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Abstract. A new characterization of excessive functions for arbitrary one–dimen-

sional regular diffusion processes is provided, using the notion of concavity. It is

shown that excessive functions are essentially concave functions in some suitable

generalized sense, and vice–versa. This, in turn, permits a characterization of the

value function of the optimal stopping problem as “the smallest nonnegative concave

majorant of the reward function”, and allows us to generalize results of Dynkin–

Yushkevich for the standard Brownian motion. Moreover, we show how to reduce

the discounted optimal stopping problems for an arbitrary diffusion process, to an

undiscounted optimal stopping problem for the standard Brownian motion.

The concavity of the value functions also leads to conclusions about their smooth-

ness, thanks to the properties of concave functions. One is thus led to a new per-

spective and new facts about the smooth–fit principle in the context of optimal

stopping. The results are illustrated in detail on a number of non–trivial, concrete

optimal stopping problems, both old and new.

1. Introduction and Summary

This paper studies the optimal stopping problem for one–dimensional diffusion

processes. Let (Ω,F ,P) be a complete probability space with a standard Brownian

motion B = {Bt; t ≥ 0}, and consider the diffusion process X with state space I ⊆ R
and dynamics

(1.1) dXt = µ(Xt)dt+ σ(Xt)dBt,

for some Borel functions µ : I → R and σ : I → (0,∞). We assume that I is an

interval with endpoints −∞ ≤ a < b ≤ +∞, and that X is regular in (a, b); i.e., X
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reaches y with positive probability starting at x, for every x and y in (a, b). We shall

denote by F = {Ft} the natural filtration of X.

Let β ≥ 0 be a constant, and h(·) be a Borel function such that Ex

[
e−βτh(Xτ )

]
is

well–defined for every F–stopping time τ and x ∈ I. By convention

f(Xτ (ω)) = 0 on {τ = +∞}, for every Borel function f(·).

Finally, we denote by

(1.2) V (x) , sup
τ∈S

Ex

[
e−βτh(Xτ )

]
, x ∈ I,

the value function of the optimal stopping problem with reward function h(·) and

discount rate β, where the supremum is taken over the class S of all F–stopping

times. The optimal stopping problem is to find the value function, as well as an

optimal stopping time τ ∗ for which the supremum is attained, if such a time exists.

One of the best–known characterizations of the value function V (·) is given in terms

of β–excessive functions (for the process X), namely, the nonnegative functions f(·)
that satisfy

(1.3) f(x) ≥ Ex

[
e−βτf(Xτ )

]
, ∀ τ ∈ S, ∀x ∈ I.

For every β–excessive function f(·) majorizing h(·), (1.3) implies that f(x) ≥ V (x),

x ∈ I. On the other hand, thanks to the strong Markov property of diffusion pro-

cesses, it is not hard to show that V (·) is itself a β–excessive function.

Theorem 1.1 (Dynkin [4]). The value function V (·) of (1.2) is the smallest β–

excessive (with respect to X) majorant of h(·) on I, if h(·) is lower semi–continuous.

This characterization of the value function often serves as a verification tool. It

does not however describe how to calculate the value function explicitly for a general

diffusion process. The common practice in the literature is therefore to guess the

value function, and then to put it to the test using Theorem 1.1.

One special optimal stopping problem, whose solution for arbitrary reward func-

tions is perfectly known, was studied by Dynkin and Yushkevich [8]. These authors
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study the optimal stopping problem of (1.2) under the following assumptions:

(DY)



X is a standard Brownian motion starting in a closed

bounded interval [a, b], and is absorbed at the boundaries

(i.e., µ(·) ≡ 0 on [a, b], σ(·) ≡ 1 on (a, b), and σ(a) = σ(b) =

0, and I ≡ [a, b] for some −∞ < a < b < ∞). Moreover,

β = 0, and h(·) is a bounded Borel function on [a, b].


Their solution relies on the following key theorem, which characterizes the excessive

functions for one–dimensional Brownian motion.

Theorem 1.2 (Dynkin and Yushkevich [8]). Every 0–excessive (or simply, excessive)

function for one–dimensional Brownian motion X is concave, and vice–versa.

In conjunction with Theorem 1.1, this result implies the following

Corollary 1.1. The value function V (·) of (1.2) is the smallest nonnegative concave

majorant of h(·) under the assumptions (DY).

This paper generalizes the results of Dynkin and Yushkevich for the standard Brow-

nian motion, to arbitrary one–dimensional regular diffusion processes. We show that

the excessive functions for such a diffusion process X coincide with the concave func-

tions, in some suitably generalized sense (cf. Proposition 3.1). A similar concavity

result will also be established for β–excessive functions (cf. Proposition 4.1 and

Proposition 5.1). These explicit characterizations of excessive functions allow us to

describe the value function V (·) of (1.2) in terms of generalized concave functions, in

a manner very similar to Theorem 1.2 (cf. Proposition 3.2 and Proposition 4.2). The

new characterization of the value function, in turn, has important consequences.

The straightforward connection between generalized and ordinary concave func-

tions, reduces the optimal stopping problem for arbitrary diffusion processes to that

for the standard Brownian motion (cf. Proposition 3.3). Therefore, the “special” solu-

tion of Dynkin and Yushkevich, in fact, becomes a fundamental technique, of general

applicability, for solving the optimal stopping problems for regular one–dimensional

diffusion processes.

The properties of concave functions, summarized in Section 2, will help establish

necessary and sufficient conditions about the finiteness of value functions and about

the existence and characterization of optimal stopping times, when the diffusion pro-

cess is not contained in a compact interval, or when the boundaries are not absorbing

(cf. Proposition 5.2 and Proposition 5.7)
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We shall also show that the concavity and minimality properties of the value func-

tion determine its smoothness. This will let us understand the major features of the

method of Variational Inequalities. We offer, for example, a new exposition and, we

believe, a better understanding, of the smooth–fit principle, which is crucial to this

method. It is again the concavity of the value function that helps to unify many of

the existing results in the literature about the smoothness of V (·) and the smooth–fit

principle.

Preview. We overview the basic facts about one–dimensional diffusion processes and

concave functions in Section 2. In Section 3 and Section 4, we solve undiscounted and

discounted, respectively, stopping problems for a regular diffusion process, stopped at

the time of first exit from a given closed and bounded interval. In Section 5, we study

the same problem when the state–space of the diffusion process is an unbounded

interval, or when the boundaries are not absorbing.

The results are used in Section 6 to treat a host of optimal stopping problems

with explicit solutions, and in Section 7 to discuss further consequences of the new

characterization for the value functions. We address especially the smoothness of the

value function, and take a new look at the associated variational inequalities.

2. One–Dimensional Regular Diffusion Processes and Concave

Functions

Let X be a one-dimensional regular diffusion of the type (1.1), on an interval I.

We shall assume that (1.1) has a (weak) solution, which is unique in the sense of the

probability law. This is guaranteed, if µ(·) and σ(·) satisfy∫
(x−ε,x+ε)

1 + |µ(y)|
σ2(y)

dy <∞, for some ε > 0,(2.1)

at every x ∈ int(I) (Karatzas and Shreve [13, 329–353]), together with precise de-

scription of the behavior of the process at the boundaries of the state–space I. If

killing is allowed at time ζ, then the dynamics in (1.1) are valid for 0 ≤ t < ζ. We

shall assume, however, that X can only be killed at the endpoints of I which do not

belong to I.

Define τr , inf{t ≥ 0 : Xt = r} for every r ∈ I. A one–dimensional diffusion

process X is called regular, if for any x ∈ int(I) and y ∈ I, we have Px(τy < +∞) > 0.
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Hence, the state–space I cannot be decomposed into smaller sets from which X could

not exit. Under the condition (2.1), the diffusion X of (1.1) is regular.

The major consequences of this assumption are listed below: their proofs can be

found in Revuz and Yor [15, pages 300–312]. Let J , (l, r) be a subinterval of I such

that [l, r] ⊆ I, and σJ the exit time of X from J . If x ∈ J , then σJ = τl ∧ τr, Px–a.s.

For x /∈ J , then σJ = 0, Px–a.s.

Proposition 2.1. If J is bounded, then the function mJ(x) , Ex[σJ ], x ∈ I is

bounded on J . In particular, σJ is a.s. finite.

Proposition 2.2. There exists a continuous, strictly increasing function S(·) on I
such that for any l, r, x in I, with a ≤ l < x < r ≤ b, we have

Px(τr < τl) =
S(x)− S(l)

S(r)− S(l)
, and Px(τl < τr) =

S(r)− S(x)

S(r)− S(l)
.(2.2)

Any other function S̃ with the same properties is an affine transformation of S, i.e.,

S̃ = αS + β for some α > 0 and β ∈ R. The function S is unique in this sense, and

is called the “scale function” of X.

If the killing time ζ is finite with positive probability, and limt↑ζ Xt = a (say), then

limx→a S(x) is finite. We shall define S(a) , limx→a S(x), and set S(Xζ) = S(l).

With this in mind, we have:

Proposition 2.3. A locally bounded Borel function f is a scale function, if and only

if the process Y f
t , f(Xt∧ζ∧τa∧τb), t ≥ 0, is a local martingale. Furthermore, if X can

be represented by the stochastic differential equation (1.1), then

(2.3) S(x) =

∫ x

c

exp

{
−

∫ y

c

2µ(z)

σ2(z)
dz

}
dy, x ∈ I,

for any arbitrary but fixed c ∈ I.

The scale function S(·) has derivative S ′(x) = exp
{∫ x

c
[−2µ(u)/σ2(u)] du

}
on

int(I), and we shall define

S ′′(x) , −2µ(x)

σ2(x)
S ′(x), x ∈ int(I).

This way AS(·) ≡ 0, where the second–order differential operator

(2.4) Au(·) ,
1

2
σ2(·)d

2u

dx2
(·) + µ(·)du

dx
(·), on I,
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is the infinitesimal generator of X. The ordinary differential equation Au = βu has

two linearly independent, positive solutions. These are uniquely determined up to

multiplication, if we require one of them to be strictly increasing and the other to be

strictly decreasing. We shall denote the increasing solution by ψ(·) and the decreasing

solution by ϕ(·). In fact, we have

ψ(x) =


Ex[e

−βτc ], if x ≤ c

1

Ec[e−βτx ]
, if x > c

 , ϕ(x) =


1

Ec[e−βτx ]
, if x ≤ c

Ex[e
−βτc ], if x > c

 ,(2.5)

for every x ∈ I, and arbitrary but fixed c ∈ I (cf. Itô and McKean [10, pages 128–

129]). Solutions of Au = βu in the domain of infinitesimal operator A are obtained

as linear combinations of ψ(·) and ϕ(·), subject to appropriate boundary conditions

imposed on the process X. If an endpoint is contained in the state–space I, we shall

assume that it is absorbing; and if it is not contained in I, we shall assume that

X is killed if it can reach the boundary with positive probability. In either case,

the boundary conditions on ψ(·) and ϕ(·) are ψ(a) = ϕ(b) = 0. For the complete

characterization of ψ(·) and ϕ(·) corresponding to other types of boundary behavior,

refer to Itô and McKean [10, pages 128–135]. Note that the Wronskian determinant

W (ψ, ϕ) ,
ψ′(x)

S ′(x)
ϕ(x)− ϕ′(x)

S ′(x)
ψ(x)(2.6)

of ψ(·) and ϕ(·) is a positive constant. One last useful expression is

(2.7) Ex

[
e−βτy

]
=


ψ(x)

ψ(y)
, x ≤ y

ϕ(x)

ϕ(y)
, x > y

 .

Concave Functions. Let F : [c, d] → R be a strictly increasing function. A real–valued

function u is called F–concave on [c, d] if, for every a ≤ l < r ≤ b and x ∈ [l, r], we

have

(2.8) u(x) ≥ u(l)
F (r)− F (x)

F (r)− F (l)
+ u(r)

F (x)− F (l)

F (r)− F (l)
.

Here are some facts about the properties of F–concave functions (Dynkin [5, pages

231–240], Karatzas and Shreve [13, pages 213–214], Revuz and Yor [15, pages 544–

547]).
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Proposition 2.4. Suppose u(·) is real-valued and F–concave, and F (·) is continu-

ous on [c, d]. Then u(·) is continuous in (c, d) and u(c) ≤ lim infx↓c u(x), u(d) ≤
lim infx↑d u(x).

Proposition 2.5. Let (uα)α∈Λ is a family of F–concave functions on [c, d]. Then

u , ∧α∈Λuα is also F–concave on [c, d].

Let v : [c, d] → R be any function. Define

D+
F v(x) ≡

d+v

dF
(x) , lim

y↓x

v(x)− v(y)

F (x)− F (y)
, and D−

F v(x) ≡
d−v

dF
(x) , lim

y↑x

v(x)− v(y)

F (x)− F (y)
,

provided that limits exist. If D±
F v(x) exist and are equal, then v(·) is said to be

F -differentiable at x, and we write DFv(x) = D±
F v(x).

Proposition 2.6. Suppose u : [c, d] → R is F–concave. Then we have the following:

(i) The derivatives D+
F u(·) and D−

F u(·) exist in (c, d). Both are non–increasing

and D+
F u(l) ≥ D−

F u(x) ≥ D+
F u(x) ≥ D−

F u(r), for every c < l < x < r < d.

(ii) Let x0 ∈ (c, d). For every D+
F u(x0) ≤ θ ≤ D−

F u(x0), we have u(x0)+ θ[F (x)−
F (x0)] ≥ u(x), ∀x ∈ [c, d].

(iii) If F (·) is continuous on [c, d], then D+
F u(·) is right–continuous, and D−

F u(·) is

left–continuous. The derivatives D±
F u(·) have the same set of continuity points;

in particular, except for x in a countable set N , we have D+
F u(x) = D−

F u(x).

3. Undiscounted Optimal Stopping

Suppose we start the diffusion process X of (1.1) in a closed and bounded interval

[c, d] contained in the interior of the state–space I, and stop X as soon as it reaches

one of the boundaries c or d. For a given Borel–measurable and bounded function

h : [c, d] → R, we set

V (x) , sup
τ∈S

Ex[h(Xτ )], x ∈ [c, d].(3.1)

The question is to characterize the function V (·), and to find an optimal stopping

time τ ∗ such that V (x) = Ex[h(Xτ∗)], x ∈ [c, d], if such τ ∗ exists. If h(·) ≤ 0, then

trivially V ≡ 0, and τ ≡ ∞ is an optimal stopping time. Therefore, we shall assume

supx∈[c,d] h(x) > 0.

Following Dynkin and Yushkevich [8, pages 112–126], we shall first characterize

the class of excessive functions. These play a fundamental role in optimal stopping

problems, as shown in Theorem 1.1
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To motivate what follows, let U : [c, d] → R be an excessive function of X. For

any stopping time τ of X, and x ∈ [c, d], we have U(x) ≥ Ex[U(Xτ )]. In particular,

if x ∈ [l, r] ⊆ [c, d], we may take τ = τl ∧ τr, where τr , inf{t ≥ 0 : Xt = r}, and then

the regularity of X gives

U(x) ≥ Ex[U(Xτl∧τr)] = U(l) · Px(τl < τr) + U(r) · Px(τl > τr), x ∈ [l, r].

With the help of (2.2), the above inequality becomes

U(x) ≥ U(l) · S(r)− S(x)

S(r)− S(l)
+ U(r) · S(x)− S(l)

S(r)− S(l)
, x ∈ [l, r].(3.2)

In other words, every excessive function of X is S–concave on [c, d] (see Section 2 for

a discussion). When X is a standard Brownian motion, Dynkin and Yushkevich [8]

showed that the reverse is also true; we shall show next that the reverse is true for

an arbitrary diffusion process X.

Let S(·) be the scale function of X as above, and recall that S(·) is real–valued,

strictly increasing and continuous on I.

Proposition 3.1 (Characterization of Excessive Functions). A function U : [c, d] →
R is nonnegative and S–concave on [c, d], if and only if

U(x) ≥ Ex[U(Xτ )], ∀ τ ∈ S,∀x ∈ [c, d].(3.3)

This, in turn, allows us to conclude the main result of this section, namely

Proposition 3.2 (Characterization of the Value Function). The value function V (·)
of (3.1) is the smallest nonnegative, S–concave majorant of h(·) on [c, d].

We defer the proofs of Proposition 3.1 and Proposition 3.2 to the end of the section,

and discuss their implications first.

It is usually a simple matter to find the smallest nonnegative concave majorant

of a bounded function on some closed bounded interval: It coincides geometrically

with the rope stretched from above the graph of function, with both ends pulled

to the ground. On the contrary, it is hard to visualize the nonnegative S–concave

majorant of a function. The following Proposition has therefore some importance,

when we need to calculate V (·) explicitly; it was already noticed by Karatzas and

Sudderth [14].
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Proposition 3.3. On the interval [S(c), S(d)], let W (·) be the smallest nonnegative

concave majorant of the function H(y) , h
(
S−1(y)

)
. Then we have V (x) = W

(
S(x)

)
,

for every x ∈ [c, d].

The concave characterization of Proposition 3.2 for the value function allows us

to obtain information about the smoothness of V (·) and the existence of an optimal

stopping time. Consider the optimal stopping region

Γ , {x ∈ [c, d] : V (x) = h(x)} and define τ ∗ , inf{t ≥ 0 : Xt ∈ Γ},(3.4)

the time of first–entry into this region. The proof of the following result is similar to

that in Dynkin and Yushkevich [8, pages 112–119].

Proposition 3.4. If h(·) is continuous on [c, d], then so is V (·), and the stopping

time τ ∗ of (3.4) is optimal.

Remark 3.1. Since the standard Brownian motion B is in natural scale, i.e., S(x) = x

up to some affine transformation, W (·) of Proposition 3.3 is itself the value function

of some optimal stopping problem of the standard Brownian motion, namely

(3.5) W (y) = sup
τ≥0

Ey[H(Bτ )] = sup
τ≥0

Ey

[
h
(
S−1

(
Bτ

))]
, y ∈ [S(c), S(d)].

where the supremum is taken over all stopping times of B. Therefore, solving the

original optimal stopping problem is the same as solving another, with a different

reward function, but for a standard Brownian motion. If, moreover, we denote the

optimal stopping region of this problem by Γ̃ , {y ∈ [S(c), S(d)] : W (y) = H(y)},
then Γ = S−1

(
Γ̃

)
.

PROOF OF PROPOSITION 3.1. We have already seen in (3.2) that excessivity im-

plies S–concavity. For the converse, suppose U : [c, d] → [0,+∞) is S–concave; then

it is enough to show

(3.6) U(x) ≥ Ex[U(Xt)], ∀ x ∈ [c, d], ∀ t ≥ 0.

Indeed, observe that, the inequality (3.6) and the Markov property of X imply that

{U(Xt)}t∈[0,+∞) is a nonnegative supermartingale, and (3.3) follows from Optional

Sampling. To prove (3.6), let us first show

(3.7) U(x) ≥ Ex[U(Xρ∧t)], ∀ x ∈ [c, d], ∀ t ≥ 0,

where the stopping time ρ , τc ∧ τd is the first exit time of X from (c, d).
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First, note that (3.7) holds as equality at the absorbing boundary points x = c and

x = d. Next, fix any x0 ∈ (c, d); since U(·) is S–concave on [c, d], Proposition 2.6(ii)

shows that there exists an affine transformation L(·) = c1S(·)+c2 of the scale function

S(·), such that

L(x0) = U(x0), and L(x) ≥ U(x), ∀ x ∈ [c, d].

Thus, for any t ≥ 0, we have

Ex0 [U(Xρ∧t)] ≤ Ex0 [L(Xρ∧t)] = Ex0 [c1S(Xρ∧t) + c2] = c1Ex0 [S(Xρ∧t)] + c2.

But S(·) is continuous on the closed and bounded interval [c, d], and the process S(Xt)

is a continuous local martingale; so the stopped process {S(Xρ∧t), t ≥ 0} is a bounded

martingale, and Ex0 [S(Xρ∧t)] = S(x0), for every t ≥ 0, by optional sampling. Thus

Ex0 [U(Xρ∧t)] ≤ c1Ex0 [S(Xρ∧t)] + c2 = c1S(x0) + c2 = L(x0) = U(x0),

and (3.7) is proved. To show (3.6), observe that since Xt = Xσ on {t ≥ σ}, (3.7)

implies Ex[U(Xt)] = Ex[U(Xρ∧t)] ≤ U(x), for every x ∈ [c, d] and t ≥ 0. �

PROOF OF PROPOSITION 3.2. Since τ ≡ ∞ and τ ≡ 0 are stopping times, we

have V ≥ 0 and V ≥ h, respectively. Hence V (·) is nonnegative and majorizes h(·).
To show that V (·) is S–concave, we shall fix some x ∈ [l, r] ⊆ [c, d]. Since h(·) is

bounded, V (·) is finite on [c, d]. Therefore, for any arbitrarily small ε > 0, we can

find stopping times σl and σr such that

Ey[h(Xσy)] ≥ V (y)− ε, y = l, r.

Define a new stopping time

τ ,

τl + σl ◦ θτl , on {τl < τr},

τr + σr ◦ θτr , on {τl > τr},
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where θt is the shift operator (see Karatzas and Shreve [13, page 77 and 83]). Using

the strong Markov property of X, we obtain

V (x) ≥ Ex[h(Xτ )] = Ex

[
h(Xτ )1{τl<τr}

]
+ Ex

[
h(Xτ )1{τl>τr}

]
= Ex

[
1{τl<τr}EXτl

[
h(Xσl

)
]]

+ Ex

[
1{τl>τr}EXτr

[
h(Xσr)

]]
= El

[
h(Xσl

)
]
Px{τl < τr}+ Er

[
h(Xσr)

]
Px{τl > τr}

= El

[
h(Xσl

)
]S(r)− S(x)

S(r)− S(l)
+ Er

[
h(Xσr)

]S(x)− S(l)

S(r)− S(l)

≥ V (l) · S(r)− S(x)

S(r)− S(l)
+ V (r) · S(x)− S(l)

S(r)− S(l)
− ε.

Since ε > 0 is arbitrary, we conclude that V (·) is indeed a nonnegative S–concave

majorant of h(·) on [c, d].

Now, let U : [c, d] → R be any other nonnegative S–concave majorant of h(·)
on [c, d]. Then, Proposition 3.1 implies U(x) ≥ Ex[U(Xτ )] ≥ Ex[h(Xτ )], for every

x ∈ [c, d] and every stopping time τ ∈ S. Therefore U ≥ V on [c, d]. This completes

the proof. �

PROOF OF PROPOSITION 3.3. Trivially, V̂ (x) , W
(
S(x)

)
, x ∈ [c, d], is a nonneg-

ative concave majorant of h(·) on [c, d]. Therefore V̂ (x) ≥ V (x) for every x ∈ [c, d].

On the other hand, Ŵ (y) , V
(
S−1(y)

)
is a nonnegative S–concave majorant of

H(·) on [S(c), S(d)]. Therefore Ŵ (·) ≥ W (·) on [S(c), S(d)], and V (x) = Ŵ (S(x)) ≥
W

(
S(x)

)
= V̂ (x), for every x ∈ [c, d]. �

4. Discounted Optimal Stopping

Let us try now to see, how the results of Section 3 can be extended to study of the

discounted optimal stopping problem

(4.1) V (x) , sup
τ∈S

Ex[e
−βτh(Xτ )], x ∈ [c, d],

with β > 0. The diffusion process X and the reward function h(·) have the same

properties as described in Section 3. Namely, X is started in a bounded closed

interval [c, d] contained in the interior of its state space I, and is absorbed whenever

it reaches c or d. Moreover, h : [c, d] → R is a bounded, Borel–measurable function

with supx∈[c,d] h(x) > 0.

In order to motivate the key result of Proposition 4.1, let U : [c, d] → R be a

β–excessive function with respect to X. Namely, for every stopping time τ of X,
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and x ∈ [c, d], we have U(x) ≥ Ex

[
e−βτU(Xτ )

]
. For a stopping time of the form

τ = τl ∧ τr, the first exit time of X from an interval [l, r] ⊆ [c, d], the regularity of X

implies

U(x) ≥ Ex

[
e−β(τl∧τr)U(τl ∧ τr)

]
= U(l) · Ex

[
e−βτl1{τl<τr}

]
+ U(r) · Ex

[
e−βτr1{τl>τr}

]
, x ∈ [l, r].(4.2)

The function u1(x) , Ex

[
e−βτl1{τl<τr}

]
(respectively, u2(x) , Ex

[
e−βτr1{τl>τr}

]
) is the

unique solution of Au = βu in (l, r), with boundary conditions u1(l) = 1, u1(r) = 0

(respectively, with u2(l) = 0, u2(r) = 1). In terms of the functions ψ(·), ϕ(·) of (2.5),

using the appropriate boundary conditions, one calculates

u1(x) =
ψ(x)ϕ(r)− ψ(r)ϕ(x)

ψ(l)ϕ(r)− ψ(r)ϕ(l)
, u2(x) =

ψ(l)ϕ(x)− ψ(x)ϕ(l)

ψ(l)ϕ(r)− ψ(r)ϕ(l)
, x ∈ [l, r].(4.3)

Substituting these into the inequality (4.2) above, then dividing both sides of the

inequality by ϕ(x) (respectively, by ψ(x)), we obtain

U(x)

ϕ(x)
≥ U(l)

ϕ(l)
· F (r)− F (x)

F (r)− F (l)
+
U(r)

ϕ(r)
· F (x)− F (l)

F (r)− F (l)
x ∈ [l, r],(4.4)

and

U(x)

ψ(x)
≥ U(l)

ϕ(l)
· G(r)−G(x)

G(r)−G(l)
+
U(r)

ϕ(r)
· G(x)−G(l)

G(r)−G(l)
, x ∈ [l, r],(4.5)

respectively, where the functions

F (x) ,
ψ(x)

ϕ(x)
, and G(x) , − 1

F (x)
= −ϕ(x)

ψ(x)
, x ∈ [c, d](4.6)

are both well-defined and strictly increasing. Observe now that the inequalities (4.4)

and (4.5) imply that U(·)/ϕ(·) is F–concave, and U(·)/ψ(·) is G–concave on [c, d] (cf.

Section 2). In Proposition 4.1 below, we shall show that the converse is also true.

It is worth pointing out the correspondence between the roles of the functions

S(·) and 1 in the undiscounted optimal stopping, and the roles of ψ(·) and ϕ(·) in

the discounted optimal stopping. Both pairs (S(·), 1) and (ψ(·), ϕ(·)) consist of an

increasing and a decreasing solution of the second–order differential equationAu = βu

in I, for the undiscounted (i.e., β = 0) and the discounted (i.e., β > 0) versions of

the same optimal stopping problems, respectively. Therefore, the results of Section 3

can be restated and proved with only minor (and rather obvious) changes. Here is

the key result of the section:
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Proposition 4.1 (Characterization of β–excessive functions). For a given function

U : [c, d] → [0,+∞), the quotient U(·)/ϕ(·) is an F–concave (equivalently, U(·)/ψ(·)
is a G–concave) function, if and only if U(·) is β–excessive, i.e.,

(4.7) U(x) ≥ Ex[e
−βτU(Xτ )], ∀ τ ∈ S, ∀x ∈ [c, d].

Proposition 4.2 (Characterization of the value function). The value function V (·)
of (4.1) is the smallest nonnegative majorant of h(·) such that V (·)/ϕ(·) is F–concave

(equivalently, V (·)/ψ(·) is G–concave) on [c,d].

The equivalence of the characterizations, in Proposition 4.1 and Proposition 4.2 in

terms of F and G, follows now from the definition of concave functions.

Lemma 4.1. Let U : [c, d] → R any function. Then U(·)/ϕ(·) is F–concave on [c, d],

if and only if U(·)/ψ(·) is G–concave on [c, d].

Since it is hard to visualize the nonnegative F– or G–concave majorant of a function

geometrically, it will again be convenient to have a description in terms of ordinary

concave functions.

Proposition 4.3. Let W (·) be the smallest nonnegative concave majorant of H ,

(h/ϕ) ◦ F−1 on [F (c), F (d)], where F−1(·) is the inverse of the strictly increasing

function F (·) in (4.6). Then V (x) = ϕ(x)W
(
F (x)

)
, for every x ∈ [c, d].

Just as in Dynkin and Yushkevich [8, pages 112–126], the continuity of the functions

ϕ(·), F (·), and the F–concavity of V (·)/ϕ(·) imply the following.

Lemma 4.2. If h(·) is continuous on [c, d], then V (·) is also continuous on [c, d].

We shall next characterize the optimal stopping rule. Define the “optimal stopping

region”

Γ , {x ∈ [c, d] : V (x) = h(x)}, and τ ∗ , inf{t ≥ 0 : Xt ∈ Γ}.(4.8)

Lemma 4.3. Let τr , inf{t ≥ 0 : Xt = r}. Then for every c ≤ l < x < r ≤ d,

Ex[e
−β(τl∧τr)h(Xτl∧τr)] = ϕ(x)

[
h(l)

ϕ(l)
· F (r)− F (x)

F (r)− F (l)
+
h(r)

ϕ(r)
· F (x)− F (l)

F (r)− F (l)

]
,

= ψ(x)

[
h(l)

ψ(l)
· G(r)−G(x)

G(r)−G(l)
+
h(r)

ψ(r)
· G(x)−G(l)

G(r)−G(l)

]
.
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Furthermore,

Ex[e
−βτrh(Xτr)] = ϕ(x)

h(r)

ϕ(r)
· F (x)− F (c)

F (r)− F (c)
= ψ(x)

h(r)

ψ(r)
· G(x)−G(c)

G(r)−G(c)
,

and

Ex[e
−βτlh(Xτl)] = ϕ(x)

h(l)

ϕ(l)
· F (d)− F (x)

F (d)− F (l)
= ψ(x)

h(l)

ψ(l)
· G(d)−G(x)

G(d)−G(l)
.

Proof. The first and second equalities are obtained after rearranging the equation

Ex[e
−β(τl∧τr)h(Xτl∧τr)] = h(l) · Ex[e

−βτl1{τl<τr}] + h(r) · Ex[e
−βτr1{τl>τr}],

where u1(x) , Ex[e
−βτl1{τl<τr}] and u2(x) , Ex[e

−βτr1{τl>τr}] are given by (4.3). The

others follow similarly. �

Proposition 4.4. If h is continuous on [c, d], then τ ∗ of (4.8) is an optimal stopping

rule.

Proof. Define U(x) , Ex[e
−βτ∗h(Xτ∗)], for every x ∈ [c, d]. We have obviously

V (·) ≥ U(·). To show the reverse inequality, it is enough to prove that U(·)/ϕ(·)
is a nonnegative F–concave majorant of h(·)/ϕ(·). By adapting the arguments in

Dynkin and Yushkevich [8, pages 112–126], and by using Lemma 4.3, we can show

that U(·)/ϕ(·) can be written as the lower envelope of a family of nonnegative F–

concave functions, i.e., it is nonnegative and F–concave. To show that U(·) majorizes

h(·), assume for a moment that

(4.9) θ , max
x∈[c,d]

(
h(x)

ϕ(x)
− U(x)

ϕ(x)

)
> 0.

Since θ is attained at some x0 ∈ [c, d], and [U(·)/ϕ(·)]+θ is a nonnegative, F–concave

majorant of h(·)/ϕ(·), Proposition 4.2 implies h(x0)/ϕ(x0) = [U(x0)/ϕ(x0)] + θ ≥
V (x0)/ϕ(x0) ≥ h(x0)/ϕ(x0); equivalently x0 ∈ Γ, and U(x0) = h(x0), thus θ = 0,

contradiction to (4.9). Therefore U(·) ≥ h(·) on [c, d], as claimed. �

Remark 4.1. Let B be a one–dimensional standard Brownian motion in [F (c), F (d)]

with absorbing boundaries, and W , H be defined as in Proposition 4.3. From Propo-

sition 3.2 of Section 3, we have

(4.10) W (y) ≡ sup
τ≥0

Ey[H(Bτ )], y ∈ [F (c), F (d)].
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If h(·) is continuous on [c, d], then H(·) will be continuous on the closed bounded in-

terval [F (c), F (d)]. Therefore, the optimal stopping problem of (4.10) has an optimal

rule σ∗ , {t ≥ 0 : Bt ∈ Γ̃}, where Γ̃ , {y ∈ [F (c), F (d)] : W (y) = H(y)} is the

optimal stopping region of the same problem. Moreover Γ = F−1
(
Γ̃

)
.

In light of Remark 3.1 and Proposition 4.3, there is essentially only one class of

optimal stopping problems for one–dimensional diffusions, namely, the undiscounted

optimal stopping problems for Brownian motion.

We close this section with the proof of necessity in Proposition 4.1; the proof of

Proposition 4.2 follows along lines similar to Proposition 3.2.

PROOF OF PROPOSITION 4.1. To prove necessity, suppose U(·) is nonnegative

and U(·)/ϕ(·) is F - concave on [c, d]. As in the proof of Proposition 3.1, thanks to

the strong Markov property of X and the optional sampling theorem for nonnegative

supermartingales, it is enough to prove that

(4.11) U(x) ≥ Ex[e
−β(ρ∧t)U(Xρ∧t)], x ∈ [c, d], t ≥ 0,

where ρ , inf{t ≥ 0 : Xt /∈ (c, d)}. Clearly, this holds for x = c and x = d.

Next fix any x ∈ (c, d). Since U(·)/ϕ(·) is F–concave on [c, d], there exists an

affine transformation L(·) , c1F (·) + c2 of the function F (·) on [c, d], such that

L(·) ≥ U(·)/ϕ(·) and L(x) = U(x)/ϕ(x). Now observe that

Ex[e
−β(ρ∧t)U(Xρ∧t)] ≤ Ex[e

β(ρ∧t)ϕ(Xρ∧t)L(Xρ∧t)] = Ex

[
e−β(ρ∧t)ϕ(Xρ∧t)

(
c1F (Xρ∧t) + c2

)]
= c1Ex[e

−β(ρ∧t)ψ(Xρ∧t)] + c2Ex[e
−β(ρ∧t)ϕ(Xρ∧t)], ∀ t ≥ 0.

Because ψ(·) is of class C2[c, d], we can apply Itô’s Rule to e−βtψ(Xt); the stochastic

integral is a square-integrable martingale, since its quadratic variation process is

integrable, and because Aψ = βψ on (c, d) , we obtain

Ex[e
−β(ρ∧t)ψ(Xρ∧t)] = ψ(x) + Ex

[∫ ρ∧t

0

e−βs(Aψ − βψ)(Xs)ds

]
= ψ(x), ∀ t ≥ 0.

Similarly, Ex[e
−β(ρ∧t)ϕ(Xρ∧t)] = ϕ(x), whence Ex[e

−β(ρ∧t)U(Xρ∧t)] ≤ c1ψ(x)+c2ϕ(x) =

ϕ(x)L(x) = U(x). This proves (4.11). �

5. Boundaries and Optimal Stopping

In Section 3 and 4, we assumed that the process X is allowed to diffuse in a closed

and bounded interval, and is absorbed when it reaches either one of the boundaries.
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There are many other interesting cases, where the state space may not be compact,

or the behavior of the process different near the boundaries.

It is always possible to show that the value function V (·) must satisfy the properties

of Proposition 3.2 or Proposition 4.2. Additional necessary conditions on V (·) appear,

if one or more boundaries are regular reflecting (for example, the value function V (·)
for the undiscounted problem of Section 3 should be non–increasing if c is reflecting,

non–decreasing if d is reflecting).

The challenge is to show that V (·) is the smallest function with these necessary

conditions. Proposition 3.1 and Proposition 4.1 meet this challenge when the bound-

aries are absorbing. Their proofs illustrate the key tools. Observe that the local

martingales, S(Xt) and the constant 1 of Section 3, and e−βtψ(Xt) and e−βtϕ(Xt) of

Section 4, are fundamental in the proofs of sufficiency.

Typically, the concavity of the appropriate quotient of some nonnegative function

U(·) with respect to a quotient of the monotone fundamental solutions ψ(·), ϕ(·) of

Au = βu, as in (2.5) , will imply that U(·) is β–excessive. The main tools in this effort

are Itô’s rule, the localization of local martingales, the lower semi–continuity of U(·)
(usually implied by concavity of some sort), and Fatou’s Lemma. Different boundary

conditions may necessitate additional care to complete the proof of superharmonicity.

We shall not attempt here to formulate a general theorem that covers all cases.

Rather, we shall state and prove in this section, the key propositions for a diffu-

sion process with absorbing and/or natural boundaries. We shall illustrate how the

propositions look like, and what additional tools we may need, to overcome potential

difficulties with the boundaries.

5.1. Left–boundary is absorbing, right–boundary is natural. Suppose the

right–boundary b ≤ ∞ of the state–space I of the diffusion process is natural. Let

c ∈ int(I). Note that the process, starting in (c, b), reaches c in finite time with

positive probability. Consider the stopped process X, which starts in [c, b) and is

stopped when it reaches c. Finally, recall the functions ψ(·) and ϕ(·) of (2.5) for some

constant β > 0. Since c ∈ int(I), we have 0 < ψ(c) <∞, 0 < ϕ(c) <∞. Because b is

natural, we have ψ(b−) = ∞ and ϕ(b−) = 0. Let the reward function h : [c, b) → R
be bounded on compact subsets, and define

V (x) , sup
τ∈S

Ex[e
−βτh(Xτ )], x ∈ [c, b).
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Let (bn)n≥1 ⊂ [c, b) be an increasing sequence such that bn → b as n→∞. Define

the stopping times

σn , inf{t ≥ 0 : Xt /∈ (c, bn)}, n ≥ 1; and σ , inf{t ≥ 0 : Xt /∈ (c, b)}.(5.1)

Note that σn ↑ σ as n → ∞. Since b is a natural boundary, we in fact have σ =

inf{t ≥ 0 : Xt = c} almost surely. We can now state and prove the key

Proposition 5.1. For a function U : [c, b) → [0,+∞), U(·)/ψ(·) is G–concave on

[c, b) if and only if U(x) ≥ Ex[e
−βτU(Xτ )], holds for every x ∈ [c, b) and τ ∈ S.

Proof. Sufficiency follows from Lemma 4.3 when we let τ be 0, ∞, and τl ∧ τr, for

every choice of x ∈ [l, r] ⊂ [c, b). For the necessity, we only have to show (as in the

proof of Proposition 4.1) that

(5.2) U(x) ≥ Ex[e
−βtU(Xt)], x ∈ [c, b), t ≥ 0.

And as in the proof of Proposition 4.1, we first prove a simpler version of (5.2), namely

(5.3) U(x) ≥ Ex[e
−β(σ∧t)U(Xσ∧t)], x ∈ [c, b), t ≥ 0.

The main reason was that the behavior of the process up to the time σ of reaching

the boundaries, is completely determined by its infinitesimal generator A. We can

therefore use Itô’s rule without worrying about what happens after the process reaches

the boundaries. In the notation of (5.1), we have

(5.4) U(x) ≥ Ex[e
−β(σn∧t)U(Xσn∧t)], x ∈ [c, b), t ≥ 0, n ≥ 1.

This is obvious, in fact as equality, for x /∈ (c, bn). For x ∈ (c, bn), Xσn∧t lives

in the closed bounded interval [c, bn] contained in the interior of I; and c and bn

are absorbing for {Xσn∧t; t ≥ 0}. An argument similar to that in the proof of

Proposition 4.1, completes the proof of (5.4).

Since G(·) is continuous on [c, b), and U(·)/ψ(·) is G–concave on [c, b), Proposi-

tion 2.4 implies that U is lower semi–continuous on [c, b), i.e., lim infy→x U(y) ≥ U(x),

for every x ∈ [c, b). Because σn ∧ t→ σ ∧ t and Xσn∧t → Xσ∧t, as n→∞, we have

Ex[e
−β(σ∧t)U(Xσ∧t)] ≤ Ex

[
lim inf
n→∞

e−β(σn∧t)U(Xσn∧t)
]

≤ lim inf
n→∞

Ex

[
e−β(σn∧t)U(Xσn∧t)

]
≤ U(x),
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from lower semi–continuity, nonnegativity, and (5.4). This proves (5.3). Finally,

since c is absorbing, and σ ≡ inf{t ≥ 0 : Xt = c}, we have Xt = Xσ = c on {t ≥ σ}.
Therefore, (5.2) follows from (5.3) as in

Ex[e
−βtU(Xt)] = Ex[e

−βtU(Xσ∧t)] ≤ Ex[e
−β(σ∧t)U(Xσ∧t)] ≤ U(x), x ∈ [c, b), t ≥ 0,

and the proof is complete. �

We shall investigate next, conditions, under which the value–function V (·) is real–

valued. It turns out that this is determined by the quantity

(5.5) `b , lim sup
x→b

h+(x)

ψ(x)
∈ [0,+∞],

where h+(·) , max{0, h(·)} on [c, b).

We shall first show that V (x) = +∞ for every x ∈ (c, b), if `b = +∞. To this end,

fix any x ∈ (c, b). Let (rn)n∈N ⊂ (x, b) be any strictly increasing sequence with limit

b. Define the stopping times τrn , inf {t ≥ 0 : Xt ≥ rn}, n ≥ 1. Lemma 4.3 implies

V (x) ≥ Ex[e
−βτrnh(Xτrn

)] = ψ(x)
h(rn)

ψ(rn)
· G(x)−G(c)

G(rn)−G(c)
, n ≥ 1.

On the other hand, since τ ≡ +∞ is also a stopping time, we also have V ≥ 0.

Therefore

(5.6)
V (x)

ψ(x)
≥ 0 ∨

(
h(rn)

ψ(rn)
· G(x)−G(c)

G(rn)−G(c)

)
=
h+(rn)

ψ(rn)
· G(x)−G(c)

G(rn)−G(c)
, n ≥ 1.

Remember that G is strictly increasing and negative (i.e., bounded from above).

Therefore G(b−) exists, and −∞ < G(c) < G(b−) ≤ 0. Furthermore since x > c,

we have G(x) − G(c) > 0. By taking the limit supremum of both sides in (5.6) as

n→ +∞, we find

V (x)

ψ(x)
≥ lim sup

n→+∞

h+(rn)

ψ(rn)
· G(x)−G(c)

G(rn)−G(c)
= `b ·

G(x)−G(c)

G(b−)−G(c)
= +∞.

Since x ∈ (c, b) was arbitrary, this proves that V (x) = +∞ for all x ∈ (c, b), if `b of

(5.5) is equal to +∞.

Suppose now that `b is finite. We shall show that Ex[e
−βτh(Xτ )] is well–defined in

this case for every stopping time τ , and that V (·) is finite on [c, b). Since `b < ∞,

there exists some b0 ∈ (c, b) such that h+(x) < (1 + `b)ψ(x), for every x ∈ (b0, b).
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Since h(·) is bounded on the closed and bounded interval [c, b0], we conclude that

there exists some finite constant K > 0 such that

(5.7) h+(x) ≤ Kψ(x), for all x ∈ [c, b).

Now read Proposition 5.1 with U , ψ, and conclude that

(5.8) ψ(x) ≥ Ex[e
−βτψ(Xτ )], ∀ x ∈ [c, b), ∀ τ ∈ S.

This and (5.7) lead to Kψ(x) ≥ Ex

[
e−βτh+(Xτ )

]
, for every x ∈ [c, b) and every τ ∈ S.

Thus Ex[e
−βτh(Xτ )] is well–defined (i.e., expectation exists) for every stopping time

τ , and Kψ(x) ≥ Ex

[
e−βτh+(Xτ )

]
≥ Ex

[
e−βτh(Xτ )

]
, for every x ∈ [c, b) and stopping

time τ , which means

(5.9) 0 ≤ V (x) ≤ Kψ(x)

i.e., V (x) is finite for every x ∈ [c, b). The following result has been proved (see Beibel

and Lerche [2, Theorem 1] for a conclusion similar to Propositions 5.2 and 5.10. See

also Beilbel and Lerche [1]).

Proposition 5.2. We have either V ≡ +∞ in (c, d), or V (x) < +∞ for all x ∈ [c, b).

Moreover, V (x) < +∞ for every x ∈ [c, b) if and only if `b of (5.5) is finite.

In the remainder of this Subsection, we shall assume that

the quantity `b of (5.5) is finite,(5.10)

so that V (·) is real–valued. We shall investigate the properties of V (·), and describe

how to find it. The main result is as follows; its proof is almost identical to the

proof of Proposition 4.2, with the obvious changes, such as the use of Proposition 5.1

instead of Proposition 4.1.

Proposition 5.3. V (·) is the smallest nonnegative majorant of h(·) on [c, b) such

that V (·)/ψ(·) is G–concave on [c, b).

We shall continue our discussion by first relating `b of (5.5) to V (·) as in Proposi-

tion 5.4. Since V (·)/ψ(·) is G–concave, the limit limx↑b V (x)/ψ(x) exists, and (5.9)

implies that this limit is finite. Since V (·) moreover majorizes h+(·), we have

(5.11) `b = lim sup
x↑b

h+(x)

ψ(x)
≤ lim

x↑b

V (x)

ψ(x)
< +∞.
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Proposition 5.4. If h(·) defined and bounded on compact subintervals of [c, b), and

if (5.10) holds, then

lim
x↑b

V (x)

ψ(x)
= `b.

Proof. Fix any arbitrarily small ε > 0, and note that (5.10) implies that the existence

of some l ∈ (c, b) such that

(5.12) y ∈ [l, b) =⇒ h(y) ≤ h+(y) ≤ (`b + ε)ψ(y).

For every x ∈ (l, b) and arbitrary stopping time τ ∈ S, we have {Xτ ∈ [c, l)} ⊆ {τl <
τ}, on {X0 = x}. Note also that the strong Markov property of X and (5.8) imply

that e−βtψ(Xt) is a nonnegative supermartingale. Consequently,

Ex[e
−βτh(Xτ )] = Ex[e

−βτh(Xτ )1{Xτ∈[c,l)}] + Ex[e
−βτh(Xτ )1{Xτ∈(l,b)}]

≤ KEx[e
−βτψ(Xτ )1{Xτ∈[c,l)}] + (`b + ε)Ex[e

−βτψ(Xτ )1{Xτ∈(l,b)}]

≤ KEx[e
−βτψ(Xτ )1{τl<τ}] + (`b + ε)Ex[e

−βτψ(Xτ )]

≤ KEx[e
−βτlψ(Xτl)1{τl<∞}] + (`b + ε)ψ(x)

= Kψ(l)Ex[e
−βτl ] + (`b + ε)ψ(x)

≤ Kψ(x)Ex[e
−βτl ] + (`b + ε)ψ(x) = Kψ(x)

ϕ(x)

ϕ(l)
+ (`b + ε)ψ(x),

where the right–hand side no longer depends on the stopping time τ . Therefore,

V (x)

ψ(x)
≤ K

ϕ(l)
ϕ(x) + `b + ε, for every x ∈ (l, b).

By taking limits on both sides as x tends to b, we obtain

lim
x↑b

V (x)

ψ(x)
≤ K

ϕ(l)
ϕ(b−) + `b + ε = `b + ε,

since ϕ(b−) = 0, and let ε ↓ 0 to conclude limx↑b V (x)/ψ(x) ≤ `b. In conjunction

with (5.11), this completes the proof. �

Proposition 5.5. Let W : [G(c), 0] → R be the smallest nonnegative majorant of the

function H : [G(c), 0] → R, given by

(5.13) H(y) ,


h
(
G−1(y)

)
ψ

(
G−1(y)

) , if y ∈ [G(c), 0),

`b, if y = 0.
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Then V (x) = ψ(x)W
(
G(x)

)
, for every x ∈ [c, b). Furthermore, W (0) = `b, and W is

continuous at 0.

Since G(·) is continuous on [c, b) and V (·)/ψ(·) is G–concave, V (·)/ψ(·) is continu-

ous on (c, b) and V (c)/ψ(c) ≤ lim infx↓c V (x)/ψ(x). However, ψ(·) itself is continuous

on [c, b). Therefore, V (·) is continuous on (c, b) and V (c) ≤ lim infx↓c V (x). An

argument similar to Dynkin and Yushkevich [8] gives

Proposition 5.6. If h : [c, b) → R is continuous, and (5.10) is satisfied, then V (·) is

continuous on [c, b).

In the remaining part of the subsection, we shall investigate the existence of an

optimal stopping time. Proposition 5.7 shows that this is guaranteed when `b of (5.5)

equals zero. Lemma 5.8 gives necessary and sufficient conditions for the existence

of an optimal stopping time, when `b is positive. Finally, no optimal stopping time

exists when `b equals +∞, since the value function equals +∞ everywhere. As usual,

we define

(5.14) Γ , {x ∈ [c, b) : V (x) = h(x)}, and τ ∗ , inf{t ≥ 0 : Xt ∈ Γ}.

Remark 5.1. Suppose W (·) and H(·) are functions defined on [G(c), 0] as in Propo-

sition 5.5. If Γ̃ , {y ∈ [G(c), 0) : W (y) = H(y)}, then Γ = G−1
(
Γ̃

)
.

Proposition 5.7. Suppose h : [c, b) → R is continuous, and `b = 0 in (5.5). Then

τ ∗ of (5.14) is an optimal stopping time.

Proof. As in the proof of Proposition 4.4, U(x) , Ex[e
−βτ∗h(Xτ∗)], x ∈ [c, b), is

nonnegative, U(·)/ψ(·) is F–concave, and continuous on [c, b). Since `b = 0,

θ , sup
x∈[c,b)

(
h(x)

ψ(x)
− U(x)

ψ(x)

)
= max

x∈[c,b)

(
h(x)

ψ(x)
− U(x)

ψ(x)

)
(5.15)

is attained in [c, b). Now, the same argument as in the proof of Proposition 4.4, shows

that U(·)/ψ(·) majorizes h(·)/ψ(·). �

Proposition 5.8. Suppose `b > 0 is finite and h(·) is continuous. Then τ ∗ of (5.14)

is an optimal stopping time if and only if there is no l ∈ [c, b) such that (l, b) ⊆ C.1

1This condition is stronger than the statement “for some l ∈ [c, b), (l, b) ⊆ Γ”. Indeed, suppose

there exists a strictly increasing sequence bn ↑ b such that (bnk
, bnk+1) ⊆ C for some subsequence

{bnk
}k∈N ⊆ Γ. The original condition in Lemma 5.8 still holds, but there is no l ∈ [c, b) such that

(l, b) ⊆ Γ.
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Proof. This last condition guarantees that θ of (5.15) is attained, and the proof of the

optimality of τ ∗ is the same as in Proposition 5.7. Conversely, assume that (l, b) ⊆ C

for some l ∈ [c, b). Then τl ≤ τ ∗, Px–a.s., for every x ∈ (l, b). The optional sampling

theorem for nonnegative supermartingales implies

V (x) = Ex[e
−βτ∗V (Xτ∗)] ≤ Ex[e

−βτlV (Xτl)] = V (l)
ϕ(x)

ϕ(l)
, ∀x ∈ (l, b),(5.16)

where the last equality follows from (2.7). Since b is natural, (5.16) and Proposi-

tion 5.4 imply

`b = lim sup
x↑b

V (x)

ψ(x)
≤ V (l)

ϕ(l)
lim sup

x↑b

ϕ(x)

ψ(x)
= 0,

which contradicts with `b > 0. �

5.2. Both boundaries are natural. Suppose that both a and b are natural for the

process X in I = (a, b). In other words, we have ψ(a+) = ϕ(b−) = 0, ψ(b−) =

ϕ(a+) = +∞, and 0 < ψ(x), ϕ(x) <∞, for x ∈ (a, b).

Let the reward function h : (a, b) → R be bounded on every compact subset of

(a, b). Consider the optimal stopping problem

V (x) , sup
τ∈S

Ex[e
−βτh(Xτ )], x ∈ (a, b).

In this subsection, we state the results without proofs; these are similar to the argu-

ments in Subsection 5.1. The key result is as follows.

Proposition 5.9. For a function U : (a, b) → [0,+∞), U(·)/ϕ(·) is F–concave

on (a, b) (equivalently, U(·)/ψ(·) is G–concave on (a, b)), if and only if U(x) ≥
Ex[e

−βτU(Xτ )] for every x ∈ (a, b) and τ ∈ S.

Proposition 5.10. We have either V ≡ +∞ in (a, b), or V (x) < +∞ for all x ∈
(a, b). Moreover, V (x) < +∞ for every x ∈ (a, b), if and only if

(5.17) `a , lim sup
x↓a

h+(x)

ϕ(x)
and `b , lim sup

x↑b

h+(x)

ψ(x)

are both finite.

In the remainder of this Subsection, we shall assume that the quantities `a and `b

of (5.17) are finite. Then limx↓a V (x)/ϕ(x) = `a, and limx↑b V (x)/ψ(x) = `b.

Proposition 5.11. V (·) is the smallest nonnegative majorant of h(·) on (a, b) such

that V (·)/ϕ(·) is F–concave (equivalently, V (·)/ψ(·) is G–concave) on (a, b).
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Proposition 5.12. Let W : [0,+∞) → R and W̃ : (−∞, 0] → R be the smallest

nonnegative concave majorants of

H(y) ,


h
(
F−1(y)

)
ϕ
(
F−1(y)

) , if y > 0

`a, if y = 0

 , and H̃(y) ,


h
(
G−1(y)

)
ψ

(
G−1(y)

) , if y < 0

`b, if y = 0

 ,

respectively. Then V (x) = ϕ(x)W
(
F (x)

)
= ψ(x)W̃

(
G(x)

)
, for every x ∈ (a, b).

Furthermore, W (0) = `a, W̃ (0) = `b, and both W (·) and W̃ (·) are continuous at 0.

Remark 5.2. Suppose W (·) and H(·) be the functions defined on [0,+∞) as in

Proposition 5.12. Let Γ̂ , {y ∈ (0,+∞) : W (y) = H(y)}. Then Γ = F−1
(
Γ̂

)
, where

Γ is defined as in (5.14).

Proposition 5.13. V (·) is continuous on (a, b). If h : (a, b) → R is continuous, and

`a = `b = 0, then τ ∗ of (5.14) is an optimal stopping time.

Proposition 5.14. Suppose that `a, `b are finite and one of them is strictly positive,

and h(·) is continuous. Then τ ∗ of (5.14) is an optimal stopping time, if and only if
there is no r ∈ (a, b)

such that (a, r) ⊂ C

if `a > 0

 and


there is no l ∈ (a, b)

such that (l, b) ⊂ C

if `b > 0

 .

6. Examples

In this section we shall illustrate how the results of Sections 3–5 apply to various

optimal stopping problems that have been studied in the literature, and to some other

ones that are new.

6.1. Pricing an “Up–and–Out” Barrier Put–Option of American Type un-

der the Black–Scholes Model (Karatzas and Wang [12]). Karatzas and Wang [12]

address the pricing problem for an “up–and–out” barrier put–option of American

type, by solving the optimal stopping problem

(6.1) V (x) , sup
τ≥0

Ex

[
e−rτ (q − Sτ )

+ 1{τ<τd}
]
, x ∈ (0, d)

using variational inequalities. Here S is the stock price process governed under the

risk-neutral measure by

dSt = St(rdt+ σdBt), S0 = x ∈ (0, d),
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where B is standard Brownian motion; and the risk–free interest rate r > 0 and the

volatility σ > 0 are constant. The barrier and the strike–price are denoted by d > 0

and q ∈ (0, d), respectively. Moreover τd , inf{t ≥ 0 : S(t) ≥ d} is the time when

the option becomes “knocked-out”. The state space of S is I = (0,∞). Since the

drift r is positive, 0 is a natural boundary for S, whereas every c ∈ int(I) is hit with

probability one.

We shall offer here a novel solution for (6.1) by using the techniques of Section 5.

For this purpose, denote by S̃t the stopped stock–price process, which starts in (0, d]

and is absorbed when it reaches the barrier d.

It is clear from (6.1) that V (x) ≡ 0, x ≥ d. We therefore need to determine V on

(0, d]. Note that V does not depend on the behavior of stock–price process after it

reaches the barrier d, and we can rewrite

V (x) = sup
τ≥0

Ex

[
e−rτh(S̃τ )

]
, x ∈ (0, d]

where h(x) , (q − x)+ is the reward function (see Figure 1(a)). The infinitesimal

generator A of S is Au(x) , (σ2/2)x2u′′(x) + rxu′(x), acting on smooth functions

u(·). The functions of (2.5) with β = r, turn out to be

ψ(x) = x and ϕ(x) = x−
2r
σ2 , x ∈ (0,∞).

Observe that ψ(0+) = 0, ϕ(0+) = +∞. Thus the left–boundary is natural, and

the right–boundary is absorbing.This is the opposite of the case that we had studied

in Subsection 5.1. Therefore, we can obtain relevant results from that section, if we

replace (ψ(·), G(·), `b) by (ϕ(·), F (·), `a). The reward function h(·) is continuous on

(0, d]. Since

`0 , lim sup
x→0

h+(x)

ϕ(x)
= lim

x→0

[
(q − x)x

2r
σ2

]
= 0,

the value function V (·) is finite (Proposition 5.2). Therefore, V (x) = ϕ(x)W (F (x)),

x ∈ (0, d] by Proposition 5.5, where

(6.2) F (x) ,
ψ(x)

ϕ(x)
= x1+ 2r

σ2 ≡ xβ, x ∈ (0, d], β , 1 +
2r

σ2
> 1,

and W : [0, dβ] → R is the smallest nonnegative concave majorant of

H(y) ,


(
h

ϕ

)
◦ F−1(y), y ∈ (0, dβ]

`0, y = 0

 =

 y1− 1
β
(
q − y

1
β
)+
, y ∈ (0, dβ]

0, y = 0

 .
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To identify W (·) explicitly, we shall first sketch H(·). Since h(·) and ϕ(·) are non-

negative, H(·) is also nonnegative. Note that H ≡ 0 on [qβ, dβ]. On (0, qβ), H(x) =

y1− 1
β
(
q − y

1
β
)

is twice–continuously differentiable, and

H ′(y) = q
(
1− 1

β

)
y−

1
β − 1, H ′′(y) = q

1− β

β2
y−(1+ 1

β
) < 0, x ∈ (0, qβ),

since β > 1. Hence H is the strictly concave on [0, qβ] (See Figure 1(b)).
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Figure 1. Pricing Barrier Option

The strict concavity of H on [0, qβ], guarantees the existence of a unique z0 ∈ (0, qβ)

(Figure 1(c)), such that

H ′(z0) =
H(dβ)−H(z0)

dβ − z0

= − H(z0)

dβ − z0

.(6.3)

Therefore the straight line Lz0 : [0, dβ] → R,

Lz0(y) , H(z0) +H ′(z0)(y − z0), y ∈ [0, dβ],(6.4)

is tangent to H at z0 and coincides with the chord expanding between (z0, H(z0))

and (dβ, H(dβ) ≡ 0) over the graph of H. Since H(z0) > 0, (6.3) implies that Lz0

is decreasing. Therefore Lz0 ≥ Lz0(d
β) ≥ 0 on [0, dβ]. It is evident from Figure 1(c)

that the smallest nonnegative concave majorant of H on [0, dβ] is given by

W (y) =

{
H(y), if y ∈ [0, z0]

Lz0(y), if y ∈ (z0, d
β]

}
=


H(y), if y ∈ [0, z0]

H(z0)
dβ − y

dβ − z0

, if y ∈ (z0, d
β]


thanks to (6.3) and (6.4). The strict concavity of H on [0, qβ] also implies that

C̃ , {y ∈ [0, dβ] : W (y) > H(y)} = (z0, d
β).
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From (6.2), we find F−1(y) = y1/β, y ∈ [0, dβ]. Let x0 , F−1(z0) = z
1/β
0 . Then

x0 ∈ (0, d), and

(6.5) V (x) = ϕ(x)W (F (x)) =


q − x, 0 ≤ x ≤ x0,

(q − x0) ·
x

x0

· d
−β − x−β

d−β − x−β0

, x0 < x ≤ d.

Since `0 = 0 and h is continuous, the stopping time τ ∗ of (5.14) is optimal (Proposi-

tion 5.7). Because the optimal continuation region becomes C , {x ∈ (0, d] : V (x) >

h(x)} = F−1
(
C̃

)
= F−1

(
(z0, d

β)
)

= (x0, d) (Remark 5.1), the optimal stopping time

becomes τ ∗ = inf{t ≥ 0 : St /∈ (x0, d)}. Finally, (6.3) can be rewritten

(6.6) 1 + β
x0

q
= β +

(x0

d

)β
,

after some simple algebra using formulae for H, H ′ and x0 ≡ z
1/β
0 . Compare (6.5)

and (6.6) above with (2.18) and (2.19) in Karatzas and Wang [12, pages 263 and 264],

respectively.

6.2. Pricing an “Up–and–Out” Barrier Put–Option of American Type un-

der the Constant–Elasticity–of–Variance (CEV) Model. We shall look at the

same optimal stopping problem of (6.1) by assuming now that the stock price dy-

namics are described according to the CEV model,

dSt = rStdt+ σS1−α
t dBt, S0 ∈ (0, d),

for some α ∈ (0, 1). The infinitesimal generator for this process isA = 1
2
σ2x2(1−α) d2

dx2 +

rx d
dx

, and the functions of (2.5) with β = r are given by

ψ(x) = x, ϕ(x) = x ·
∫ +∞

x

1

z2
exp

{
− r

ασ2
z2α

}
dz, x ∈ (0,+∞),

respectively. Moreover ψ(0+) = 0, ϕ(0+) = 1 and ψ(+∞) = +∞, ϕ(+∞) = 0.

Therefore 0 is an exit–and–not–entrance boundary, and +∞ is a natural boundary

for S. We shall regard 0 as an absorbing boundary (i.e., up on reaching 0, we shall

assume that the process remains there forever). We shall also modify the process such

that d becomes an absorbing boundary. Therefore, we have our optimal stopping

problem in the canonical form of Section 4, with the reward function h(x) = (q−x)+,

x ∈ [0, d].
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One can show that the results of Section 4 stay valid when the left–boundary of

the state space is an exit–and–not–entrance boundary. According to Proposition 4.3,

V (x) = ψ(x)W (G(x)), x ∈ [0, d] with

(6.7) G(x) , −ϕ(x)

ψ(x)
= −

∫ +∞

x

1

u2
exp

{
− r

ασ2
u2α

}
du, x ∈ (0, d],

and W : (−∞, G(d)] → R (G(0+) = −∞) is the smallest nonnegative concave

majorant of H : (−∞, G(d)] → R, given by

(6.8) H(y) ,

(
h

ψ
◦G−1

)
(y) =


[( q
x
− 1

)
◦G−1

]
(y), if −∞ < y < G(q)

0, if G(q) ≤ y ≤ 0

 .

Except for y = G(q), H is twice–differentiable on (−∞, G(d)). It can be checked that

H is strictly decreasing and strictly concave on (−∞, G(q)). MoreoverH(−∞) = +∞
and H ′(−∞) = −q, since G−1(−∞) = 0.

For every −∞ < y < G(q), let z(y) be the point on the y–axis, where the tangent

line Ly(·) of H(·) at y intersects the y–axis (cf. Figure 2(a)). Then

z(y) = y − H(y)

H ′(y)
= G(G−1(y))−

[(
q
x
− 1

)
◦G−1

]
(y))[(

−q exp
{

r
ασ2x2α

})
◦G−1

]
(y)

(6.9)

=

[(
2r

σ2

∫ +∞

x

u2(α−1) exp
{
− r

ασ2
u2α

}
du− 1

q
exp

{
− r

ασ2
x2α

})
◦G−1

]
(y),

where the last equality follows from integration by parts. It is geometrically clear

that z(·) is strictly decreasing. Since G−1(−∞) = 0, we have

z(−∞) =
2r

σ2

∫ +∞

0

u2(α−1) exp
{
− r

ασ2
u2α

}
du− 1

q

Note that G(q) < z(−∞) < +∞ if 1/2 < α < 1, and z(−∞) = +∞ if 0 < α ≤ 1/2.

Case I. Suppose first G(d) < z(−∞) (especially, when 0 < α ≤ 1/2). Then there

exists a unique y0 ∈ (−∞, G(q)) such that z(y0) = G(d), thanks to the monotonicity

and continuity of z(·). In other words, the tangent line Ly0(·) of H(·) at y = y0 < G(q)

intersects y–axis at y = G(d). It is furthermore clear from Figure 2(a) that

W (y) =


H(y), if −∞ < y ≤ y0

H(y0)
G(d)− y

G(d)− y0

, if y0 < y ≤ G(d)
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−q

at y = −∞

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

�
�
�
�

    

@
@
@
@
@
@
@
@

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z

G(q)y0 G(d)

(a)

z(−∞)

H

Ly0

W

y G(q) G(d)

−q
−q

z(−∞)y

(b)

H

W

asymptote of H

Figure 2. (Pricing Barrier Options under the CEV Model) Sketches of

the functions H andW of Proposition 4.3, when (a) G(d) < z(−∞) (for

this sketch, we assume that z(−∞) is finite. However, z(−∞) = +∞ is

also possible, in which case H does not have a linear asymptote), and

(b) G(d) > z(−∞).

is the smallest nonnegative concave majorant of H of (6.8) on y ∈ (−∞, G(d)]. Define

x0 , G−1(y0). According to Proposition 4.3, V (x) = ψ(x)W (G(x)), x ∈ [0, d], i.e.,

V (x) =


q − x, if 0 ≤ x ≤ x0

(q − x0) ·
x

x0

· G(d)−G(x)

G(d)−G(x0)
, if x0 < x ≤ d

 .

The optimal continuation region becomes C = (x0, d), and τ ∗ , inf{t ≥ 0 : St /∈
(x0, d)} is an optimal stopping time. The relation z(G(x0)) = G(d), which can be

written as

2r

σ2

∫ d

x0

u2(α−1) exp
{
− r

ασ2
u2α

}
du =

1

q
exp

{
− r

ασ2
x2α

0

}
− 1

d
exp

{
− r

ασ2
d2α

}
,

determines x0 ∈ (q, d) uniquely.

Case II. Suppose now G(d) > z(−∞) (cf. Figure 2(b)). It is then clear that

W (y) = −q
[
y −G(d)

]
is the smallest nonnegative concave majorant of H(·) of (6.8)

on (−∞, G(d)]. According to Proposition 4.3, V (x) = ψ(x)W (G(x)) = −qx
[
G(x)−

G(d)
]
, x ∈ [0, d], with V (0) = V (0+) = q. Furthermore, the stopping time τ ∗ ,

inf{t ≥ 0 : St /∈ (0, d)} is optimal.
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6.3. American Capped Call Option on Dividend–Paying Assets (Broadie

and Detemple [3]). Let the stock price be driven by

dSt = St
[
(r − δ)dt+ σdBt

]
, t ≥ 0, S0 > 0,

with constant σ > 0, risk–free interest rate r > 0 and dividend rate δ ≥ 0. Consider

the optimal stopping problem

(6.10) V (x) , sup
τ≥0

Ex

[
e−rτ (Sτ ∧ L−K)+]

, x ∈ (0,+∞),

with the reward function h(x) , (x∧L−K)+, x > 0. The value function V (·) is the

arbitrage–free price of the perpetual American capped call option with strike price

K ≥ 0, and the cap L > K on the stock S, which pays dividend at a constant rate δ.

We shall reproduce the results of Broadie and Detemple [3] in this subsubsection.

The infinitesimal generator of X coincides with the second–order differential oper-

ator A , (σ2/2)x2 d2

dx2 + (r − δ)x d
dx

. Let γ1 < 0 < γ2 be the roots of

1

2
σ2 x2 +

(
r − δ − σ2

2

)
x− r = 0.

Then the increasing and decreasing solutions of Au = ru are given by

ψ(x) = xγ2 , and ϕ(x) = xγ1 , x > 0,

respectively. Both endpoints of the state–space I = (0,+∞) of S are natural (Sub-

section 5.2). Since

`0 , lim sup
x↓0

h+(x)

ϕ(x)
= 0, and `+∞ , lim sup

x→+∞

h+(x)

ψ(x)
= 0,

the value function V (·) of (6.10) is finite, and the stopping time τ ∗ of (5.14) is optimal

(Proposition 5.13). Moreover V (x) = ϕ(x)W (F (x)), where

F (x) ,
ψ(x)

ϕ(x)
= xθ, x > 0, and θ , γ2 − γ1 > 0,

and W : [F (0+), F (+∞)) → [0,+∞) is the smallest nonnegative concave majorant

of H : [F (0+), F (+∞)) → [0,+∞), given by

H(y) ,

(
h

ϕ

)
(F−1(y)) =


0, if 0 ≤ y < Kθ,(
y1/θ −K

)
y−γ1/θ, if Kθ ≤ y < Lθ

(L−K)y−γ1/θ, if y ≥ Lθ,

 ,(6.11)
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thanks to Proposition 5.12. The function H(·) is nondecreasing on [0,+∞) and

strictly concave on [Lθ,+∞). By solving the inequality H ′′(y) ≤ 0, for Kθ ≤ y ≤ Lθ,

we find that

H(·) is

{
convex on

[
Kθ, Lθ

]
∩

[
0, (r/δ)θKθ

]
concave on

[
Kθ, Lθ

]
∩

[
(r/δ)θKθ,+∞

)} .

It is easy to check that H(Lθ)/Lθ ≥ H ′(Lθ+) (cf. Figure 3).

Let Lz(y) , y H(z)/z, for every y ≥ 0 and z > 0. If (r/δ)K ≥ L, then

LLθ(y) ≥ H(y), y ≥ 0,(6.12)

(cf. Figure 3(b)). If (r/δ)K < L, then (6.12) holds if and only if

H(Lθ)

Lθ
< H ′(Lθ−) ⇐⇒ γ2 ≤

L

L−K
,

(cf. Figure 3(d,f)). If (r/δ)K < L and γ2 > L/(L−K), then the equation H(z)/z =

H ′(z), Kθ < z < Lθ has unique solution, z0 ,
[
γ2/(γ2 − 1)

]θ
Kθ > (r/δ)θKθ, and

Lz0(y) ≥ H(y), y ≥ 0, (cf. Figure 3(c,e)). It is now clear that the smallest nonnegative

concave majorant of H(·) is

W (y) =

{
Lz0∧Lθ(y), if 0 ≤ y ≤ z0 ∧ Lθ

H(y), if y > z0 ∧ Lθ

}
in all cases. Finally

V (x) = ϕ(x)W (F (x)) =


(x0 ∧ L−K)

(
x

x0 ∧ L

)γ2

, if 0 < x ≤ x0 ∧ L

x ∧ L−K, if x > x0 ∧ L

 ,

where x0 , F−1(z0) = K γ2/(γ2−1). The optimal stopping region is Γ , {x : V (x) =

h(x)} = [x0 ∧ L,+∞), and the stopping time τ ∗ , inf{t ≥ 0 : St ∈ Γ} = inf{t ≥ 0 :

St ≥ x0 ∧ L} is optimal. Finally, it is easy to check that γ2 = 1 (therefore x0 = +∞)

if and only if δ = 0.

6.4. Options for Risk–Averse Investors (Guo and Shepp [9]). Let X be a

geometric Brownian Motion with constant drift µ ∈ R and dispersion σ > 0. Consider

the optimal stopping problem

(6.13) V (x) , sup
τ≥0

Ex

[
e−rτ (l ∨Xτ )

]
, x ∈ (0,∞),
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Figure 3. (Perpetual American capped call options on dividend–

paying assets) Sketches of (a) the reward function h(·), and (b)–(f)

the function H(·) of (6.11) and its smallest nonnegative concave majo-

rant W (·).
In cases (b), (d) and (f), the left boundary of the optimal stopping

region for the auxiliary optimal stopping problem of (4.10) becomes Lθ,

and W (·) does not fit H(·) smoothly at Lθ. In cases (c) and (e), the

left boundary of optimal stopping region, namely z0, is smaller than

Lθ, and W (·) fits H(·) smoothly at z0.

where the reward function is given as h(x) , (l ∨ x), x ∈ [0,∞), and l and r positive

constants.

Guo and Shepp [9] solve this problem using variational inequalities in order to price

exotic options of American type. As it is clear from the reward function, the buyer

of the option is guaranteed at least l when the option is exercised (an insurance for
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risk–averse investors). If r is the riskless interest rate, then the price of the option

will be obtained when we choose µ = r. The dynamics of X are given as

dXt = Xt(µdt+ σdBt), Xt = x ∈ (0,∞),

where B is standard Brownian motion in R. The infinitesimal generator ofX coincides

with the second–order differential operator A = (σ2x2/2)(d2/dx2) + µx(d/dx) as it

acts on smooth functions. Denote by γ1, γ0 , 1
2

[
−

(
2µ
σ2 − 1

)
∓

√(
2µ
σ2 − 1

)2
+ 8r

σ2

]
, with

γ1 < 0 < γ0, the roots of the second–order polynomial

f(x) , x2 +

(
2µ

σ2
− 1

)
x− 2r

σ2
.

The positive increasing and decreasing solutions of Au = ru are then given as

ψ(x) = xγ0 , and ϕ(x) = xγ1 , x ∈ (0,+∞),

respectively. Observe that both end–points, 0 and +∞, of state space of X are

natural, and

`0 , lim sup
x→0

h+(x)

ϕ(x)
= 0, whereas `∞ , lim sup

x→+∞

h+(x)

ψ(x)
=


+∞, if r < µ

1, if r = µ

0, if r > µ

 .

Now Proposition 5.10 and 5.13 imply that
V ≡ +∞, if r < µ

V is finite, but there is no optimal stopping time, if r = µ

V is finite, and τ ∗ of (5.14) is an optimal stopping time, if r > µ

 .

(Compare with Guo and Shepp[9, Theorem 4 and 5]). There is nothing more to say

about the case r < µ. We shall defer the case r = µ to the next Subsection2. We

shall study the case r > µ in the remainder of this Subsection.

According to Proposition 5.12, V (x) = ϕ(x)W (F (x)) = xγ1W (xβ), x ∈ (0,∞),

where

F (x) ,
ψ(x)

ϕ(x)
= xγ0−γ1 ≡ xβ, x ∈ (0,∞), β , γ0 − γ1,

2In Subsection 6.5, we discuss a slightly different and more interesting problem, of essentially the

same difficulty as the problem with r = µ.
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Figure 4. Options for risk–averse investors

and W : [0,∞) → R is the smallest nonnegative concave majorant of

H(y) ,


h
(
F−1(y)

)
ϕ
(
F−1(y)

) , if y ∈ (0,+∞)

`0, if y = 0

 =

H0(y) ≡ ly−
γ1
β , if 0 ≤ y < lβ

H1(y) ≡ y
1−γ1

β , if y ≥ lβ

 .

In order to find W (·), we shall determine the convexities and the concavities of H(·),
which is in fact the maximum of the concave functions H0(·) and H1(·), with H0(·) >
H1(·) on [0, lβ) and H0(·) < H1(·) on (lβ,∞). The function H(·) is strictly increasing

and continuously differentiable on (0,∞)\{lβ} (Figure 4(b)). There exist unique

z0 ∈ (0, lβ) and unique z1 ∈ (lβ,∞) (Figure 4(c)), such that

(6.14) H ′(z0) =
H(z1)−H(z0)

z1 − z0

= H ′(z1).

Since both H0 and H1 are concave, the line-segment Lz0(y) , H(z0)+H ′(z0)(y− z0),

y ∈ (0,∞), which is tangent to both H0 and H1, majorizes H on [0,+∞). The

smallest nonnegative concave majorant W of H on [0,∞) is finally given by (cf.

Figure 4(c))

W (y) =

H(y), y ∈ [0, z0] ∪ [z1,∞),

Lz0(y), y ∈ (z0, z1).

By solving two equations in (6.14) simultaneously, we obtain

(6.15)

z0 = lβ
(

γ1

γ1 − 1

)1−γ1 (
γ0 − 1

γ0

)1−γ0
and z1 = lβ

(
γ1

γ1 − 1

)−γ1 (
γ0 − 1

γ0

)−γ0
,
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and, if x0 , F−1(z0) = z
1/β
0 and x1 , F−1(z1) = z

1/β
1 , then Proposition 5.12 implies

(6.16) V (x) = ϕ(x)W (F (x)) =


l, if 0 < x ≤ x0,

l

β

[
γ0

(
x

x0

)γ1

− γ1

(
x

x0

)γ0]
, if x0 < x < x1,

x, if x ≥ x1.

Moreover, since C̃ , {y ∈ (0,∞) : W (y) > H(y)} = (z0, z1), C , {x ∈ (0,∞) :

V (x) > h(x)} = F−1(C̃) = F−1((z0, z1)) = (x0, x1). Hence τ ∗ , inf{t ≥ 0 : Xt /∈
(x0, x1)} is an optimal stopping rule by Proposition 5.13. Compare (6.16) with (19)

in Guo and Shepp [9] (al and bl of Guo and Shepp [9] correspond to x0 and x1 in our

calculations).

6.5. Another Exotic Option of Guo and Shepp [9]. The following example is

quite instructive, since it provides the opportunity to illustrate new ways for find-

ing the function W (·) of Proposition 5.12. It serves to sharpen the intuition about

different forms of smallest nonnegative concave majorants, and how they arise.

Let X be a geometric Brownian motion with constant drift r > 0 and dispersion

σ > 0. Guo and Shepp [9] study the optimal stopping problem

V (x) , sup
τ≥0

Ex

[
e−rτ

(
[l ∨Xτ ]−K

)+]
, x ∈ (0,∞),

where l and K are positive constants and l > K. The reward function h(x) ,(
[l∨x]−K

)+
can be seen as the payoff of some exotic option of American type. The

riskless interest rate is r > 0, and K > 0 is the strike–price of the option. The buyer

of the option will be guaranteed to be paid at least l−K > 0 at the time of exercise.

The value function V (·) is the maximum expected discounted payoff that the buyer

can earn. If exists, we want to determine the best time to exercise the option. See

Guo and Shepp [9] for more discussion about the option’s properties.

As in the first subsection, the generator of X is A = (σ2x2/2) (d2/dx2)+ rx (d/dx),

and the functions of (2.5) with β = r are given by

ψ(x) = x and ϕ(x) = x−
2r
σ2 , x ∈ (0,∞).

Both boundaries are natural, h(·) is continuous in (0,∞), and

`0 , lim sup
x→0

h+(x)

ϕ(x)
= 0 and `∞ , lim sup

x→∞

h+(x)

ψ(x)
= 1.
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Since h is bounded on every compact subset of (0,∞), and both `0 and `∞ are finite,

V is finite by Proposition 5.10. Proposition 5.12 implies V (x) = ϕ(x)W (F (x)),

x ∈ (0,∞), where

F (x) ,
ψ(x)

ϕ(x)
= xβ, x ∈ (0,∞), with β , 1 +

2r

σ2
> 1,

and W : [0,∞) → R is the smallest nonnegative concave majorant of

H(y) ,


h

ϕ
◦ F−1(y), y ∈ (0,∞)

`0, y = 0.

 =

{(
l −K

)
y1−1/β, 0 ≤ y ≤ lβ(

y1/β −K
)
y1−1/β, y > lβ

}
.

In order to find W explicitly, we shall identify the concavities of H. Note that H ′ > 0

and H ′′ < 0 on (0, lβ), i.e., H is strictly increasing and strictly concave on [0, lβ];

furthermore H ′(0+) = +∞. On the other hand, H ′′ > 0, i.e., H is strictly convex, on

(lβ,+∞). We also have that H is increasing on (lβ,+∞). One important observation

which is key to our investigation of W is that H ′ is bounded, and asymptotically

grows to one:

0 < H ′(lβ−) < H ′(y) < 1, y > lβ; and lim
y→+∞

H ′(y) = 1.

Figure 5(b) illustrates a sketch of H. Since H ′(0+) = +∞ and H ′(lβ−) < 1, the
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Figure 5. Another Exotic Option

continuity ofH ′ and the strict concavity ofH in (0, lβ) imply that there exists a unique

z0 ∈ (0, lβ) such that H ′(z0) = 1. If Lz0(y) , H(z0)+H ′(z0)(y−z0) = H(z0)+y−z0,
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y ∈ [0,∞), is the straight line, tangent to H at z0 (cf. Figure 5(c)), then

W (y) =

{
H(y), 0 ≤ y ≤ z0,

Lz0(y), y > z0.

}
, y ∈ [0,∞),

and

V (x) = ϕ(x)W (F (x)) =


l −K, 0 < x < x0,(
l −K

) [(
1− 1

β

)
x

x0

+
1

β

(
x

x0

)1−β
]
, x > x0,

(6.17)

where x0 , F−1(z0) satisfies x0 = z
1/β
0 = (1− 1/β)

(
l − K

)
. Compare (6.17) with

Corollary 3 in Guo and Shepp [9] (In their notation γ0 = 1, γ0 − γ1 = β, l∗ = x0.)

Finally, there is no optimal stopping time, since `∞ = 1 > 0 and (l,+∞) ⊆ C , {x :

V (x) > h(x)} (Proposition 5.14).

6.6. An Example of H. Taylor [17]. Let X be one–dimensional Brownian motion

with constant drift µ ≤ 0 and variance coefficient σ2 = 1 in R. Taylor [17, Example

1] studies the optimal stopping problem

V (x) , sup
τ≥0

Ex[e
−βτ (Xτ )

+], x ∈ R,

where the discounting rate β > 0 is constant. He guesses the value function and

verifies that his guess is indeed the nonnegative β–excessive majorant of the reward

function h(x) , x+ = max{0, x}, x ∈ R.

The infinitesimal generator of X is A = (1/2) (d2/dx2)+µ (d/dx), and the functions

of (2.5) are

ψ(x) = eκx and ϕ(x) = eωx, x ∈ R,

respectively, where κ = −µ+
√
µ2 + 2β > 0 > ω , −µ−

√
µ2 + 2β are the roots of

(1/2)m2 + µm − β = 0. The boundaries ±∞ are natural. Observe that ψ(−∞) =

ϕ(+∞) = 0 and ψ(+∞) = ϕ(−∞) = +∞. The reward function h is continuous and

`−∞ , lim sup
x→−∞

h+(x)

ϕ(x)
= 0 and `+∞ , lim sup

x→+∞

h+(x)

ψ(x)
= 0.

The value function V is finite (cf. Proposition 5.10), and according to Proposi-

tion 5.12, V (x) = ψ(x)W
(
G(x)

)
, x ∈ R, where G(x) , −ϕ(x)/ψ(x) = −e(ω−κ)x,
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x ∈ R, and W : (−∞, 0] → R is the smallest nonnegative concave majorant of

H(y) =


h

ψ
◦G−1(y), y < 0

`+∞, y = 0

 =


0, y ∈ (−∞,−1] ∪ {0}

(−y)α

ω − κ
log (−y), y ∈ (−1, 0)

 ,

where α , κ
κ−ω (0 < α < 1). Note that H(·) is piecewise twice differentiable. In fact,

H ′(y) = (−y)α−1
[
α log (−y) + 1

]
/(κ− ω) and H ′′(y) = (−y)α−2

[
α(α− 1) log (−y) +

α+ (α− 1)
]
/(κ− ω) when y ∈ (−1, 0), and they vanish on (−∞,−1). Moreover,

H ′′(y) < 0 ⇐⇒ −e−(2θ/β)
√
θ2+2β ∈ (−1, 0).

and H ′(M) = 0 gives the unique maximum M = −e−1/α ∈ (T, 0) of H(·) (cf. Fig-

ure 6(b)).
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Figure 6. H. Taylor’s Example

Since H(·) is concave on [T, 0], and decreasing on (−∞,M ], M ∈ (T, 0), its smallest

nonnegative concave majorant becomes

W (y) =

{
H(M), y ∈ (−∞,M)

H(y), y ∈ [M, 0]

}
.

If we define x0 , G−1(M) = 1/α(κ− ω) = 1/κ > 0, then

V (x) = ψ(x)W (G(x)) =

{
eκx−1/κ, x < 1/κ,

x, x ≥ 1/κ.

Compare this with f(·) of Taylor [17, page 1337, Example 1] (In his notation, a =

1/κ). Finally, note that C , {x ∈ R : V (x) > h(x)} = G−1
(
{y ∈ (−∞, 0) :

W (y) > H(y)}
)

= G−1
(
(−∞,M)

)
= (−∞, 1/κ); and because `−∞ = `+∞ = 0,

Proposition 5.13 implies

τ ∗ , inf {t ≥ 0 : Xt /∈ C} = inf {t ≥ 0 : Xt ≥ 1/κ}
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is an optimal stopping time (although Px{τ ∗ = +∞} > 0 for x < 1/κ if µ < 0).

6.7. An Example of P. Salminen [16]. Let X be a one–dimensional Brownian

motions with drift µ ∈ R. Salminen [16, page 98, Example (iii)] studies the optimal

stopping problem

V (x) , sup
τ≥0

Ex[e
−βτh(Xτ )], x ∈ R

with the piecewise constant reward function

h(x) ,

{
1, if x ≤ 0

2, if x > 0

}
≡

{
h1(x), if x ≤ 0

h2(x), if x > 0

}
, h1 ≡ 1, h2 ≡ 2, on R,

and discounting rate β > 0. Salminen uses Martin boundary theory (see 8) to solve

the problem explicitly for µ = 0.

Even though h(·) is not differentiable at the origin, we can use our results of

Section 5 to calculate V (·). Note that Xt = µt+Bt, t ≥ 0, and X0 = x ∈ R, where B

is standard one–dimensional Brownian motion. Its generator is A = (1/2) (d2/dx2)+

µ (d/dx), and the functions of (2.5) are

ψ(x) = eκx and ϕ(x) = eωx, x ∈ R,

respectively, where κ , −µ+
√
µ2 + 2β > 0 > ω , −µ−

√
µ2 + 2β are the roots of

1
2
m2 +µm− β = 0. The boundaries ±∞ are natural, and ψ(−∞) = ϕ(+∞) = 0 and

ψ(+∞) = ϕ(−∞) = +∞. Note that

`−∞ , lim sup
x→−∞

h+(x)

ϕ(x)
= 0 and `+∞ , lim sup

x→+∞

h+(x)

ψ(x)
= 0.

Since h(·) is bounded (on every compact subset of R), V (·) is finite (cf. Proposi-

tion 5.10), and V (x) = ϕ(x)W (F (x)), x ∈ R (cf. Proposition 5.12), where

F (x) ,
ψ(x)

ϕ(x)
= e(κ−ω)x, x ∈ R,

and W : [0,∞) be the smallest nonnegative concave majorant of

H(y) ,


h

ϕ
◦ F−1(y), y ∈ (0,+∞)

`−∞, y = 0

 =

{
H1(y), 0 ≤ y < 1

H2(y), y ≥ 1.

}

where H1(y) , yγ, H2(y) , 2yγ, y ∈ [0,+∞), and 0 < γ , −ω/(κ − ω) < 1.

Both H1(·) and H2(·) are nonnegative, strictly concave, increasing and continuously

differentiable. After y = 1, H(·) switches from curve H1(·) onto H2(·) (Figure 7(b)).
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Figure 7. P. Salminen’s Example

The strict concavity of H(·) on [0, 1], and H ′(0+) = +∞, imply that there exists

a unique z0 ∈ (0, 1) such that

(6.18) H ′(z0) =
H(1+)−H(z0)

1− z0

=
H2(1)−H1(z0)

1− z0

,

i.e., such that the straight line Lz0(·) tangent to H(·) at z0 also passes through the

point (1, H(1+)) (cf. Figure 7(c)). Therefore, the smallest nonnegative concave

majorant of H(·) is

W (y) =

H(y), y ∈ [0, z0] ∪ (1,+∞),

Lz0(y), y ∈ (z0, 1].

If we let x0 , F−1(z0), then

V (x) = ϕ(x)W (F (x)) =


1, if x ≤ x0(
1− 2eκx0

)
eωx −

(
1− 2eωx0

)
eκx

eωx0 − eκx0
, if x0 < x ≤ 0

2, if x > 0

 .

Since h(·) is not continuous, we cannot use Proposition 5.13 to check if there is an

optimal stopping time. However, since C , {x ∈ R : V (x) > h(x)} = (x0, 0], and

P0(τ
∗ = 0) = 1, we have E0[e

−βτ∗h(Xτ∗)] = h(0) = 1 < 2 = V (0), i.e., τ ∗ is not

optimal. Therefore there is no optimal stopping time, either.

Salminen [16] calculates the critical value x0 explicitly for µ = 0. When we set

µ = 0, we get κ = −ω =
√

2β, γ = 1/2, and the defining relation (6.18) of z0 becomes

1

2
z
−1/2
0 +

1

2
z

1/2
0 = 2 ⇐⇒ z0 − 4z

1/2
0 + 1 = 0,
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after simplifications. If we let y0 , z
1/2
0 , then y0 is the only root in (0, 1) of y2−4y+1 =

0, i.e., y0 = 2−
√

4− 1 = 2−
√

3. Therefore z0 = (2−
√

3)2. Finally,

x0 = F−1(z0) =
1

κ− ω
log z0 =

1√
2β

log (2−
√

3), if µ = 0,

which agrees with the calculations of Salminen [16, page 99].

6.8. A New Optimal Stopping Problem. Let B be one-dimensional standard

Brownian motion in [0,∞) with absorption at 0. Consider

V (x) , sup
τ≥0

Ex[e
−βτ (Bτ )

p], x ∈ [0,∞).

for some β > 0 and p > 0. Hence our reward function h : [0,∞) → R is given

as h(x) , xp, which is locally bounded on [0,+∞) for any choice of p > 0. With

A = (1/2)d2/dx2, the infinitesimal generator of Brownian motion, acting on the

twice–continuously differentiable functions which vanish at ±∞, the usual solutions

of Au = βu are

ψ(x) = ex
√

2β, and ϕ(x) = e−x
√

2β, x ∈ I = R ⊃ [0,∞).

The left boundary c = 0 is attainable in finite time with probability one, whereas the

right boundary b = ∞ is a natural boundary for the (stopped) process. Note that

h(·) is continuous on [0,∞), and

`+∞ , lim sup
x→+∞

h+(x)

ψ(x)
= lim

x→+∞

h(x)

ψ(x)
= lim

x→+∞
xpe−x

√
2β = 0.

Therefore, the value function V (·) is finite, and V (x) = ψ(x)W (G(x)), x ∈ [0,∞) (cf.

Proposition 5.5), where G(x) , −ϕ(x)/ψ(x) = −e−2x
√

2β, for every x ∈ [0,∞), and

W : [−1, 0] → R is the smallest nonnegative concave majorant of

H(y) ,
h

ψ
◦G−1(y) =

(
1

2
√

2β

)p [
− log (−y)

]p · √−y, y ∈ [−1, 0),

and H(0) , `+∞ = 0. The function W (·) can be obtained analytically by cutting off

the convexities of H(·) with straight lines (geometrically speaking, the holes on H(·),
due to the convexity, have to be bridged across the concave hills of H(·), see Figure 8).

Note that H(·) is twice continuously differentiable in (−1, 0); if 0 < p ≤ 1, then

H ′′(·) ≤ 0, so H(·) is concave on [−1, 0], and W (·) = H(·). Therefore Proposition 5.5

implies that V (·) = h(·), and τ ∗ ≡ 0 (i.e., stopping immediately) is optimal.

In the rest of this Subsection, we shall assume that p is strictly greater than 1.

With T , −e−2
√
p(p−1), H(·) is concave on [−1, T ], and convex on [T, 0]. It has
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unique maximum at M , −e−2p > T , and nonnegative everywhere on [−1, 0] (cf.

Figure 8(a)). If Lz(·) is the straight line, tangent to H(·) at z (so-called Smooth–Fit

−1

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#

��
�
�

hhhhhhhhh L
L
L
L
L
L
L
L

(a) (b)

0T M

convex concave

H

W

0−1

Lz0
Lz

MT

H

z0 z

Figure 8. A new optimal stopping problem

in the context of variational inequalities), then there exists unique z0 ∈ [T,M) such

that to

Lz0(−1) = H(−1) ⇐⇒ −z0 = e2p(z0+1)/(z0−1),

and

(6.19) W (y) =

Lz0(y), if y ∈ [−1, z0),

H(y), if y ∈ [z0, 0].

(See Figure 8(b)). Finally, V (x) = ψ(x)W (G(x)), for every x ∈ [0,∞), that is,

(6.20) V (x) =


H(z0)

1 + z0

[
ex
√

2β − e−x
√

2β
]
, if 0 ≤ x ≤ − 1

2
√

2β
log (−z0),

x2, if x > − 1

2
√

2β
log (−z0).

Since C̃ , {y ∈ [−1.0) : W (y) > H(y)} = (−1, z0), by Remark 5.1, the optimal con-

tinuation region and optimal stopping time for our original optimal stopping problem

become respectively

C ,

(
0,− 1

2
√

2β
log (−z0)

)
and τ ∗ = inf

{
t ≥ 0 : Bt ≥ − 1

2
√

2β
log (−z0)

}
.
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6.9. Optimal Stopping Problem of Karatzas and Ocone [11]. Karatzas and

Ocone [11] study a special optimal stopping problem in order to solve a stochastic

control problem. In this subsection, we shall take another look at the same optimal

stopping problem.

Suppose that the process X is governed by the dynamics dXt = −θdt + dBt for

some positive constant θ, with infinitesimal generatorA = (1/2)d2/dx2−θd/dx. Since

±∞ are natural boundaries for X, the usual solutions of Au = βu, subject to the

boundary conditions ψ(−∞) = ϕ(∞) = 0, become ψ(x) = eκx, ϕ(x) = eωx, where

κ , θ +
√
θ2 + 2β and ω , θ −

√
θ2 + 2β.

Now consider the stopped process, again denoted by X, which is started in [0,∞)

and is absorbed when it reaches 0. Consider the optimal stopping problem

inf
τ∈S

Ex

[∫ τ

0

e−βtπ(Xt)dt+ e−βτg(Xτ )

]
, x ∈ [0,∞),

with π(x) , x2 and g(x) , δx2. If we introduce the function

Rβπ(x) , Ex

[∫ ∞

0

e−βtπ(Xt)dt

]
=

1

β
x2 − 2θ

β2
x+

2θ2 + β

β3
− 2θ2 + β

β3
eωx, x ∈ [0,∞),

(6.21)

then, the strong Markov property of X gives

Ex

[∫ τ

0

e−βtπ(Xt)dt+ e−βτg(Xτ )

]
= Rβπ(x)− Ex[e

−βτ (Rβπ(x)− g(x))], x ∈ [0,∞).

Therefore, our task is to solve the auxiliary optimal stopping problem

(6.22) V (x) , sup
τ≥0

Ex[e
−βτh(Xτ )], x ∈ [0,∞).

Here, the function

h(x) , Rβπ(x)− g(x) =
1− δβ

β
x2 − 2θ

β2
x+

2θ2 + β

β3
− 2θ2 + β

β3
eωx, x ∈ [0,∞).

is continuous and bounded on every compact subinterval of [0,∞), and

`∞ , lim sup
x→∞

h+(x)

ψ(x)
= lim

x→∞

h(x)

ψ(x)
= 0.

Therefore V (·) is finite (Proposition 5.2), and an optimal stopping time exists (Propo-

sition 5.7). Moreover, V (x) = ψ(x)W
(
G(x)

)
(Proposition 5.5), where

G(x) , −ϕ(x)

ψ(x)
= −e(ω−κ)x, x ∈ [0,∞),



ON THE OPTIMAL STOPPING PROBLEM FOR ONE–DIMENSIONAL DIFFUSIONS 43

and W (·) is the smallest nonnegative concave majorant of

H(y) ,
h

ψ
◦G−1(y) = (−y)α

[
a

(
log (−y)

)2
+ b log (−y) + c

]
+ c y, y ∈ [−1, 0),

with H(0) , `∞ = 0, and

(6.23) α ,
κ

κ− ω
, a ,

1− δβ

β

1

(ω − κ)2
, b , −2θ

β2

1

(ω − κ)
, c ,

2θ2 + β

β3
.

Observe that 0 < α < 1, a ∈ R, b ≥ 0, and c > 0.

We shall find W (·) analytically by cutting off the convexities of H(·). Therefore,

we need to find out where H(·) is convex and concave. Note that H(·) is twice–

continuously differentiable in (−1, 0), and

H ′(y) = −(−y)α−1
[
αa

(
log (−y)

)2
+ (αb+ 2a) log (−y) + αc+ b

]
+ c,(6.24)

H ′′(y) = (−y)α−2Q1

(
log (−y)

)
, y ∈ (−1, 0),(6.25)

where

Q1(x) , α(α− 1)a x2 +
[
α(α− 1)b+ 2a(2α− 1)

]
x+ 2a+ (2α− 1)b+ α(α− 1)c

for every x ∈ R, is a second–order polynomial. Since (−y)α−2 > 0, y ∈ (−1, 0), the

sign of H ′′ is determined by the sign of Q1

(
log (−y)

)
. Since log (−y) ∈ (−∞, 0) as

y ∈ (−1, 0), we are only interested in the behavior of Q1(x) when x ∈ (−∞, 0). The

discriminant of Q1 becomes

∆1 =
θ2 + β

4(θ2 + 2β)3β2
Q̃1(1− δβ),(6.26)

where

Q̃1(x) , x2 − 2x+ 1− δβ2

θ2 + β
= (x− 1)2 − δβ2

θ2 + β
, x ∈ R,

is also a second–order polynomial, which always has two real roots,

q̃1 = 1−

√
δβ2

θ2 + β
and q̃2 = 1 +

√
δβ2

θ2 + β
.

One can show that

∆1 < 0 ⇐⇒ δ(θ2 + β) < 1.

Therefore, Q1(·) has no real roots if δ(θ2+β) < 1, has a repeated real root if δ(θ2+β) =

1, and two distinct real roots if δ(θ2 + β) > 1. The sign of H ′′(·), and therefore the
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regions where H(·) is convex and concave, depend on the choice of the parameters δ,

θ and β.

Case I. Suppose δ(θ2 + β) < 1. Then Q1(·) < 0, and H ′′(·) < 0 by (6.25). Thus

H(·) is concave, and W (·) = H(·). Therefore V (·) = h(·) and the stopping time

τ ∗ ≡ 0 is optimal thanks to Propositions 5.5 and 5.7.

Suppose now δ(θ2 + β) ≥ 1; then Q1(·) has two real roots. The polynomial Q1(·),
and H ′′(·) by (6.25), have the same sign as α(α − 1)a. Note that α(α − 1) is always

negative, whereas a has the same sign as 1− δβ thanks to (6.23).

Case II. Suppose δ(θ2 + β) ≥ 1 and 1 − δβ ≤ 0. The polynomial Q1(·) has two

real roots q1 ≤ 0 ≤ q2; and H(·) is strictly concave on [−1,−eq1 ], and strictly convex

on [−eq1 , 0] (−1 < −eq1 < 0), has unique maximum at some M ∈ (−1,−eq1), and

H(M) > 0 (see Figure 9(a)). Let Lz(y) , H(z) + H ′(z)(y − z), y ∈ [−1, 0] be the

−1

c
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c
c
c
c
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W
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Lz0
Lz

M

H

H̃

Figure 9. Sketches of (a) H(·) (may become negative in the neigh-

borhood of zero as H̃ looks like), (b) H(·) and W , in Case II.

straight line, tangent to H(·) at z ∈ (−1, 0); then, there exists unique z0 ∈ (M,−eq1 ]
such that Lz0(0) = H(0) (see Figure 9(b)), and the smallest nonnegative concave

majorant of H(·) is

(6.27) W (y) =

{
H(y), if y ∈ [−1, z0]

Lz0(y), if y ∈ (z0, 0]

}
.

Moreover, trivial calculations show that log (−z0) is the unique solution of

(1− α)
[
a x2 + b x+ c

]
= 2ax+ b, x ∈

[
log (−M), q1

]
,
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and C̃ , {y ∈ [−1, 0] : W (y) > H(y)} = (z0, 0) (cf. Figure 9(b)). Proposition 5.5

implies

(6.28) V (x) =


h(x), if 0 ≤ x ≤ x0

ϕ(x)

ϕ(x0)
h(x0), if x0 < x <∞

 ,

with x0 , G−1(z0), and the optimal continuation region becomes C = G−1(C̃) =

G−1((z0, 0)) = (x0,∞). We shall next look at the final case.

−1
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Figure 10. Sketches of (a) H(·), (b) H(·) and W , in Case III. In

(a), H̃ depicts another possibility where H̃ takes negative values, and

its global maximum is contained in [−eq1 , 0].

Case III. Suppose δ(θ2 + β) ≥ 1 and 1 − δβ > 0. The polynomial Q1(·) again

has two real roots q1 ≤ q2; and H(·) is convex on (−eq2 ,−eq1), and concave on

[−1, 0]\(−eq2 ,−eq1), positive and increasing in the neighborhoods of both end–points

(see Figure 10(a)). If Lz(y) , H(z) + H ′(z)(y − z), y ∈ [−1, 0], is the tangent line

of H(·) at z ∈ (−1, 0), then there are unique −1 < z2 < z1 < 0, such that Lz1(·) is

tangent to H(·) both at z1 and z2, and Lz1(·) ≥ H(·), on [−1, 0]. In fact, the pair

(z, z̃) = (z2, z1) is the unique solution of exactly one of the equations,

H ′(z) =
H(z)−H(z̃)

z − z̃
= H ′(z̃), z̃ > −1, and H ′(z) =

H(z)−H(−1)

z − (−1)
, z̃ = −1,

for some z̃ ∈ [−1,−eq2 ], z ∈ [−eq1 , 0). Finally,

(6.29) W (y) =

Lz1(y), if y ∈ [z2, z1],

H(y), if y ∈ [−1, z2) ∪ (z1, 0],
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(Figure 10(b)). The value function V (·) of (6.22) follows from Proposition 5.5. Since

C̃ = {y ∈ [−1, 0] : W (y) > H(y)} = (z2, z1), the optimal continuation region becomes

C = G−1(C̃) = (G−1(z2), G
−1(z1)), and the stopping time τ ∗ , {t ≥ 0 : Xt /∈

(G−1(z2), G
−1(z1))} is optimal.

7. Smooth–Fit Principle and Necessary Conditions for Optimal

Stopping Boundaries

We shall resume in this Section our study of the properties of the value function

V (·). For concreteness, we focus on the discounted optimal stopping problem intro-

duced in Section 4, although all results can be carried over for the optimal stopping

problems of Sections 3 and 5.

In Section 4, we started by assuming that h(·) is bounded, and showed that

V (·)/ϕ(·) is the smallest nonnegative F–concave majorant of h(·)/ϕ(·) on [c, d] (cf.

Proposition 4.2); the continuity of V (·) in (c, d) then followed from concavity. The F–

concavity property of V (·)/ϕ(·) has further implications. From Proposition 2.6(iii),

we know that D±
F (V/ϕ) exist and are nondecreasing in (c, d). Furthermore,3

(7.1)
d−

dF

(
V

ϕ

)
(x) ≥ d+

dF

(
V

ϕ

)
(x), x ∈ (c, d).

Proposition 2.6(iii) implies that equality holds in (7.1) everywhere in (c, d), except

possibly on a subset N which is at most countable, i.e.,

d+

dF

(
V

ϕ

)
(x) =

d−

dF

(
V

ϕ

)
(x) ≡ d

dF

(
V

ϕ

)
(x), x ∈ (c, d)\N.

Hence V (·)/ϕ(·) is essentially F–differentiable in (c, d). Let

Γ , {x ∈ [c, d] : V (x) = h(x)} and C , [c, d]\Γ = {x ∈ [c, d] : V (x) > h(x)}.

When the F–concavity of V (·)/ϕ(·) is combined with the fact that V (·) majorizes

h(·) on [c, d], we obtain the key result of Proposition 7.1, which leads, in turn, to the

celebrated Smooth–Fit principle.

Proposition 7.1. At every x ∈ Γ ∩ (c, d), where D±
F

(
h/ϕ

)
(x) exist, we have

d−

dF

(
h

ϕ

)
(x) ≥ d−

dF

(
V

ϕ

)
(x) ≥ d+

dF

(
V

ϕ

)
(x) ≥ d+

dF

(
h

ϕ

)
(x).

3The fact that the left–derivative of the value function V (·) is always greater than or equal to the

right–derivative of V (·) was pointed by Salminen [16, page 86].
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Proof. The second inequality is the same as (7.1). For the rest, first remember that

V (·) = h(·) on Γ. Since V (·) majorizes h(·) on [c, d], and F (·) is strictly increasing,

this leads to

(7.2)

h(y)
ϕ(y)

− h(x)
ϕ(x)

F (y)− F (x)
≥

V (y)
ϕ(y)

− V (x)
ϕ(x)

F (y)− F (x)
and

V (z)
ϕ(z)

− V (x)
ϕ(x)

F (z)− F (x)
≥

h(z)
ϕ(z)

− h(x)
ϕ(x)

F (z)− F (x)
,

for every x ∈ Γ, y < x < z. Suppose x ∈ Γ ∩ (c, d), and D±
F

(
h/ϕ

)
(x) exist. As

we summarized before stating Proposition 7.1, we know that D±
F

(
V/ϕ

)
(x) always

exist in (c, d). Therefore, the limits of both sides of the inequalities in (7.2), as

y ↑ x and z ↓ x respectively, exist, and give D−
F (h/ϕ) (x) ≥ D−

F (V/ϕ) (x), and

D+
F (V/ϕ) (x) ≥ D+

F (h/ϕ) (x), respectively. �

Corollary 7.1 (Smooth–Fit Principle). At every x ∈ Γ∩ (c, d) where h(·)/ϕ(·) is F–

differentiable, V (·)/ϕ(·) is also F–differentiable, and touches h(·)/ϕ(·) at x smoothly,

in the sense that the F–derivatives of both functions also agree at x:

d

dF

(
h

ϕ

)
(x) =

d

dF

(
V

ϕ

)
(x).

Corollary 7.1 raises the question when we should expect V (·)/ϕ(·) to be F–differentiable

in (c, d). If h(·)/ϕ(·) is F–differentiable in (c, d), then it is immediate from Corol-

lary 7.1 that V (·)/ϕ(·) is F–differentiable in Γ∩ (c, d). However, we know little about

the behavior of V (·)/ϕ(·) on C = [c, d]\Γ if h(·) is only bounded. If, however, h(·) is

continuous on [c, d], then V (·) is also continuous on [c, d] (cf. Lemma 4.2), and now

C is an open subset of [c, d]. Therefore, it is the union of a countable family (Jα)α∈Λ

of disjoint open (relative to [c, d]) subintervals of [c, d]. By Lemma 4.3,

(7.3)
V (x)

ϕ(x)
=

Ex[e
−βτ∗h(Xτ∗)]

ϕ(x)
=
V (lα)

ϕ(lα)
· F (rα)− F (x)

F (rα)− F (lα)
+
V (rα)

ϕ(rα)
· F (x)− F (lα)

F (rα)− F (lα)
, x ∈ Jα,

where lα and rα are the left– and right–boundary of Jα, α ∈ Λ, respectively. Ob-

serve that V (·)/ϕ(·) coincides with an F–linear function on every Jα, i.e., it is F–

differentiable in Jα ∩ (c, d) for every α ∈ Λ. By taking the F–derivative of (7.3), we

find that

(7.4)
d

dF

(
V

ϕ

)
(x) =

1

F (rα)− F (lα)

[
V (rα)

ϕ(rα)
− V (lα)

ϕ(lα)

]
, x ∈ Jα ∩ (c, d)

is constant, i.e., is itself F–differentiable in Jα ∩ (c, d). Since C is the union of

disjoint Jα, α ∈ Λ, this implies that V (·)/ϕ(·) is twice continuously F–differentiable

in C ∩ (c, d). We are ready to prove the following result.
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Proposition 7.2. Suppose h(·) is continuous on [c, d]. Then V (·) is continuous on

[c, d], and V (·)/ϕ(·) is twice continuously F–differentiable in C∩ (c, d). Furthermore,

(i) if h(·)/ϕ(·) is F–differentiable in (c, d), then V (·)/ϕ(·) is continuously4 F–

differentiable in (c, d), and

(ii) if h(·)/ϕ(·) is twice (continuously) F–differentiable in (c, d), then V (·)/ϕ(·) is

twice (continuously) F–differentiable in (c, d)\∂C,

where ∂C is the boundary of C relative to R or [c, d].

Proof. Since h(·) and F are continuous, V (·) is continuous by Lemma 4.2. We also

proved above that V (·)/ϕ(·) is F–differentiable in C∩ (c, d) (this is always true even

if h(·)/ϕ(·) were not F–differentiable).

(i) If h(·)/ϕ(·) is F–differentiable in (c, d), then the F–differentiability of V (·)/ϕ(·)
in (c, d)\C = (c, d) ∩ Γ follows from Corollary 7.1. Therefore V (·)/ϕ(·) is F–

differentiable in (c, d) = [(c, d)\C] ∪C by the discussion above. However, V (·)/ϕ(·)
is also F–concave on [c, d], and F is continuous on [c, d]. Therefore DF (V/ϕ) (·) is

continuous on (c, d).

(ii) We only need prove that V (·)/ϕ(·) is twice (continuously) F–differentiable in

(c, d)\C where C is the closure of C relative to [c, d]. However (c, d)\C is an open

set (relative to R) contained in Γ where V (·) and h(·) coincide. Because we assume

h(·)/ϕ(·) is twice (continuously) F–differentiable, the conclusion follows immediately.

�

Proposition 7.3 (Necessary conditions for the boundaries of the optimal contin-

uation region). Suppose h(·) is continuous on [c, d]. Suppose l, r ∈ Γ ∩ (c, d), and

h(·)/ϕ(·) has F–derivatives at l and r. Then DF

(
V/ϕ

)
(·) exists at l and r. More-

over, we have the following cases:

(i) If (l, r) ⊆ C, then

d

dF

(
h

ϕ

)
(l) =

d

dF

(
V

ϕ

)
(l) =

h(r)
ϕ(r)

− h(l)
ϕ(l)

F (r)− F (l)
=

d

dF

(
V

ϕ

)
(r) =

d

dF

(
h

ϕ

)
(r),

and,

V (x)

ϕ(x)
=
h(θ)

ϕ(θ)
+

[
F (x)− F (θ)

] d

dF

(
h

ϕ

)
(θ), x ∈ [l, r], θ = l, r.

4Note that this is always true no matter whether DF (h/ϕ) is continuous or not. As the proof

indicates, this is as a result of F–concavity of V (·)/ϕ(·) and continuity of F on [c, d].
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(ii) If [c, r) ⊆ C, then

d

dF

(
h

ϕ

)
(r) =

d

dF

(
V

ϕ

)
(r) =

1

F (r)− F (c)
· h(r)
ϕ(r)

,

and,

V (x)

ϕ(x)
=
h(r)

ϕ(r)
+

[
F (x)−F (r)

] d

dF

(
h

ϕ

)
(r) =

[
F (x)−F (c)

] d

dF

(
h

ϕ

)
(r), x ∈ [c, r).

(iii) If (l, d] ⊆ C, then

d

dF

(
h

ϕ

)
(l) =

d

dF

(
V

ϕ

)
(l) = − 1

F (d)− F (l)
· h(l)
ϕ(l)

,

and,

V (x)

ϕ(x)
=
h(l)

ϕ(l)
+

[
F (x)− F (l)

] d

dF

(
h

ϕ

)
(l) =

[
F (x)− F (d)

] d

dF

(
h

ϕ

)
(l), x ∈ (l, d].

Proof. The existence of DF

(
V/ϕ

)
, and its equality with DF

(
h/ϕ

)
at l and r, follow

from Corollary 7.1. Therefore, the first and last equality in (i), and the first equalities

in (ii) and (iii) are clear.

Note that the intervals (l, r), [c, r) and (l, b] are all three possible forms that Jα,

α ∈ Λ can take. Let lα and rα denote the left– and right–boundaries of intervals,

respectively. Then (7.4) is true for all three cases.

In (i), both lα = l and rα = r are in Γ. Therefore, V (l) = h(l) and V (r) = h(r),

and (7.4) implies

(7.5)
d

dF

(
V

ϕ

)
(x) =

1

F (r)− F (l)

[
h(r)

ϕ(r)
− h(l)

ϕ(l)

]
, x ∈ (l, r).

Since V (·)/ϕ(·) is F–concave on [c, d] ⊃ [l, r], and F is continuous on [c, d], Propo-

sition 2.6(iii) implies that D+
F (V/ϕ) and D−

F (V/ϕ) are right– and left–continuous

in (c, d). Because V (·)/ϕ(·) is F–differentiable on [l, r], D±
F (V/ϕ) and DF (V/ϕ)

coincide on [l, r]. Therefore DF (V/ϕ) is continuous on [l, r], and second and third

equalities in (i) immediately follow from (7.5). In a more direct way,

d

dF

(
V

ϕ

)
(l) =

d+

dF

(
V

ϕ

)
(l) = lim

x↓l

d+

dF

(
V

ϕ

)
(x) = lim

x↓l

d

dF

(
V

ϕ

)
(x) =

h(r)
ϕ(r)

− h(l)
ϕ(l)

F (r)− F (l)
.

d

dF

(
V

ϕ

)
(r) =

d−

dF

(
V

ϕ

)
(r) = lim

x↓l

d−

dF

(
V

ϕ

)
(x) = lim

x↓l

d

dF

(
V

ϕ

)
(x) =

h(r)
ϕ(r)

− h(l)
ϕ(l)

F (r)− F (l)
.

Same equalities could have also been proved by direct calculation using (7.3).
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The proofs of the second equalities in (ii) and (iii) are similar, once we note that

V (c) = 0 if c ∈ C, and V (d) = 0 if d ∈ C. Finally, the expressions for V (·)/ϕ(·)
follow from (7.3) by direct calculations; simply note that V (·)/ϕ(·) is an F–linear

function passing through
(
lα, (V/ϕ)(lα)

)
and

(
rα, (V/ϕ)(rα)

)
. �

We shall verify that our necessary conditions agree with those of Salminen [16,

Theorem 4.7]. To do this, we first remember his

Definition 7.1 (Salminen [16], page 95). A point x∗ ∈ Γ is called a left boundary

of Γ if for ε > 0 small enough (x∗, x∗ + ε) ⊆ C and (x∗ − ε, x∗] ⊆ Γ. A point y∗ ∈ Γ

is called a right boundary of Γ if for ε > 0 small enough (y∗ − ε, y∗) ⊆ C and

[y∗, y∗ + ε) ⊆ Γ (cf. Figure 11 for illustration).

y∗ + ε

ΓΓ

y∗x∗ x∗ + ε y∗ − εx∗ − ε

C C

Figure 11. x∗ is a left- and y∗ is a right-boundary point of Γ.

We shall also remind the definitions of the key functions Gb(·) and Ga(·) of Salmi-

nen’s conclusion. At every x ∈ (c, d) where h(·) is S–differentiable, let

(7.6) Gb(x) , ϕ(x)
dh

dS
(x)− h(x)

dϕ

dS
(x) and Ga(x) , h(x)

dψ

dS
− ψ(x)

dh

dS
(x).

Proposition 7.4. Suppose h(·) is continuous on [c, d]. If h(·), ψ(·) and ϕ(·) are

S–differentiable at some x ∈ (c, d), then h(·)/ϕ(·) and h(·)/ψ(·) are F– and G–

differentiable at x, respectively. Moreover,

d

dF

(
h

ϕ

)
(x) =

Gb(x)

W (ψ, ϕ)
and

d

dG

(
h

ψ

)
(x) = − Ga(x)

W (ψ, ϕ)
,(7.7)

where Gb(x) and Ga(x) are defined as in (7.6), and the Wronskian W (ψ, ϕ) ,

ϕ(·)dψ
dS

(·)− ψ(·)dϕ
dS

(·) is constant and positive (cf. Section 2).
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Proof. Since h(·), ψ(·) and ϕ(·) are S–differentiable at x, h(·)/ϕ(·) and F are S–

differentiable at x. Therefore, DF

(
h/ϕ

)
exist at x, and equals

d

dF

(
h

ϕ

)
(x) =

d
dS

(
h
ϕ

)
dF
dS

(x) =
DSh · ϕ− h ·DSϕ

DSψ · ϕ− ψ ·DSϕ
(x)

=
1

W (ψ, ϕ)

[
ϕ(x)

dh

dS
(x)− h(x)

dϕ

dS
(x)

]
=

Gb(x)

W (ψ, ϕ)
,(7.8)

where DS ≡ d
dS

. Noting the symmetry in (ϕ, F ) versus (ψ,G), we can repeat all

arguments by replacing (ϕ, ψ) with (ψ,−ϕ). Therefore it can be similarly shown that

DG

(
h/ψ

)
(x) exists and DG

(
h/ψ

)
(x) = −Ga(x)/W (ψ, ϕ) (note that W (−ϕ, ψ) =

W (ψ, ϕ)). �

Corollary 7.2 (Salminen [16], Theorem 4.7). Let h(·) be continuous on [c, d]. Suppose

l and r are left– and right–boundary points of Γ, respectively, such that (l, r) ⊆ C.

Assume that h(·), ψ(·) and ϕ(·) are S(scale function)–differentiable on the set A ,

(l − ε, l] ∪ [r, r + ε) for some ε > 0 such that A ⊆ Γ. Then on A, the functions Gb

and Ga of (7.6) are non–increasing and non–decreasing, respectively, and

Gb(l) = Gb(r), Ga(l) = Ga(r).

Proof. Proposition 7.4 implies that DF

(
h/ϕ

)
and DG

(
h/ψ

)
exist on A. Since l, r ∈ Γ

and (l, r) ⊆ C, Proposition 7.3(i) and (7.7) imply

Gb(l)

W (ψ, ϕ)
=

d

dF

(
h

ϕ

)
(l) =

d

dF

(
h

ϕ

)
(r) =

Gb(r)

W (ψ, ϕ)
,

i.e., Gb(l) = Gb(r) (Remember also that the Wronskian W (ψ, ϕ) , dψ
dS
ϕ − ψ dϕ

dS
of

ψ(·) and ϕ(·) is a positive constant; see Section 2). By symmetry in the pairs (ϕ, F )

and (ψ,G), we have similarly Ga(l) = Ga(r).

On the other hand, observe that DF

(
V/ϕ

)
and DG

(
V/ψ

)
also exist and, are equal

to DF

(
h/ϕ

)
and DG

(
h/ψ

)
on A, respectively, by Corollary 7.1. Therefore

d

dF

(
V

ϕ

)
(x) =

Gb(x)

W (ψ, ϕ)
and

d

dG

(
V

ψ

)
(x) = − Ga(x)

W (ψ, ϕ)
, x ∈ A,(7.9)

by Proposition 7.7. Because V (·)/ϕ(·) is F–concave, and V (·)/ψ(·) is G–concave,

Proposition 2.6(i) implies that both DF

(
V/ϕ

)
and DG

(
V/ψ

)
are non–increasing on

A. Therefore (7.9) implies that Gb is non–increasing, and Ga is non–decreasing on

A. �
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8. Concluding Remarks: Martin Boundary Theory and Optimal

Stopping for Markov Processes in General

We shall conclude by pointing out the importance of Martin boundary theory (cf.

Dynkin [6, 7]) in the study of optimal stopping problems for Markov processes. This

indicates that every excessive function of a Markov process can be represented as

the integral of minimal excessive functions with respect to a unique representing

measure. If the process X is a regular one–dimensional diffusion with state space

I, whose end–points are a and b, then Salminen [16, Theorem 2.7] shows that the

minimal β–excessive functions are

ka(·) , ϕ(·), kb(·) , ψ(·), ky(·) ,
ψ(·)
ψ(y)

∧ ϕ(·)
ϕ(y)

, ∀ y ∈ (a, b).

Then, according to Martin boundary theory, every β–excessive function h(·) can be

represented as

h(x) =

∫
[a,b]

ky(x)νh(dy), x ∈ I,(8.1)

where νh is a finite measure on [a, b], uniquely determined by h(·). Now, observe

that ky(·)/ϕ(·) is F–concave for every y ∈ [a, b]. Therefore, Proposition 4.1 and its

counterparts in Section 5, can also be seen as consequences of the representation

(8.1). The functions ψ(·), ϕ(·) are harmonic functions of the process X killed at an

exponentially distributed independent random time, and are associated with points

in the Martin boundary of the killed process. The Martin boundary has been studied

widely in the literature for arbitrary Markov processes, and seems the right tool to

use, if one tries to extend the results of this paper to optimal stopping of general

Markov processes. Such an extension is currently being investigated by the authors.
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