ ≤ µ(1 + λTmax)eλTmax(1− e−λTmax)n for every n ≥ 0.

(iv) V∞ = V∞ ≡ V∞ ∈ C([0, Bmax]× [0, Tmax]) is the unique fixed point of M ; namely, V∞ = MV∞.

(v) For every (B, T ) ∈ [0, Bmax]× [0, Tmax], the suprema

Vn(B, T ) = (MVn−1)(B, T ) = sup
0≤b≤B

(M1Vn−1)(b, B, T ), n ≥ 1,

V n(B, T ) = (MV n−1)(B, T ) = sup
0≤b≤B

(M1V n−1)(b, B, T ), n ≥ 1,

V∞(B, T ) = (MV∞)(B, T ) = sup
0≤b≤B

(M1V∞)(b, B, T )

are attained; namely, there are some bn(B, T ), bn(B, T ) ∈ [0, B], n ≥ 1 and b∞(B, T ) ∈ [0, B] such

that Vn(B, T ) = (M1Vn−1)(bn(B, T ), B, T ), n ≥ 1 and V n(B, T ) = (M1V n−1)(bn(B, T ), B, T ),

n ≥ 1 and V∞(B, T ) = (M1V∞)(b∞(B, T ), B, T ).

Proof. Because V0, V 0 ∈ C([0, Bmax] × [0, Tmax]) and V0(B, T ), V 0(B, T ) ≤ µ(1 + λT ) for every (B, T ) ∈
[0, Bmax]×[0, Tmax], Proposition 1 (i & iii) and successive applications of M imply both (i) and (ii). Therefore,

the pointwise limits V∞ =↑ limn→∞ Vn and V∞ =↓ limn→∞ V n obviously exist. We shall prove (iii)-(v) for

(Vn)n≥0 and V∞; the proofs are identical for (V n)n≥0 and V∞. Because ‖Vk+1 − Vk‖ = ‖MVk −MVk−1‖ ≤
(1− e−λTmax)‖Vk − Vk−1‖ ≤ . . . ≤ (1− e−λTmax)k‖V1‖ by Proposition 1 (iv), for every m > n we have

‖Vm − Vn‖ ≤
m−1∑
k=n

‖Vk+1 − Vk‖ ≤
m−1∑
k=n

(1− e−λTmax)k‖V1‖
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Passing to limit as m → ∞, we get that ‖V∞ − Vn‖ ≤
∑∞
k=n(1 − e−λTmax)k‖V1‖, which together with part

(ii) leads to (iii). Because the inequality in part (iii) implies ‖V∞ − Vn‖
n→∞−−−−→ 0, the continuous functions

Vn, n ≥ 0 converge to V∞ uniformly. Therefore, V∞ ∈ C([0, Bmax] × [0, Tmax]) and V∞ = limn→∞ Vn+1 =

limn→∞Mvn = M(limn→∞ Vn) = MV∞. Thus, V∞ is continuous and is a fixed point of M . (v) follows from

the continuity of (Vn)n≥0, V∞ and Proposition 1 (ii). Finally, because V∞ is also a fixed point of M , which

is unique by Proposition 1 (iv), we must have V∞ = V∞, which is denoted in the remainder by V∞. �

2.3. The verification of the dynamic programming solution and the existence of an opti-

mal bidding policy. We will now show that the function V∞, which is the unique fixed point of M in

C([0, Bmax]× [0, Tmax]) and the common pointwise uniform limit of the increasing successive approximations

(Vn)n≥0 and the decreasing successive approximations (V n)n≥0, coincides with the value function V in (1).

Theorem 3 is the main result and is a verification theorem based on martingales, which we now introduce:

Let b = (bn)n≥0 ∈ D(B, T ) be any admissible bidding strategy and (Fb
n )n≥0 be the corresponding

observation filtration, where

Fb
n = σ{B0, T0, . . . , Bn, Tn}, n = 0, 1, . . . .

Then Bn, bn ∈ Fb
n , Zn = Bn+1 −Bn ∈ Fb

n+1, and Wn is independent of (Fb
i )i≥0 for every n ≥ 0. Let

Y b
0 := V∞(B0, T ) and Y b

n :=

n−1∑
k=0

(µ− bk)Zk1{Tk≤T} + V∞(Bn, T − Tn)1{Tn≤T}, n ≥ 0.

The process (Y b
n )n≥0 is adapted to the filtration (Fb

n )n≥0; namely, Y b
n ∈ Fb

n for every n ≥ 0. It is the dynamic

representation of how bright the past and future look under bidding policy b after the (n − 1)st keyword-

search instance. Theorem 2 states that, unless the advertiser follows the bidding policy b∗ ∈ D(B, T ), the

total net revenue may only slide down over time from its maximum possible value. This strongly hints that

b∗ is an optimal bidding strategy.

Theorem 2. For any bidding strategy b = (bn)n≥0 ∈ D(B, T ), the process (Y b
n ,Fb

n )n≥0 is a supermartingale.

If b∗ = (b∗n)n≥0 is the admissible bidding strategy defined by b∗n := b∞(Bn, T − Tn)1{Tn≤T} for every n ≥ 0,

where b∞(B, T ) := arg max0≤b≤B(M1V∞)(b, B, T ) as in Theorem 1, then (Y b∗

n ,Fb∗

n )n≥0 is a martingale.

Proof. For every n ≥ 0, Y b
n ∈ Fb

n is integrable, and Y b
n+1 − Y b

n equals

(µ− bn)Zn1{Tn≤T} + V∞(Bn+1, T − Tn+1)1{Tn+1≤T} − V∞(Bn, T − Tn)1{Tn≤T} = (µ− bn)Zn1{Tn≤T}

+ V∞(Bn − bnZn, T − Tn − (Tn+1 − Tn))1{Tn≤T}1{Tn+1−Tn≤T−Tn} − V∞(Bn, T − Tn)1{Tn≤T}.

Because the random variables Bn, bn, T −Tn are Fb
n -measurable, and E[Zn | Fb

n ] = P{Zn = 1 | bn} = G(bn),

and Tn+1 − Tn has exponential distribution with rate λ independently of Fb
n , we have

(8) E[Y b
n+1 − Y b

n | Fb
n ] = 1{Tn≤T}

{
(µ− bn)G(bn) +

∫ T−Tn

0

λe−λt
[
V∞(Bn − bn, T − Tn − t)G(bn)

+V∞(Bn, T−Tn−t)(1−G(bn))
]
dt−V∞(Bn, T−Tn)

}
= 1{Tn≤T}

{
(M1V∞)(bn, Bn, T−Tn)−V∞(Bn, T−Tn)

}
.

Because V∞(Bn, T − Tn) = sup0≤b≤Bn
(M1V∞)(b, Bn, T − Tn) ≥ (M1V∞)(bn, Bn, T − Tn), (8) implies that

E[Y b
n+1 − Y b

n | Fb
n ] ≤ 0 for every n ≥ 0, which proves that (Y b

n ,Fb
n )n≥0 is a supermartingale. Because

1{Tn≤T}(M1V∞)(b∗n, Bn, T − Tn) = 1{Tn≤T}(M1V∞)(b∞(Bn, T − Tn), Bn, T − Tn)

= 1{Tn≤T} sup
0≤b≤Bn

(M1V∞)(b, Bn, T − Tn) = 1{Tn≤T}V∞(Bn, T − Tn),
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replacing b with b∗ in (8) gives E[Y b∗

n+1− Y b∗

n | Fb∗

n ] = 0 for every n ≥ 0, which implies that (Y b∗

n ,Fb∗

n )n≥0

is a martingale. �

Below Theorem 3 is the main result and shows that an optimal bidding policy always exists. It establishes

the connection of the optimal solution of the dynamic bidding problem to successive approximations in (7)

of the unique fixed point of the dynamic programming operator M in (4). This connection later leads to the

numerical method explained in the first paragraph of Section 4.

Theorem 3. For every (B, T ) ∈ [0, Bmax]× [0, Tmax], we have V (B, T ) = V∞(B, T ) and that b∗ = (b∗n)n≥0

is an optimal bidding strategy for (1), where b∗n = b∞(Bn, T − Tn) as in Theorem 1 (v) for every n ≥ 0.

Proof. For every b = (bn)n≥0 ∈ D(B, T ), because (Y b
n ,Fb

n )n≥0 is a supermartingale by Theorem 2, we have

V∞(B, T ) = Y b
0 ≥ E[Y b

n ] = E
[ n−1∑
k=0

(µ− bk)Zk1{Tk≤T} + V∞(Bn, T − Tn)1{Tn≤T}

]
≥ E

n−1∑
k=0

(µ− bk)Zk1{Tk≤T}

for every n ≥ 1, where the last inequality follows from that V∞(·, ·) ≥ 0. Note that limn→∞
∑n−1
k=0(µ −

bk)Zk1{Tk≤T} =
∑∞
k=0(µ − bk)Zk1{Tk≤T} and |

∑n−1
k=0(µ − bk)Zk1{Tk≤T}| ≤ µX(T ) for every n ≥ 1 and

EX(T ) = λT < ∞. Therefore, we can take the limit in the last display as n → ∞, and the dominated

convergence theorem implies V∞(B, T ) ≥ E
∑∞
k=0(µ− bk)Zk1{Tk≤T} = E

∑∞
k=0(Wk− bk)Zk1{Tk≤T}. Taking

the supremum of both sides over b ∈ D(B0) leads to V∞(B, T ) ≥ V (B, T ) for every (B, T ) ∈ [0, Bmax] ×
[0, Tmax]. To show the equality and that b∗ = (b∗n)n≥0 ∈ D(B, T ) is optimal, recall from Theorem 2 that

(Y b∗

n ,Fb∗

n )n≥0 is a martingale, and

V∞(B, T ) = Y b∗

0 = E[Y b∗

n ] = E
[ n−1∑
k=0

(µ− b∗k)Zk1{Tk≤T} + V∞(Bn, T − Tn)1{Tn≤T}

]
, n ≥ 0.(9)

By the dominated convergence, limn→∞ E
∑n−1
k=0(µ− b∗k)Zk1{Tk≤T} = E

∑∞
k=0(µ− b∗k)Zk1{Tk≤T}. Moreover,

because 0 ≤ V∞(Bn, T −Tn)1{Tn≤T} ≤ µ(1 +λ(T −Tn))1{Tn≤T} ≤ µ(1 +λT )1{Tn≤T} by Proposition 1 (iii),

0 ≤ E[V∞(Bn, T − Tn)1{Tn≤T}] ≤ µ(1 + λT )P{Tn ≤ T} ≤ µ(1 + λT )P{X(T ) ≥ n} n→∞−−−−→ 0.

Therefore, passing to limit in (9) as n→∞ leads to V∞(B, T ) = E
∑∞
k=0(µ−b∗k)Zk1{Tk≤T} = E

∑∞
k=0(Wk−

b∗k)Zk1{Tk≤T} ≤ V (B, T ). Because V∞(B, T ) ≥ V (B, T ) was proved earlier, we conclude that V∞(B, T ) =

V (B, T ) = E
∑X(T )
k=0 (Wk − b∗k)Zk, and that b∗ ∈ D(B, T ) is an optimal bidding strategy. �

2.4. The monetary characterization of successive approximations. The next proposition uncovers

the economic meaning of Vn(B, T ); namely, that Vn(B, T ) is the maximum expected net revenue obtained

from at most n arrivals of keyword search. As a corollary of the proposition, we shall also establish that

Vn(B, T ) and V n(B, T ) are nondecreasing functions of B, T for every n ≥ 0. For the formulation and proof

of the proposition, let us introduce the processes

Y b
m,0 = Vm(B0, T ), Y b

m,n :=

n−1∑
k=0

(µ− bk)Zk1{Tk≤T} + Vm−n(Bn, T − Tn)1{T≤Tn}, 1 ≤ n ≤ m, m ≥ 1,

Y
b

m,0 = V m(B0, T ), Y
b

m,n :=

n−1∑
k=0

(µ− bk)Zk1{Tk≤T} + V m−n(Bn, T − Tn)1{T≤Tn}, 1 ≤ n ≤ m, m ≥ 1

for every b = (bn)n≥0 ∈ D(B0).



DYNAMIC BIDDING STRATEGIES IN SEARCH-BASED ADVERTISING 13

Proposition 2. For every b = (bn)n≥0 ∈ D(B0) and m ≥ 0, the processes (Y b
m,n,Fb

n )mn=0 and (Y
b

m,n,Fb
n )mn=0

are supermartingales. If b∗m = (b∗m,n)n≥0 and b
∗
m = (b

∗
m,n)n≥0 are the admissible bidding strategies defined

by b∗m,n = bm−n(Bn, T − Tn) and b
∗
m,n = bm−n(Bn, T − Tn) for every 0 ≤ n ≤ m, where

bn(B, T ) = arg max
0≤b≤B

(M1Vn−1)(b, B, T ) and bn(B, T ) = arg max
0≤b≤B

(M1V n−1)(b, B, T )

as in Theorem 1, then for every m ≥ 0, (Y
b∗

m
m,n,Fb∗

m
n )mn=0 and (Y

b
∗
m

m,n,F
b

∗
m

n )mn=0 are martingales. Moreover,

Vm(B, T ) = sup
b∈D(B,T )

E
m−1∑
k=0

(Wk − bk)Zk1{Tk≤T} = E
m−1∑
k=0

(Wk − b∗m,k)Zk1{Tk≤T}

V m(B, T ) = sup
b∈D(B,T )

E
m−1∑
k=0

(Wk − bk)Zk1{Tk≤T} + E
[
µ(1 + λ(T − Tm))1{Tm≤T}

]
= E

m−1∑
k=0

(Wk − b
∗
m,k)Zk1{Tk≤T} +

∫ T

0

µ(1 + λ(T − t)) (λt)m−1

(m− 1)!
e−λtλdt

(10)

and V m(B, T ) = Vm(B, T )+E
[
µ(1+λ(T−Tm))1{Tm≤T}

]
for every (B, T ) ∈ [0, Bmax]× [0, Tmax] and m ≥ 0.

Two corollaries follow from Proposition 2. The first corollary, Corollary 1, states that at any time the

optimal bidding amount never exceeds the expected potential revenue of a click or the available budget.

Corollary 1. For every m ≥ 0, each of Vm(B, T ) and V m(B, T ) is nondecreasing in (B, T ) ∈ [0, Bmax] ×
[0, Tmax]. If the remaining budget equals some 0 ≤ B ≤ Bmax, then the maximizations in the calculations of

successive approximations over bidding amounts can be restricted to from [0, B] to [0, µ ∧B]; namely,

Vm(B, T ) = max
b∈[0,µ∧B]

(M1Vm−1)(B, T ) and V m(B, T ) = max
b∈[0,µ∧B]

(M1V m−1)(B, T ).

Proof. (10) implies that Vm(B, T ) and V m(B, T ) are nondecreasing in (B, T ) ∈ [0, Bmax]× [0, Tmax] because

i) D(B, T ) grows with B, ii) X(T ) is nondecreasing in T , and iii) T 7→ E[µ(1 + λ(T − Tm))1{Tm≤T}] is

increasing. For every µ ≤ b ≤ B, we have E[(W0 − b)Z0] = (µ− b)G(b) ≤ 0 = (µ− µ)G(µ) = E[(W0 − µ)Z0]

and E[Vm−1(B− bZ0, T −T1)1{T1≤T}] ≤ E[Vm−1(B−µZ0, T −T1)1{T1≤T}] because Vm−1(B, T ) is increasing

in (B, T ) ∈ [0, Bmax]× [0, Tmax]. Thus, E[(W0 − b)Z0 + Vm−1(B − bZ0, T − T1)1{T1≤T}] ≤ E[(W0 − µ)Z0 +

Vm−1(B − µZ0, T − T1)1{T1≤T}] for every µ ≤ b ≤ B, and

Vm(B, T ) = max
0≤b≤B

(M1Vm−1)(B, T ) = max
0≤b≤B

E[(W0 − b)Z0 + Vm−1(B − bZ0, T − T1)1{T1≤T}]

= max
0≤b≤µ∧B

E[(W0 − b)Z0 + Vm−1(B − bZ0, T − T1)1{T1≤T}] = max
0≤b≤µ∧B

(M1Vm−1)(B, T )

for every (B, T ) ∈ [0, Bmax]× [0, Tmax], m ≥ 0. The proof is of the second equation in display is the same. �

The second corollary of Proposition 2 gives an explicit expression for the difference between the lower and

upper bounds on the value function. This upper bound helps us determine the exact number of successive

approximations needed for an accurate calculation of the value function.

Corollary 2. Because Vm ↑ V and V m ↓ V as m→∞, for every sufficiently large m ≥ 0, both Vm and V m

closely approximate V . In fact, Proposition 2 implies that

Vm(B, T ) ≤ V (B, T ) ≤ V m(B, T ) = Vm(B, T ) + E[µ(1 + λ(T − Tm))1{Tm≤T}]
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for every (B, T ) ∈ [0, Bmax]× [0, Tmax] and m ≥ 0. Both ‖V − Vm‖ and ‖V m − V ‖ are less than or equal to

‖V m − Vm‖ = max
0≤T≤Tmax

E[µ(1 + λ(T − Tm))1{Tm≤T}] = E[µ(1 + λ(Tmax − Tm))1{Tm≤Tmax}]

=

∫ Tmax

0

µ(1 + λ(Tmax − t))
(λt)m−1

(m− 1)!
e−λtλdt for every m ≥ 0.

Proof of Proposition 2. For every b ∈ D(B, T ) and m ≥ 0, we have Y b
m,n+1 − Y b

m,n equals

(µ− bn)Zn1{Tn≤T} + Vm−n−1(Bn+1, T − Tn+1)1{T≤Tn+1} − Vm−n(Bn, T − Tn)1{T≤Tn}

= 1{Tn≤T}

{
(µ−bn)Zn+Vm−n−1

(
Bn−bnZn, T−Tn−(Tn+1−Tn)

)
1{T−Tn≤Tn+1−Tn}−Vm−n(Bn, T−Tn)

}
.

Because the random variables bn, Bn, T −Tn are Fb
n -measurable, and E[Zn | Fb

n ] = P{Zn = 1 | bn} = G(bn),

and Tn+1 − Tn has exponential distribution with rate λ independently of Fb
n , E[Y b

m,n+1 − Y b
m,n | Fb

n ] equals{
(µ− bn)G(bn)+

∫ T−Tn

0

λe−λt
[
Vm−n−1(Bn− bn, T −Tn− t)G(bn)+Vm−n−1(Bn, T −Tn− t)(1−G(bn))dt

− Vm−n(Bn, T − Tn)
]}

1{Tn≤T} = 1{Tn≤T}

{
(M1Vm−n−1)(bn, Bn, T − Tn)− Vm−n(Bn, T − Tn)

}
Because Vm−n(B, T ) = sup0≤b≤B(M1Vm−n−1)(b, B, T ) ≥ (M1Vm−n−1)(b, B, T ) for every 0 ≤ b ≤ B in

general, the display is always nonpositive; namely, E[Y b
m,n+1 − Y b

m,n | Fb
n ] ≤ 0 for every 0 ≤ n ≤

m − 1, and (Y b
m,n,Fb

n )mn=0 is a supermartingale for every b ∈ D(B0). If, however, b is replaced with

b∗m = (b∗m,n)n≥0 defined by b∗m,n := bm−n(Bn, T − Tn) = arg max0≤b≤Bn
(M1Vm−n−1)(b, Bn, T − Tn), then

(M1Vm−n−1)(b∗m,n, Bn, T −Tn) = max0≤b≤Bn
(M1Vm−n−1)(b, Bn, T −Tn) = Vm−n(Bn, T −Tn), and the dis-

play equals identically zero. Thus, E[Y
b∗

m
m,n+1 − Y

b∗
m

m,n | Fb
n ] = 0 for every 0 ≤ n ≤ m− 1, and (Y b∗

m,n,Fb∗

n )mn=0

is a martingale. The supermartingale property implies

Vm(B0, T ) = Y b
m,0 ≥ E[Y b

m,m] = E
[m−1∑
k=0

(µ− bk)Zk1{Tk≤T} + V0(Bm, T − Tm)1{Tm≤T}

]

= E
[m−1∑
k=0

(µ− bk)Zk1{Tk≤T}

]
for every b = (bn)n≥0 ∈ D(B0),

because V0 ≡ 0. Taking the sup of both sides over all b ∈ D(B0) gives Vm(B0, T ) ≥ supb∈D(B0) E[
∑m−1
k=0 (µ−

bk)Zk1{Tk≤T}]. However, if we replace b with b∗m, then the inequality in the last display becomes an

equality because (Y
b∗

m
m,n,Fb∗

n )mn=0 is a martingale, and we obtain Vm(B0, T ) = E[
∑m−1
k=0 (µ−b∗m,k)Zk1{Tk≤T}] ≤

supb∈D(B0) E[
∑m−1
k=0 (µ − bk)Zk1{Tk≤T}]. The last two opposite inequalities imply the equalities on the

first line of (10) because the common mean µ can be replaced with unobservable i.i.d. random variables

W0,W1, . . ., which are independent of the filtration (Fb
n )n≥0 for every b ∈ D(B0).

One can similarly prove that (Y
b

m,n,Fb
n )mn=0 is a supermartingale for every b ∈ D(B0) and (Y

b
∗
m

m,n,F
b

∗
m

n )mn=0

is a martingale. The supermartingale property implies

V m(B0, T ) = Y
b

m,0 ≥ E[Y
b

m,m] = E
[m−1∑
k=0

(µ− bk)Zk1{Tk≤T} + V 0(Bm, T − Tm)1{Tm≤T}

]

= E
[m−1∑
k=0

(µ− bk)Zk1{Tk≤T}

]
+ E

[
µ(1 + λ(T − Tm))1{Tm≤T}

]
for every b = (bn)n≥0 ∈ D(B0), because V 0(B, T ) = µ(1 + λT ) for every (B, T ) ∈ [0, Bmax]× [0, Tmax] as in

(7). If b is replaced with b
∗
m, then the inequality in the display holds with equality. Therefore, V m(B0, T ) =

supb∈D(B0) E[
∑m−1
k=0 (µ − bk)Zk1{Tk≤T}] + E[µ(1 + λ(T − Tm))1{Tm≤T}] = E[

∑m−1
k=0 (µ − b∗m,k)Zk1{Tk≤T}] +
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0
µ(1 + λ(T − t))(λt)m−1λdt/(m− 1)!, because the mth-arrival time Tm of Poisson process X has Erlang

distribution with parameters λ and m. This proves the remainder of (10) because W0,W1, . . . are i.i.d. with

mean µ independent of X, B0, B1, . . ., Z0, Z1, . . .. �

2.5. The maximum expected total net revenue under optimal bidding policy. Recall that, as

we defined the value function V (·, ·) we assumed that the first keyword search arrives at time 0 and the

others according to Poisson process X afterwards; this assumption was necessary for evoking the dynamic

programming optimality principle in (2). In reality, however, the arrival time of the first keyword search is

strictly positive with probability one and has exponential distribution with mean 1/λ because we assumed

that keyword search instances arrive according to a Poisson process with arrival rate λ. Let us denote the

maximum expected total net revenue obtainable with budget B over time horizon T by U(B, T ). Then

U(B, T ) = E
[
V (B, T − T1)1{T1≤T}

]
=

∫ T

0

λe−λtV (B, T − t)dt, (B, T ) ∈ [0, Bmax]× [0, Tmax].(11)

Because V (B, T ) ≥ 0 is jointly increasing in B and T , we have U(B, T ) ≤ E
[
V (B, T )1{T1≤T}

]
≤ V (B, T );

however, the difference V (B, T )− U(B, T ) > 0 decreases with increasing keyword arrival rate λ.

2.6. Finding the value function of any admissible Markovian bidding policy. Beside the optimal

bidding strategy found by solving the associated dynamic programming problem, we shall numerically study

the performances of some other reasonable bidding strategies, introduced in Section 3. Those include the

dynamical versions of the optimal bidding strategy “BC” of Cholette, et al. [1] under the “expected total cost

not to exceed the budget” constraint and the optimal strategy which greedily bids the same amount until

either time expires or the budget is depleted, whichever occurs first. Because the latter two strategies have

significantly less running-time and space requirements than those of the dynamic-programming approach,

they can be considered as some viable alternatives as the numerical examples in the next section suggest.

Here we shall explain how one can calculate the value function of an admissible bidding strategy whose

bidding amount at any time depends only on the remaining budget and remaining time at that moment.

Suppose that V p(B, T ) denotes the value function of an admissible policy p which bids some known

amount 0 ≤ b(B, T ) ≤ µ ∧B when budget B is left for the remaining T units of time; namely,

V p(B, T ) = E
∞∑
i=0

[Wi − b(Bi, T − Ti)]Zi1{Ti≤T} for every (B, T ) ∈ [0, Bmax]× [0, Tmax],

where T0 = 0, T1, T2, . . . are the arrival times of Poisson keyword search process, Bi = Bi−1−b(Bi−1, Ti−1)Zi−1

is the budget left after (i−1)st keyword search, Zi is the indicator of a click which happens with probability

G(b(Bi, Ti)) for every i ≥ 0. Below we state some useful facts about V p(B, T ). Their proofs are omitted

because they are very similar to those for the facts stated earlier for the value function V (B, T ). First of all,

V p(B, T ) = E
[
(W0 − b(B, T ))Z0 + V p(B − b(B, T )Z0, T − T1)1{T1≤T}

]
≡ (MpV p)(B, T ),

where

(Mpw)(B, T ) := (M1w)(b(B, T ), B, T ) = (µ− b(B, T ))G(b(B, T ))

+

∫ T

0

λe−λt
[
w(B − b(B, T ), T − t)G(b(B, T )) + w(B, T − t)(1−G(b(B, T )))

]
dt

is a contraction operator on the collection of bounded functions B([0, Bmax]×[0, Tmax]) on [0, Bmax]×[0, Tmax]

with ‖Mpw1 −Mpw2‖ ≤ (1 − e−λTmax)‖w1 − w2‖. We have 0 ≤ V p(B, T ) ≤ µ(1 + λT ) for every (B, T ) ∈
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[0, Bmax]× [0, Tmax]. The value function V p is the unique bounded fixed point of Mp; therefore, V p = MpV p.

The lower and upper successive approximations

V p0 (B, T ) ≡ 0 and V pn (B, T ) := (MpV pn−1)(B, T ), (B, T ) ∈ [0, Bmax]× [0, Tmax],

V
p

0(B, T ) = µ(1 + λT ) and V
p

n(B, T ) := (MpV
p

n−1)(B, T ), (B, T ) ∈ [0, Bmax]× [0, Tmax]

are increasing and decreasing, respectively, and converge pointwise to V p(B, T ) as n → ∞, uniformly in

(B, T ) ∈ [0, Bmax]× [0, Tmax] and

‖V p − V pn ‖ ≤ µ(1 + λTmax)eλTmax(1− e−λTmax)n for every n ≥ 0,

‖V p − V pn‖ ≤ µ(1 + λTmax)eλTmax(1− e−λTmax)n for every n ≥ 0.

The process

Y p0 := V p(B0, T ) and Y pn :=

n−1∑
k=0

(µ− bk)Zk1{Tk≤T} + V p(Bn, T − Tn)1{Tn≤T}, n ≥ 0

is a martingale adapted to the filtration (Fpn)n≥0 defined by Fpn = σ{B0, T0, . . . , Bn, Tn} for every n ≥ 0. If

we denote the expected total net revenue under policy p by Up, then we have

Up(B, T ) = E
[
V p(B, T − T1)1{T1≤T}

]
=

∫ T

0

λe−λtV p(B, T − t)dt, (B, T ) ∈ [0, Bmax]× [0, Tmax].

3. Alternative static and dynamic bidding strategies

Optimal bidding strategy can be found by solving the dynamic programming problem in (1), which may

require excessive computational time and space for large values of parameters µ, λ,Bmax, Tmax. Here, we will

propose one static and two dynamic bidding strategies, whose computations are less demanding, and compare

their performances with that of the optimal bidding strategy on a large number of numerical examples in

Section 4. Our solution of the optimal bidding problem in Section 2 thus not only provides an optimal

bidding policy but also enables us to search for simple and good-performing alternative bidding policies for

the cases when optimal bidding policies are hard to calculate.

3.1. Static and dynamic budget-constrained bidding strategy. Cholette et al. [1] formulate the so-

called budget-constrained (BC) bidding problem

U
BC

(B, T ) = max
b

E
[ ∞∑
i=1

(Wi − b)Zi1{Ti≤T}

]
subject to E

[ ∞∑
i=1

bZi1{Ti≤T}

]
≤ B

= max
b

(µ− b)λTG(b) subject to bλTG(b) ≤ B.

Let us denote by bBC(B, T ) the bid amount b that attains the maximum and call it BC-optimal bid amount

when budget B is left for the remaining T units of time. The budget-constrained bidding problem can be

solved with the Lagrange-relaxation method in general. The problem admits closed-form solution

bBC(B, T ) =


√
a2 + aµ− a,

λT
(√

a2 + aµ− a
)2√

a2 + aµ
≤ B

B +
√
B2 + 4λTBa

λT
, otherwise

 , if m = 1, p0 = 1, and p1 = 0.

The original formulation of Cholette, et al. [1] assumes that the same bidding amount b = bBC(B, T ) is

used until either the budget is depleted or time is up, whichever occurs first. However, one expects to do

better than UBC(B, T ) by recalculating the BC-optimal bid amount at each keyword search instance in the

future.
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Here we propose the dynamic budget-constrained (DBC) bidding strategy in the following way: at the ar-

rival times T1, T2, T3, . . . of keyword search instances, let us bid in the amount bBC(B0 ≡ B, T ), bBC(B1, T −
T1), bBC(B2, T − T2), . . ., respectively, as long as we have both budget and time left. We shall denote the

expected total net revenue under DBC policy by UDBC , which can be calculated with successive approxi-

mations described in Section 2.6.

For a fair comparison of (static) BC policy with other dynamic bidding strategies, we shall also calculate

its expected total net revenue

UBC(B, T ) = (µ− bBC(B, T ))

bB/bBC(B,T )c∑
i=1

(
1−

i−1∑
j=0

(λG(bBC(B, T ))T )j

j!
e−λG(bBC(B,T ))T

)
under strict budget-constraint. The derivation follows from thinning the Poisson arrivals of keyword search

instances, as discussed in detail for the calculation of the expected total net revenue of the static greedy

bidding policy of the next section.

3.2. Static and dynamic greedy bidding strategy. If one wants to bid the same amount b all the time,

then the budget constraint can be forced not just in expectation but with probability one.

Note in this case that (Zi, Ti)
∞
i=1 form a marked Poisson process, where the marks Z1, Z2, . . . are i.i.d.

Bernoulli random variables with common success probability G(b). If the (Si)
∞
i=1 are those arrival times

Ti corresponding to Zi = 1, then the (Si)
∞
i=0 turn out to be the arrival times of a Poisson process with

arrival rate λG(b). At each arrival time Si, the budget is decreased by the amount b, in return of Wi − b
net revenue. Thus, starting with budget B for the remaining T units of time, one can generate bB/bc or

as many as the number of arrivals (Si)
∞
i=1 in (0, T ], whichever is the smaller. Let us call an amount b that

attains the maximum in

UG(B, T ) = max
b

E
[ bB/bc∑

i=1

(Wi − b)1{Si≤T}

]
the (static) greedy bidding strategy and denote it by bG(B, T ), where bxc is the largest integer smaller than

or equal to x. Because Y (t) :=
∑∞
i=1 1{Si≤t}, t ≥ 0 is a Poisson process with rate λG(b), and

E
[ bB/bc∑

i=1

(Wi − b)1{Si≤T}

]
= (µ− b)

bB/bc∑
i=1

P{Si ≤ T} = (µ− b)
bB/bc∑
i=1

P{Y (T ) ≥ i},

the greedy bidding problem reduces to

UG(B, T ) = max
b

(µ− b)
bB/bc∑
i=1

(
1−

i−1∑
j=0

(λG(b)T )j

j!
e−λG(b)T

)
.

We again expect that recalculating the greedy bidding amount before every keyword search will improve

the performance. Therefore, we also propose the following dynamic greedy (DG) bidding strategy: at the

arrival times T1, T2, T3, . . . of keyword search instances, let us bid in the amount bG(B0 ≡ B, T ), bG(B1, T −
T1), bG(B2, T − T2), . . ., respectively, as long as we have both budget and time left. We shall denote the

expected total net revenue under DG policy by UDG, which can be calculated with successive approximations

described in Section 2.6.

In the meantime, note that we always have UG(B, T ) ≥ UBC(B, T ). Hence, static greedy bidding policy

should perform at least as good as the static budget-constraint bidding policy if the budget-constraint is

strictly enforced. However, the numerical examples in Section 4 suggest that the difference UG(B, T ) −
UBC(B, T ) ≥ 0 is often surprisingly small.
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Figure 4. The convergence rate of the dynamic programming algorithm

4. Numerical examples

As Corollary 2 suggests, one can calculate iteratively the sequences of decreasing and increasing successive

approximations, respectively (V n)n≥0 and (Vn)n≥0 in (7), until the first nε ≥ 1 such that ‖V nε
− Vnε

‖ ≤ ε

for some sufficiently small ε > 0. We can then take, for example, V ≈ V nε
, because Vn ≤ V ≤ V n for

every n ≥ 1 by Theorem 1 (ii & iv) and Theorem 3, and ‖V nε − V ‖ ≤ ‖V nε − Vnε‖ ≤ ε. Because no closed

form expressions of V n or Vn for n ≥ 1 exist, we calculate them on a fine grid of their common domain

[0, Bmax]× [0, Tmax] of the Cartesian product of remaining budget and remaining time. Since the remaining

budget is discretized, the bidding amounts are also discretized and equal to some integer multiple of grid

size used for the discretization of remaining budget. Let us also remember from Corollary 1 that optimal

bidding amounts are always less than or equal to expected sales revenue µ = EW0.

We use the same parameters; namely, a = 20, λ = 500 keyword-search per day, Tmax = 1 day, m = 1,

p0 = 1, p1 = 0, Bmax = $3000 per day, µ = $50 per click, as in the single keyword example of Cholette

et. al. [1, Section 5.5]. The intervals [0, Bmax] and [0, Tmax] are divided into 3000 and 300 subintervals of

equal length $1 and 1/300 day, respectively. The optimal bidding amounts are searched over those values in

{$0, $1, $2, . . . , $49, $50} which are smaller than or equal to the remaining budget.

The explicit theoretical upperbound ‖V m−Vm‖, given by Corollary 2, on the difference between successive

approximations V m, Vm and value function V is evaluated and plotted in Figure 4. The approximation error

sharply decreases after 450 iterations and becomes less than a penny by the 600th iteration.

We do not depend on the theoretical error bound of Corollary 2 and run the successive approximations

until the maximum difference between upper and lower bounds on value function reduces below one cent.

This takes about 620 iterations, which is consistent with the reading from Figure 4. The value function

V (B, T ) for (B, T ) ∈ [0, Bmax] × [0, Tmax] and its contour lines are plotted on top in Figure 5. Even

though the value function equals V (Tmax, Bmax) = V (1, 3000) = $7420.98, the maximum expected total net

revenue is slightly less than this. Remember from (11) that the maximum expected total net revenue is

U(B, T ) = E
[
V (B, T − T1)1{T1≤T}

]
≤ V (B, T ). However, because λ = 500 is large, the first keyword search

arrives rather soon with high probability, and U and V are not expected to be very different. Indeed, the
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Figure 5. First two rows: the value function V (B, T ) and optimal policy function b(B, T )

of the dynamic programming problem. As the grid size used for the discretization of the

remaining budget decreases, the ladder-like optimal bidding policy function converges to a

smooth surface cut from top by a horizontal plane. Last row: the maximum expected total

net revenue U(B, T ) calculated by (11).
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No Budget Probabilistic Trade-off Dynamic

Methods constraints constraint constraint solution strategy

(NC) (BC) (PC) (TO) (DS)

Bid amount 17.4 14.3 4.97 7.0 dynamica

Expected total net revenue 7583.4 7447.3 4482.1 5574.1 7407.85

Expected total cost 4053.5 3000 494.6 907.4 2986b

Overbudget probability 0.53 0.49 0.10 0.25 0

Expected total net revenue
5607.20 7245.79 4481.36 5574.07 7407.85

under strict budget constraintc

Expected total cost
2992.80 2902.37 494.61 907.41 2986b

under strict budget constraintd

a Optimal bidding policy is plotted in the second row of Figure 5.
b Estimated by simulation: 1000 replications give mean 2986 with 0 (zero) standard error.
c,d Respectively, (µ − b)E(Y ∧ bB

b
c) and bE(Y ∧ bB

b
c), where Y ∼ Pois(λG(b)T ); T = 1 and B = 3000 are the

initial remaining time and budget, respectively; b is the bid amount in the first row.

Table 1. Comparison of optimal static and dynamic bidding strategies. NC,

BC, PC, TO are optimal static strategies proposed by Cholette et al. [1]. Their

performance measures (except c,d) are copied from Table 2 in [1]. The last column

shows the performance of the dynamic bidding strategy proposed here.

plots of V and U in Figure 5 look indifferent, but it turns out U(1, 3000) = 7407.85 < 7420.98 = V (1, 3000).

4.1. Comparison of optimal static and dynamic bidding strategies. In Table 1, we compare the per-

formance measures of the optimal dynamic bidding strategy (DS) with those of the optimal static strategies

(NC, BC, PC, TO) proposed by Cholette et al. [1]. For all of those static bidding strategies the budget

constraint is soft. NC assumes no budget constraints at all, BC requires that the expected total cost be

exactly 3000, PC wants the probability that the total costs exceeds 3000 is less than or equal to 0.10, and

TO picks an arbitrary point on the expected profit/probability efficient frontier and calculates the corre-

sponding bid amount. According to the “maximum total net revenue” measure in the second line of Table

1, DS performs slightly under NC and BC, while NC incurs on average (4053.5 − 3000)/3000 = 35% more

cost than available budget and both BC and NC are likely to go over budget nearly 50% of the time. Even

though PC and TO violate the budget constraint much less frequently (10% and 25%, respectively) and use

only a small fraction (on average, 494.6/3000 = 14% and 907.4/3000 = 30%) of the available budget, they

are outperformed by DS by a large margin. For a more fair comparison, the last two rows of Table 1 report

the same quantities (the expected total net revenue and total cost) under the strict budget constraint. The

performances of overly cautious PC and TO do not change, but both the expected total net revenues and

total costs of NC and BC are marked down. Under the strict budget constraint, DS has an expected total

net revenue (7407.85 − 5607.2)/5607.2 = 32% and (7407.85 − 7245.79)/7407.85 = 2% more than those of

NC and BC, respectively, while incurring an expected total cost (2992.80 − 2986)/2992.80 = 0.2% less and

(2986− 2902.37)/2902.37 = 2.9% more than those of NC and BC, respectively. When the budget constraint

is strictly enforced, the expected total net revenue is the sole performance measure, according to which DS

outperforms all of the static strategies as expected.

The optimal bidding policy is a function of only the remaining time and remaining budget. It is displayed

in the second row of Figure 5. The ladder-like piecewise constant look is an artifact due to the discretization

of remaining-budget variable and disappears as the grid size decreases to zero. In the limit, the optimal
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Figure 6. Simulation of remaining budget processes under optimal bidding policy for dif-

ferent initial remaining time and remaining budget values

bidding policy is a smooth surface cut from top by a flat plane. For a fixed T , optimal bid amount increases

as B increases. Also, for a fixed B, optimal bid amount decreases as T increases.

Figure 6 shows, from left to right, 100 realizations of the remaining-budget process under optimal bidding

policy if the initial remaining time and budget are (0.5,3000), (1.0,3000), and (1.0,1500), respectively. If no

keyword-search instances arrive for relatively long time periods, then the remaining budget process remains

flat over time and enters into the higher-bidding-regions and optimal bidding amounts increase. If the

keyword-search instances arrive relatively quickly, then the remaining budget process may drift downward

into lower-bidding-regions and optimal bidding amount decrease. It is interesting that the slope of the

“average behavior” of remaining-budget process is the same for all starting points at time zero. The optimal

bidding strategy has to balance the increasing (respectively, decreasing) likelihood of inducing an actual

click with the increasing (respectively, decreasing) cost of frequent high bids (respectively, low bids). This

trade-off seems to be optimally balanced by keeping the direction of the process around an ideal constant,

which is independent of the remaining time and budget at any time.

4.2. Sensitivity analysis. The performances of static budget-constraint and greedy bidding policies (BC

and G, respectively) and the dynamic budget-constraint and greedy bidding policies (DBC and DG, re-

spectively) are compared with that of optimal dynamic bidding policy (DS) for five different levels of each

parameter value B, a, λ,m, µ while the others are kept fixed. Table 2 summarizes the results. Recall from

Section 3.1 that U
BC

is the maximum expected total net revenue under the budget constraint on the expected

total cost. Therefore, we did not compare it directly to other static and dynamic bidding strategies, which

are defined under strict (with probability one) budget constraint.

The relative losses with respect to optimal dynamic bidding policy are the largest (respectively, 2.35-3.26%

and 1.28-1.74%) when the budget is the tightest (750-1500) and the arrival rate is the highest (1000-2000).

The dynamic budget-constraint (DBC) bidding policy is superior to the static budget-constraint (BC) bidding

policy in general by an average margin of 1.5%. Similarly, the dynamic greedy (DG) bidding policy performs

better than the static greedy (G) bidding policy in general by an average margin of 0.3%. Hence, the static

greedy bidding policy may serve as a good replacement for its dynamic counterpart. The dynamic greedy

bidding policy outperforms the dynamic budget-constraint bidding policy by a small margin in general. In

almost all cases, the relative losses of the dynamic greedy and budget-constraint bidding policies are less than

1% and provide near-optimal expected total net revenue at significantly lower computational requirements

than those of the dynamic programming approach.
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Figure 7. The comparison of the static and dynamic bidding policies

Table 2 suggests that the larger is the initial budget relative to the expected total spending on bidding,

the better are the performances of the static/dynamic BC/greedy bidding policies. To quantify this relation

and understand it better, we introduce a surrogate for the fraction of the initial budget spent on bidding;

namely,

estimated budget loading (EBL) =
bG(B, T )λG(bG(B, T ))T

B
,

where bG(B, T ) is the optimal (static) greedy bidding amount of Section 3.2 and the numerator is an estimate

of the optimal expected total spending for bidding under optimal dynamic bidding policy. The latter quantity

should ideally be calculated by solving the dynamic programming problem. This would however defeat our

purpose of finding a fast and accurate alternative bidding policy in place of the optimal dynamic bidding

policy when the latter is difficult to calculate.

For each row of Table 2, we calculate EBL (using bG column) and plot the relative percentage rev-

enue loss of each bidding policy (static/dynamic BC/greedy) in total expected net revenues (columns

UBC , UG, UDBC , UDG) against EBL in Figure 7. To better visualize the relation between the relative

loss and EBL, we also add to the plots the curves obtained by applying loess (locally weighted scatterplot

smoothing) to the data points. Four smoothed curves corresponding to static/dynamic BC/greedy bidding

policies were also plotted together in Figure 2.

The negative percentage revenue loss values at EBL = 0.2 in pictures of Figure 7 and 2 are the artifacts of

that the bidding amounts are restricted to the one-dollar increments as we numerically solve the stochastic

dynamic optimization problem. When the bidding amounts are searched over the one-cent increments, those

artifacts disappear; however, the grid size increases 100 folds and Table 2 turns out to be impossible to cal-

culate in a reasonable amount of time. This is known as the dynamic programming’s curse of dimensionality,

which is exactly the reason why we proposed and studied alternative static/dynamic BC/greedy bidding

policies.

All four (static/dynamic BC/greedy) bidding policies perform nearly as good as the optimal dynamic

bidding policy for low to moderately-high budget loading values: the percentage revenue losses are nearly

zero for BC bidding policies when EBL ≤ 0.7 and for static greedy and dynamic BC/greedy policies when

EBL ≤ 0.8 ∼ 0.9. As the estimated budget loading (EBL) increases to one, the percentage revenue losses

sharply increase. Interestingly, the relative percentage losses for the static BC/greedy policies seem to be
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Static Relative loss (percentage)

Parameters bidding values with respect to UDS in

B a λ m µ bBC bG U
BC

UBC UG UDBC UDG UDS†

750 6.27 6.15 5222.92 2.81 2.35 3.26 2.89 5167.64

1500 9.38 9.04 6487.30 2.61 1.88 1.72 1.53 6435.35

3000 20 500 1 50 14.35 13.70 7447.27 2.47 0.89 0.69 0.53 7407.85

6000 17.41 17.42 7583.42 -0.03 -0.03 -0.03 0.09 7581.09

12000 17.41 17.42 7583.42 -0.03 -0.03 -0.03 0.09 7581.09

5 9.24 8.80 13224.98 1.95 0.62 0.83 0.54 13178.40

10 11.30 10.75 10266.55 2.07 0.85 0.83 0.59 10220.10

3000 20 500 1 50 14.35 13.70 7447.27 2.47 0.89 0.69 0.53 7407.85

40 18.77 17.54 4987.33 2.94 0.59 0.49 0.34 4964.06

80 21.98 21.90 3019.60 0.01 0.01 0.00 0.12 3019.52

125 17.41 17.41 1895.85 -0.03 -0.03 -0.03 0.12 1895.27

250 17.41 17.41 3791.71 -0.03 -0.03 -0.03 0.11 3790.55

3000 20 500 1 50 14.35 13.70 7447.27 2.47 0.89 0.69 0.53 7407.85

1000 9.38 9.23 12974.66 1.74 1.28 1.64 1.52 12899.30

2000 6.27 6.20 20891.68 1.29 1.08 3.13 3.01 20759.90

0.25 7.97 7.50 15223.74 0.70 0.04 0.09 0.17 15218.10

0.5 10.35 9.68 11485.91 2.19 0.49 0.60 0.41 11452.80

3000 20 500 1 50 14.35 13.70 7447.27 2.47 0.89 0.69 0.53 7407.85

2 21.69 20.69 3914.34 2.79 0.85 0.64 0.40 3886.07

4 29.88 29.88 1397.46 -0.00 -0.00 0.09 0.12 1397.42

12.5 5.49 5.49 754.90 -0.65 -0.65 -0.65 -0.53 750.00

25 10.00 10.00 2500.00 0.00 0.00 0.00 0.12 2500.00

3000 20 500 1 50 14.35 13.70 7447.27 2.47 0.89 0.69 0.53 7407.85

100 14.35 13.95 17894.54 2.39 1.66 1.10 0.93 17785.20

200 14.35 14.08 38789.08 2.40 1.87 1.27 0.99 38554.60

† Because the maximum bid amount is searched over integers, the maximum expected total net revenue calculations

involve a small negative discretization bias, which explains those negative relative losses in the table.

Table 2. Sensitivity analysis. The relative loss of UBC with respective to UDS is

defined by 100(UDS − UBC)/UDS , and the others are defined likewise.

bounded, while the relative percentage losses of the dynamic BC/greedy policies seem to grow unboundedly

as the budget loading increases to one. Out of four bidding policies proposed as an alternative to the optimal

dynamic bidding policy, the static greedy bidding policy seems to be the best.
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Appendix A. Auxiliary results

Lemma 1. For every f, g ∈ C([0, Bmax]× [0, Tmax]) and 0 ≤ T, S ≤ Tmax, we have∣∣∣∣ max
0≤b≤B

f(b, T )− max
0≤b≤B

g(b, S)

∣∣∣∣ ≤ max
0≤b≤B

∣∣∣f(b, T )− g(b, S)
∣∣∣ for every B ∈ [0, Bmax].

Proof. Because f, g are continuous on the compact set [0, Bmax] × [0, Tmax], both maxima on the left are

finite and attained at some bf , bg ∈ [0, B], respectively. Therefore,

max
0≤b≤B

f(b, T )− max
0≤b≤B

g(b, S) ≤ f(bf , T )− g(bf , S) ≤ max
0≤b≤B

∣∣∣f(b, T )− g(b, S)
∣∣∣,

max
0≤b≤B

g(b, S)− max
0≤b≤B

f(b, T ) ≤ g(bg, T )− f(bg, S) ≤ max
0≤b≤B

∣∣∣g(b, T )− f(b, S)
∣∣∣,

which together complete the proof. �

Lemma 2. For every f ∈ C([0, Bmax] × [0, Tmax]), the function F (B, T ) := max0≤b≤B f(b, T ) is also in

C([0, Bmax]× [0, Tmax]).

Proof. Because f(·, ·) is continuous on [0, Bmax]× [0, Tmax], it is uniformly continuous. For every ε > 0 there

exists some δ > 0 such that, whenever (B, T ), (C, S) ∈ [0, Bmax] × [0, Tmax] satisfies |B − C| + |T − S| ≤ δ,

we have |f(B, T )− f(C, S)| ≤ ε. Note that

|F (B, T )− F (C, S)| ≤ |F (B, T )− F (B,S)|+ |F (B,S)− F (C, S)|.

By Lemma 1 with g ≡ f , we have |F (B, T ) − F (B,S)| ≤ max0≤b≤B |f(b, T ) − f(b, S)| ≤ ε. We shall next

show that |F (B,S) − F (C, S)| ≤ ε as well. Let us assume without loss of generality that B ≤ C. Because

b 7→ f(b, S) is continuous on the compact interval [0, C], the value F (C, S) = max0≤b≤C f(b) is attained

at some bC ∈ [0, C]. If bC ∈ [0, B], then |F (B,S) − F (C, S)| = 0 ≤ ε. If bC 6∈ [0, B], then we must have

bC ∈ (B,C] and

0 ≤ |F (B,S)− F (C, S)| = F (C, S)− F (B,S) ≤ f(bC , S)− f(B,S) ≤ ε,

because |bC −B| = bC −B ≤ C −B ≤ δ. �

Lemma 3. Let f ∈ C([0, Bmax]2 × [0, Tmax]). Define

F (B, T ) = max
0≤b≤Bmax

f(b, B, T ) and I(b, B, T ) =

∫ T

0

λe−λtf(b, B, T − t)dt.

Then F ∈ C([0, Bmax]× [0, Tmax]) and I ∈ C([0, Bmax]2 × [0, Tmax]).

Proof. For every (B, T ), (C, S) ∈ [0, Bmax]× [0, Tmax], the maxima F (B, T ) and F (C, S) are attained at some

bBT and bCS in [0, Bmax]. Then

F (B, T )− F (C, S) ≤ f(bBT , B, T )− f(bBT , C, S) ≤ max
0≤b≤Bmax

|f(b, B, T )− f(b, C, S)|,

F (C, S)− F (B, T ) ≤ f(bCS , B, T )− f(bCS , C, S) ≤ max
0≤b≤Bmax

|f(b, C, S)− f(b, B, T )|.

Hence, |F (B, T ) − F (C, S)| ≤ max0≤b≤Bmax |f(b, B, T ) − f(b, C, S)|. Because f is uniformly continuous on

the compact set [0, Bmax]2× [0, Tmax], one can find for every ε > 0 a number δ > 0 such that |b−c|+ |B−C|+
|T − S| ≤ δ implies |f(b, B, T )− f(c, C, S)| ≤ ε; therefore, |F (B, T )−F (C, S)| ≤ max0≤b≤Bmax

|f(b, B, T )−
f(b, C, S)| ≤ ε, and F ∈ C([0, Bmax] × [0, Tmax]). Without loss of generality, we can assume that 0 < δ < ε
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(otherwise, replace δ with δ ∧ ε). Then∣∣∣∣∣
∫ T

0

λe−λtf(b, B, T − t)dt−
∫ S

0

λe−λtf(c, C, S − t)dt

∣∣∣∣∣ ≤
∫ T

0

λe−λt
∣∣f(b, B, T − t)− f(b, B, S − t)

∣∣dt
+

∣∣∣∣∣
∫ T

0

λe−λtf(b, B, S − t)dt−
∫ S

0

λe−λtf(b, B, S − t)dt

∣∣∣∣∣+

∫ S

0

λe−λt
∣∣f(b, B, S − t)− f(c, C, S − t)

∣∣dt
≤ ε

∫ T

0

λe−λtdt+

∫ T∨S

T∧S
λe−λt

∣∣f(b, B, S − t)
∣∣dt+ ε

∫ S

0

λe−λtdt ≤ 2ε+ λ‖f‖|T − S| ≤ (2 + λ‖f‖)ε,

which proves that I ∈ C([0, Bmax]2 × [0, Tmax]). �

Lemma 4. If w ∈ C([0, Bmax] × [0, Tmax]), then M1w ∈ C([0, Bmax]2 × [0, Tmax]) and Mw ∈ C([0, Bmax] ×
[0, Tmax]).

Proof. If w ∈ C([0, Bmax] × [0, Tmax]), then both (b, B, T ) 7→ w(B, T ) and (b, B, T ) 7→ w((B − b)+, T ) −
w(B, T ) are in C([0, Bmax]2 × [0, Tmax]). The second part of Lemma 3 implies that both integrals in (5)

are in C([0, Bmax]2 × [0, Tmax]). Because the product and sum of continuous functions are continuous,

the continuity of M1w immediately follows. Finally, (Mw)(B, T ) = max0≤b≤Bmax
(M1w)(b, B, T ) in (6) is

continuous because of the first part of Lemma 3. �
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