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Abstract. We propose a new solution method for optimal stopping problems with random dis-

counting for linear diffusions whose state space has a combination of natural, absorbing, or reflecting

boundaries. The method uses a concave characterization of excessive functions for linear diffusions

killed at a rate determined by a Markov additive functional and reduces the original problem to an

undiscounted optimal stopping problem for a standard Brownian motion. The latter can be solved

essentially by inspection. The necessary and sufficient conditions for the existence of an optimal

stopping rule are proved when the reward function is continuous. The results are illustrated on

examples.

1. Introduction

Optimal stopping problems often arise in economics, finance and statistics. Finding the best time

or the best decision rule to exercise American-type financial options, to enter investment contracts

or to abandon certain projects, to alert the controller for an abrupt change in a regulated process

are important examples; see, e.g., Dixit and Pindyck [11], Karatzas [20], Peskir and Shiryaev [31],

Shiryaev [35]. When the underlying stochastic process is governed by a stochastic differential equa-

tion, the optimal stopping problem is typically formulated as a free-boundary problem by means

of variational arguments; see, e.g., Guo and Shepp [18], Karatzas and Ocone [21], Karatzas and

Wang [26]. The correct formulation of the free-boundary problem sometimes requires considerable

imagination. This is indeed an artful task in that the optimal continuation and stopping regions

have to be guessed a priori. The free-boundary problem may then be solved with the help of the

smooth-fit principle. The optimality of the candidate continuation and stopping regions are typ-

ically proved by direct verification; see, e.g., Bensoussan and Lions [3], Brekke and Øksendal [6],

Friedman [16], Grigelionis and Shiryaev [17], Øksendal [29], Shiryaev [34, Section 3.8].

The variational methods become challenging when the form of the reward function and/or the

dynamics of the diffusion obscure the shape of the optimal continuation region. If the latter is a

disconnected subset of the state space, we may end up with several solutions of the free-boundary

problem. Finding the right candidate for the optimal solution may become nontrivial. Let us also

mention that there are cases where the smooth-fit principle does not apply; see, e.g, Øksendal and

Reikvam [30], Salminen [33, page 98, Example (iii)].
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If the terminal reward upon stopping is discounted at a constant rate (i.e., At = βt, t ≥ 0 for

some constant β ≥ 0 in (1.2) below), and the boundaries of the state-space of X are either absorbing

or natural, a new direct solution method was proposed by Dayanik and Karatzas [9]. The method

is direct in the sense that it does not require any a-priori guess of the optimal stopping region;

therefore, it avoids the difficulties of free-boundary formulation. Instead, it relies on a concave

characterization of excessive functions for general linear diffusions. Then the well-known excessive

characterization (see, for example, Dynkin [12], Shiryaev [34, Theorem 1, p. 124], Øksendal [29,

Theorem 10.1.9]) of the value function has been fully used to solve optimal stopping problems. The

new method reduces every optimal stopping problem to a special one which is essentially solved by

inspection.

In this paper, we further develop this methodology in two nontrivial directions; namely, when

the discounting is random, and the underlying diffusion may have reflecting boundaries.

Random discounting is important in financial applications and control theory. In finance, new

exotic options on stocks are designed to have payoffs discounted by a functional of the underlying

stock process. For example, step options are proposed as an alternative to popular barrier options

to alleviate the risk management problems inherent to the latter; see, e.g., Linetsky [28]. Pricing

and hedging a perpetual American-type “down-and-out” step option with a barrier at B requires

the solution of an optimal stopping problem as in (1.2) where the discount rate is the occupation

time At = meas{u ∈ [0, t] : Su ≤ b} of the stock price S in (−∞, B] until time t. In control theory,

certain singular stochastic control problems are known to be also equivalent to optimal stopping

problems whose payoffs are discounted by some additive functional of the underlying diffusions;

see, e.g., Boetius and Kohlmann [4], Karatzas and Shreve [22; 23].

Reflecting boundaries are also common in financial economics. In a competitive market, which

is open to entries and exits of price-taking companies, the price process of a commodity is typically

assumed to have an upper reflecting barrier. For example, effects of price ceilings on the partially

irreversible entry and exit decisions made by companies under uncertainty are studied by Dixit [10].

In the equivalent optimal stopping problem of certain singular control problems mentioned above,

the underlying diffusion has sometimes reflecting boundaries as well.

Let us now introduce the mathematical framework. Let (Ω,F ,P) be a complete probability

space with a Brownian motion B = {Bt; t ≥ 0} and a diffusion process X = {Xt; t ≥ 0} on some

state–space I ⊆ R with dynamics

dXt = µ(Xt)dt+ σ(Xt)dBt, t ≥ 0 (1.1)

for some Borel functions µ : I 7→ R and σ : I 7→ (0,∞). We assume that I is an interval with

endpoints −∞ ≤ a < b ≤ +∞, and that (1.1) has weak solution with unique probability law, which

is guaranteed, see Karatzas and Shreve [24, pp. 329-353] for example, if

∀ x ∈ int(I) ∃ε > 0 such that
∫

(x−ε,x+ε)

1 + |µ(y)|
σ2(y)

dy <∞.
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We also assume that X is regular; i.e., X reaches y with positive probability starting at x for every

x ∈ (a, b) and y ∈ I. We shall denote the natural filtration of X by F = {Ft}t≥0.

Let {At : t ≥ 0} be a continuous additive functional of X on the same probability space; we

shall use At and A(t) interchangeably. Namely, A(·) is an F–adapted process that is almost surely

nonnegative, continuous, vanishing at zero, and has the additivity property

As+t = As +At ◦ θs, s, t ≥ 0 a.s.,

where θs is the usual shift operator: Xt ◦ θs = Xt+s. Let h(·) be a Borel function such that

Ex

[
e−Aτh(Xτ )1{τ<∞}

]
exists for every F-stopping time τ and x ∈ I. Denote by

V (x) , sup
τ∈S

Ex

[
e−Aτh(Xτ )1{τ<∞}

]
, x ∈ I (1.2)

the value function of the optimal stopping problem with terminal reward function h(·) and random

discount rate A(·); the supremum in (1.2) is taken over the set S of all F-stopping times. The

objective is to find (i) the value function V (·) in (1.2), and (ii) an optimal stopping time τ∗ ∈ S
that attains the supremum in (1.2), if such a stopping time exists.

By enlarging the probability space, if necessary, every expectation in (1.2) can be expressed as

Ex

[
e−Aτh(Xτ )1{τ<∞}

]
= Ex

[
1{ζ>τ}h(Xτ )]

]
= Ex[h(X̂τ )]

in terms of a unit-rate exponentially distributed random variable E independent of the diffusion

X, the process

X̂t ,

Xt, if At < E

∂, if At ≥ E

 for every t ≥ 0

obtained by killing X at rate At, and killing time ζ , inf{t ≥ 0; X̂t = ∂} for some fixed ∂ 6∈ I;

see, for example, Borodin and Salminen [5, p. 28, II.23]. Then X̂t = Xt for every t ∈ [0, ζ), and X̂

is sent at time ζ to a fixed “cemetery state” ∂, where it stays forever. We extend every function

f(·) defined on I to I∂ = I ∪ {∂} by setting f(∂) = 0.

A Borel measurable function U : I 7→ [0,∞) is called excessive for the process X killed at

rate A(·) if U(x) ≥ Ex

[
e−AτU(Xτ )1{τ<∞}

]
for every x ∈ I and τ ∈ S. To solve (1.2), we first

establish a concave characterization of excessive functions, and then use it to transform (1.2) to an

equivalent undiscounted optimal stopping problem with a suitable reward function for a standard

Brownian motion. Finally, this latter problem has an elegant solution described by Dynkin and

Yushkevich [14, pp. 112-126].

At the time of writing this work, we were unaware of Dynkin’s [13, Volume II; pp. 146, 155; Theo-

rems 15.10, 16.4] own concave characterizations of excessive functions of one-dimensional diffusions.

Although statements of our characterization (Proposition 3.1) and Dynkin’s characterizations are

similar, they are not the same. While one of Dynkin’s two characterizations does not give informa-

tion at the boundaries unlike ours, the other differs from our characterization in the way the killing

in the interior of the state space is handled. E. Dynkin allows it, and we do not. In Section 5, we
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show that the killing inside the state space can be avoided by a suitable h-transform, and that our

characterization takes care of this implicitly with more elementary arguments. In the same section,

we argue that, by disallowing killing inside state space, our concave characterization of excessive

functions leads to a more effective and natural solution of optimal stopping problems, which is the

main concern of this work.

Our interest to the optimal stopping of one-dimensional diffusions killed at the rate of a contin-

uous additive process was raised by Beibel and Lerche’s work [1; 2], where they describe a novel

solution method inspired by some treatment of generalized parking problems. Their method deter-

mines an optimal strategy by applying, at every point in the state-space of the underlying diffusion,

five tests. Each test amounts to sliding a parameter back and forth until one of three conclusions

is arrived: either an optimal strategy does not exist, or it exists and is either a one-sided or a

two-sided stopping rule; in the latter case, another search is required for the critical threshold(s) of

the stopping rule. The search for the correct value of the sliding parameter and critical thresholds

(especially, of two-sided optimal stopping rules) can be quite demanding, and repeating those tasks

at every point in the state-space limits the effectiveness of the method.

In contrast with Beibel and Lerche’s method, our proposed method determines an optimal strat-

egy everywhere at once by a simple inspection of a transformation of the terminal reward function

and its smallest nonnegative concave majorant, both of which are straightforward to calculate. To

help for a comparison of two methods, we applied in Section 4 our method to some of Beibel and

Lerche’s [2] examples. The examples suggest that by sliding the parameter in Beibel and Lerche’s

method, one is executing a local search, in our terms, for the value of the smallest nonnegative

concave majorant of the transformed reward function. On the contrary, our proposed method

constructs the value function globally, by utilizing concave characterization of value function, and

avoids difficulties of local search. This is especially evident from the ease with which our method

determines two-sided optimal stopping rule in Section 4.3.

We start with an overview of one-dimensional diffusions in Section 2. In Section 3, we show that

value function of (1.2) and excessive functions in general are concave in some generalized sense,

and describe the solution method for the optimal stopping problem. In Section 4, we exhibit the

method on several examples. We examine the connection between our and Dynkin’s characterization

of excessive functions in Section 5.

2. One-dimensional regular diffusion processes

We assume that X is a one-dimensional regular diffusion of the type (1.1) on an interval I.

If an endpoint is included in the state-space I, we shall assume that it is either absorbing, or

instantaneously reflecting. If it is not contained in I, then we assume that it is natural (see, for

example, Karlin and Taylor [27]). If the left-boundary point a is absorbing, then we set B`
Abs , {a},

and B`
Abs , ∅ otherwise. Similarly, Br

Abs , {b} if the right-boundary point b is absorbing, and

Br
Abs , ∅ otherwise.
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We define τr , inf{t ≥ 0 : Xt = r} for every r ∈ I and denote the interior of the state space

I by int(I). A one-dimensional diffusion X is regular, if for every x ∈ int(I) and y ∈ I, we have

Px(τy < ∞) > 0. Therefore, the interior of the state-space I cannot be decomposed into smaller

sets from which X could not exit.

Let A(·) be a continuous additive functional of X. Then it is also strongly additive; see Revuz

and Yor [32, page 403, Remark 1]). Namely, if T is a stopping time of F, then AT+S = AT +AS(θT )

Px-a.s., for every x ∈ I and positive random variable S. If T and S are two stopping times, then

T + S ◦ θT is also a stopping time. The strong additivity of A(·) implies

AT+S◦θT
= AT +AS ◦ θT Px-a.s. ∀x ∈ I. (2.1)

It is important to note that AS ◦ θT is the mapping ω 7→ AS(θT (ω))(θT (ω)), whereas AS(θT ) is the

mapping ω 7→ AS(ω)(θT (ω)).

Let us also introduce the functions

ψ(x) ,


Ex

[
e−Aτc 1{τc<∞}

]
, x ≤ c

1
Ec

[
e−Aτx 1{τx<∞}

] , x > c

 , ϕ(x) ,


1

Ec

[
e−Aτx 1{τx<∞}

] , x ≤ c

Ex

[
e−Aτc 1{τc<∞}

]
, x > c

 , x ∈ I (2.2)

for some arbitrary but fixed c ∈ int(I). If x < y < z are in I, then Px-a.s. τz = τy + τz ◦ θτy ,

and the strong Markov property of X and (2.1) imply Ex

[
e−Aτz 1{τz<∞}

]
= Ex

[
e−Aτy 1{τy<∞}

]
·

Ey

[
e−Aτz 1{τz<∞}

]
, and Ez

[
e−Aτx 1{τx<∞}

]
= Ez

[
e−Aτy 1{τy<∞}

]
· Ey

[
e−Aτx 1{τx<∞}

]
. Therefore,

Ex

[
e−Aτy 1{τy<∞}

]
=

ψ(x)/ψ(y), x ≤ y

ϕ(x)/ϕ(y), x > y

 , x, y ∈ I, (2.3)

which also reveals that, by changing the reference point c ∈ int(I) in (2.2), we obtain a multiple of

the same functions by positive constants.

Lemma 2.1. The process
{
e−At∧τyψ(Xt∧τy),Ft∧τy : t ≥ 0

}
is a Px-martingale for every x < y in

I. Similarly,
{
e−At∧τyϕ(Xt∧τy),Ft∧τy : t ≥ 0

}
is a Px-martingale for every x ≥ y in I.

Proof. Fix x < y in I. Since Px-a.s.Xt∧τy ≤ y, we have Px-a.s. ψ(Xt∧τy) = ψ(y)EXt∧τy

[
e−Aτy 1{τy<∞}

]
by (2.3). Using the strong Markov property of X and the strong additivity of A(·), we find

e−At∧τyψ(Xt∧τy) = ψ(y)Ex

[
e−Aτy 1{τy<∞}

∣∣Ft∧τy

]
Px-a.s.; i.e.,

{
e−At∧τyψ(Xt∧τy),Ft∧τy : t ≥ 0

}
is a

Px-martingale. The proof of the second part is similar. �

We shall denote the scale function of X by S(·). It is the unique, up to affine transformations,

strictly increasing and continuous function on I with the property

Px(τy < τz) =
S(z)− S(x)
S(z)− S(y)

and Px(τy > τz) =
S(x)− S(y)
S(z)− S(y)

, x ∈ [y, z] ⊆ I; (2.4)

see, for example, Revuz and Yor [32], Karlin and Taylor [27]. If F : I 7→ R is any strictly increasing,

then a function U : I 7→ R is called F -concave if

U(x) ≥ U(y)
F (z)− F (x)
F (z)− F (y)

+ U(z)
F (x)− F (y)
F (z)− F (y)

, x ∈ [y, z] ⊆ I.
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For the properties of F -concave functions; Dynkin [13, Volume II, p. 231-240], Revuz and Yor [32,

pp. 544-547]. The following corollary will be useful later in proving the smooth-fit principle; see

Proposition 3.8.

Corollary 2.1. The functions ψ(·) and ϕ(·) of (2.2) are S-convex on int(I).

Proof. Fix any [y, z] ⊆ int(I). Lemma 2.1 implies ψ(x) = Ex

[
e−Aτy∧τzψ(Xτy∧τz)

]
≤ ψ(y)Px(τy <

τz) + ψ(z)Px(τy > τz) for every x ∈ [y, z], and S-convexity of ψ(·) follows from (2.4). The proof is

similar for ϕ(·). �

Lemma 2.2. The functions ψ(·) and ϕ(·) are continuous and strictly positive on int(I). If a ∈
I, then limx↓a ψ(x) = ψ(a) and limx↓a ϕ(x) = ϕ(a). If b ∈ I, then limx↑b ψ(x) = ψ(b) and

limx↑b ϕ(x) = ϕ(b). The function ψ(·) is nondecreasing, and ϕ(·) is nonincreasing on I.

The proof of the lemma is similar to the arguments of Itô and McKean [19, Section 4.6]. Let us

now introduce the functions

F (x) ,
ψ(x)
ϕ(x)

, and G(x) , −ϕ(x)
ψ(x)

= − 1
F (x)

, x ∈ int(I). (2.5)

Both F (·) and G(·) are nondecreasing and continuous on int(I). If a ∈ I, then we define F (a) ,

limx↓a F (x) and G(a) , limx↓aG(x). If b ∈ I, then similarly F (b) , limx↑b F (x) and G(b) ,

limx↑bG(x). Next proposition shows that F (·) and G(·) are strictly increasing, either if X is

transient (for example, if it has absorbing boundaries) or if A(·) does not vanish everywhere.

Proposition 2.1. There are distinct states x, y ∈ int(I) such that F (x) = F (y) if and only if (i)

X is recurrent, and (ii) Pz{At = 0, t ≥ 0} = 1 for every z ∈ I.

Proof. The sufficiency is clear. For the proof of the necessity, suppose F (x) = F (y) for some

x < y in int(I). By (2.3), 1 = F (x)/F (y) = Ex

[
e−Aτy 1{τy<∞}

]
Ey

[
e−Aτx 1{τx<∞}

]
, and therefore,

Px{τy < ∞} = Py{τx < ∞} = Px{Aτy = 0} = Py{Aτx = 0} = 1. Since X is regular, this implies

Pu{τv <∞} = 1 for every u, v ∈ I and proves (i). Part (ii) follows from the strong Markov property

of the recurrent process X and strong additivity of A. �

Lemma 2.3. Suppose that F (·) is strictly increasing. For every x ∈ [l, r] ⊆ I, we have

Ex

[
e−Aτl 1{τl<τr}

]
=
ϕ(r)ψ(x)− ψ(r)ϕ(x)
ϕ(r)ψ(l)− ψ(r)ϕ(l)

, Ex

[
e−Aτr 1{τl>τr}

]
=
ψ(l)ϕ(x)− ϕ(l)ψ(x)
ϕ(r)ψ(l)− ψ(r)ϕ(l)

.

Proof. By Lemma 2.1 and optional sampling theorem, the stopped processes e−At∧τl∧τrψ(Xt∧τl∧τr)

and e−At∧τl∧τrϕ(Xt∧τl∧τr) are bounded continuous Px-martingales for every x ∈ [l, r], and

ψ(x) = Ex

[
e−Aτl∧τrψ(Xτl∧τr)

]
= ψ(l)Ex

[
e−Aτl 1{τl<τr}

]
+ ψ(r)Ex

[
e−Aτr 1{τl>τr}

]
,

ϕ(x) = Ex

[
e−Aτl∧τrϕ(Xτl∧τr)

]
= ϕ(l)Ex

[
e−Aτl 1{τl<τr}

]
+ ϕ(r)Ex

[
e−Aτr 1{τl>τr}

]
.

Since F (·) is strictly increasing, F (r) > F (l) and ϕ(r)ψ(l)−ψ(r)ϕ(l) 6= 0. Therefore, the equations

can be solved for Ex

[
e−Aτl 1{τl<τr}

]
and Ex

[
e−Aτr 1{τl>τr}

]
uniquely as above. �
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Proposition 2.2. Let U : I 7→ [0,∞) be an A(·)-excessive function, and Zt , e−AtU(Xt), t ≥ 0.

Then {Zt,Ft}t≥0 is a nonnegative Px-supermartingale, x ∈ I with the last element Z∞ ≡ 0.

Proof. This follows from the definition of excessive functions, strong Markov property of X, and

strong additivity of A; see, e.g., Øksendal [29, Lemma 10.1.3(e)]. �

3. Optimal stopping problems

LetX be a diffusion process described by (1.1), A(·) be a continuous additive functional ofX, and

h : I 7→ R be a locally bounded Borel function. The solution of (1.2) is trivially V (x) = supy∈I h(y),

x ∈ I, if (i) X is recurrent, and (ii) A(·) ≡ 0 almost surely. Therefore, we assume in the remainder

that at least one of (i) and (ii) does not hold. Then F (·) and G(·) of (2.5) are strictly increasing

by Proposition 2.1, and divisions by F (r)− F (l) in (3.3) and (3.4) below always make sense.

In Proposition 3.1 below we give a new characterization of excessive functions. To motivate this

key result, let U : I 7→ [0,∞) be an excessive function of the process X killed at the rate A(·); i.e.,

U(x) ≥ Ex

[
e−AτU(Xτ )1{τ<∞}

]
, ∀x ∈ I, ∀ τ ∈ S. (3.1)

If [l, r] ⊆ I and τ , τl ∧ τr, then U(x) ≥ U(l)Ex

[
e−Aτl 1{τl<τr}

]
+ U(r)Ex

[
e−Aτr 1{τl>τr}

]
, x ∈ [l, r].

Since F (·) is strictly increasing, Lemma 2.3 implies

U(x) ≥ U(l)
ϕ(r)ψ(x)− ψ(r)ϕ(x)
ϕ(r)ψ(l)− ψ(r)ϕ(l)

+ U(r)
ψ(l)ϕ(x)− ϕ(l)ψ(x)
ϕ(r)ψ(l)− ψ(r)ϕ(l)

, x ∈ [l, r]. (3.2)

By dividing both sides by ϕ(x), respectively by ψ(x), and rearranging terms afterwards gives

U(x)
ϕ(x)

≥ U(l)
ϕ(l)

· F (r)− F (x)
F (r)− F (l)

+
U(r)
ϕ(r)

· F (x)− F (l)
F (r)− F (l)

, r /∈ Br
Abs, x ∈ [l, r], (3.3)

respectively

U(x)
ψ(x)

≥ U(l)
ψ(l)

· G(r)−G(x)
G(r)−G(l)

+
U(r)
ψ(r)

· G(x)−G(l)
G(r)−G(l)

, l /∈ B`
Abs, x ∈ [l, r]. (3.4)

Hence U(·)/ϕ(·) is F -concave on I\Br
Abs, and U(·)/ψ(·) is G-concave on I\B`

Abs.

If the left-boundary a of the state-space I is instantaneously reflecting (i.e., a ∈ I\B`
Abs), then

letting τ = τr in (3.1) gives U(x)/ψ(x) ≥ U(r)/ψ(r), x ∈ [a, r] because of (2.3). Hence, if a is

instantaneously reflecting, then U(·)/ψ(·) is nonincreasing on I. Similarly, if the right-boundary b

is instantaneously reflecting (i.e., b ∈ I\Br
Abs), then U(·)/ϕ(·) is nondecreasing on I. According to

Proposition 3.1, the concavity and monotonicity of U(·)/ϕ(·) and U(·)/ψ(·) are not only necessary

but also sufficient for a nonnegative real-valued function U(·) to be excessive for the process X

killed at rate A(·). We shall defer the proofs of the propositions to the end of the subsection.

Proposition 3.1. A function U : I 7→ [0,∞) is excessive for the one-dimensional diffusion X

killed at rate A(·); i.e., (3.1) is satisfied, if and only if all of the followings are true:

(i) U(·)/ϕ(·) is F -concave on I\Br
Abs,

(ii) U(·)/ψ(·) is G-concave on I\B`
Abs,
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(iii) U(·)/ϕ(·) is nondecreasing if b is instantaneously reflecting,

(iv) U(·)/ψ(·) is nonincreasing if a is instantaneously reflecting.

Remark 3.1. The conditions (i) and (ii) are essentially equivalent. The function U(·)/ϕ(·) is

F -concave on int(I) if and only if U(·)/ψ(·) is G-concave on int(I). However, division by ψ(a) = 0

or ϕ(b) = 0 is not allowed if, respectively, the left-boundary a or the right-boundary b is absorbing;

therefore, conditions (i) and (ii) complement each other when both boundaries are absorbing.

Remark 3.2. If U(·)/ϕ(·) is F -concave, or U(·)/ψ(·) isG-concave, thenD−
F (U/ϕ)(·) andD+

G(U/ψ)(·)
are nonincreasing. Therefore, functions U(·)/ϕ(·) and U(·)/ψ(·) are, respectively, nondecreasing

and nonincreasing, if and only if, respectively,

D−
F (U/ϕ)(b) ≥ 0 and D+

G(U/ψ)(a) ≤ 0, (3.5)

where the derivatives should be understood as their limits from left and from right, respectively, at

b and a if ϕ(b) = 0 or ψ(a) = 0.

Remark 3.3. The functions U(·)/ϕ(·) and U(·)/ψ(·) are always nondecreasing and nonincreasing,

respectively. Namely, the conditions (iii) and (iv), equivalently boundary conditions in (3.5), always

hold, but they are implied by (i) and (ii), respectively, if the boundaries are natural or absorbing.

Suppose, for example, b is natural or absorbing, and let us show by using (i) that U(·)/ϕ(·)
is nondecreasing. In either case, we have F (b−) = +∞. If U(·)/ϕ(·) is F -concave on I \ B`

Abs,

then (U/ϕ) ◦ F−1(·) is concave and has nonincreasing right-derivative on (F (a+),+∞). Because

(U/ϕ)◦F−1(·) must stay nonnegative on the half-line (F (a+),+∞), its right-derivative must always

be nonnegative. Therefore, (U/ϕ) ◦F−1(·) is nondecreasing on (F (a+),+∞), and this implies that

U(·)/ϕ(·) is nondecreasing on I.

In the argument above, we used, in addition to (i), two crucial information: U(·) is nonnegative,

and that F (b−) is infinite. The latter fails (i.e., F (b) is finite), if b is a reflecting boundary; therefore,

(iii) is no longer guaranteed by (i) and must be stated explicitly in that case. The relation between

conditions (ii) and (iv) is similar.

Next proposition is the restatement of Beibel and Lerche’s [2] Theorem 1 in terms of two new

quantities; namely, `a and `b in (3.6). Later, we shall see that not only the finiteness of value

function but also the existence of an optimal stopping time are determined completely by the

values of `a and `b.

Proposition 3.2. The value function V (·) of (1.2) is either finite or infinite everywhere on I\ (B`
Abs∪

Br
Abs). Moreover, V (·) ≡ ∞ on I\ (B`

Abs ∪ Br
Abs) if and only if at least one of the limits

`a , lim
x↓a

h+(x)
ϕ(x)

and `b , lim
x↑b

h+(x)
ψ(x)

, (3.6)

is infinite (h+(·) , max{0, h(·)}).
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Note that `a (respectively, `b) may become infinite if and only if a (respectively, b) is a natural

boundary of the state space I. The proof of the proposition is, therefore, similar to that of

Proposition 5.2 in Dayanik and Karatzas [9]. According to Proposition 3.2, the optimal stopping

problem in (1.2) has trivial solution, unless

the quantities `a and `b are finite. (3.7)

Therefore, in the remainder we shall assume that (3.7) holds.

Proposition 3.3. The value function V (·) of (1.2) is the smallest excessive majorant of h(·) on

I. Equivalently, it is the smallest nonnegative majorant of h(·) on I with the properties (i)-(iv) of

Proposition 3.1.

Next proposition and two immediate corollaries are useful in calculating the value function V (·)
in (1.2); see the examples in Section 4.

Proposition 3.4. Suppose that a is absorbing or natural, and that b is reflecting or natural. Let

W : F (I) 7→ R be the smallest nonnegative concave (also, nondecreasing, if b is reflecting) majorant

of the function H(y) , (h/ϕ) ◦ F−1(y), y ∈ F (I). Then V (x) = ϕ(x)W (F (x)) for every x ∈ I.

Remark 3.4. If the roles of a and b are interchanged in Proposition 3.4, then we replace ψ(·),
ϕ(·), F (·) and “nondecreasing” with ϕ(·), ψ(·), G(·) and “nonincreasing”, respectively.

Corollary 3.1. Let us define

h
ϕ

(x) , sup
z≤x

h(z)
ϕ(z)

and
h

ψ
(x) , sup

z≥x

h(z)
ψ(z)

, x ∈ I.

Let W(·) and Ŵ(·) be the smallest nonnegative concave majorants of H(y) ,
(

h
ϕ

)
◦ F−1(y),

y ∈ F (I) and Ĥ(y) ,
(

h
ψ

)
◦G−1(y), y ∈ G(I), respectively. If b (resp., a) is reflecting, and a (resp.,

b) is absorbing or natural, then V (x) = ϕ(x)W(F (x)) (resp., V (x) = ψ(x)Ŵ(G(x))), x ∈ I.

Corollary 3.2. Suppose both a and b are reflecting. LetW : [F (a), F (b)] 7→ R be the smallest of the

collection of all nonnegative, nondecreasing and concave majorants W(·) of H(·) , (h/ϕ) ◦F−1(·),
for which W(y)/y is nonincreasing. Then V (x) = ϕ(x)W (F (x)) for every x ∈ [a, b].

Proof of the sufficiency in Proposition 3.1. Suppose U(·) is nonnegative, and (i)-(iv) hold.

As a consequence of (i) and (ii), U(·)/ϕ(·) and U(·)/ψ(·) are lower semi-continuous on I\Br
Abs

and I\B`
Abs, respectively. Since ϕ(·) and ψ(·) are continuous on I, we conclude that U(·) is lower

semi-continuous on I. It is enough to prove that

U(x) ≥ Ex

[
e−AtU(Xt)

]
, ∀ t ≥ 0 and ∀ x ∈ I. (3.8)

Since the strong Markov property of X, strong additivity of A, and (3.8) imply that
{
e−AtU(Xt),

t ≥ 0
}

is a nonnegative F-supermartingale, the function U(·) is excessive for X killed at rate A(·)
by the optional sampling theorem for nonnegative supermartingales.
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Here, we shall give the details for the proof of (3.8) when a is reflective, and b is natural. The

proofs for the remaining cases are similar and can be found in Dayanik [8]. Let [a, rn], n ≥ 1 be a

sequence of subintervals, strictly increasing to [a, b). Then

E.1. the process e−At∧τrnψ(Xt∧τrn
), t ≥ 0 is a Px-martingale, x ∈ [a, rn], n ≥ 1,

E.2. the process e−At∧τaϕ(Xt∧τa), t ≥ 0 is a Px-martingale, x ∈ [a, b),

E.3. the function U(·)/ϕ(·) is F -concave on [a, b),

E.4. the function U(·)/ψ(·) is nonincreasing on [a, b),

thanks to Lemma 2.1, (i) and (iv). To prove (3.8) for x = a, note that E.4, E.1 and optional

sampling imply Ea

[
e−At∧τrnU(Xt∧τrn

)
]
≤ [U(a)/ψ(a)] · Ea

[
e−At∧τrnψ(Xt∧τrn

)
]

= U(a), t ≥ 0.

Using Fatou’s Lemma and lower semi-continuity of U(·), we obtain (3.8). Suppose now x ∈ (a, b).

By E.3, there exists an affine transformation L(·) , c1F (·)+c2 of F (·) such that L(·) ≥ U(·)/ϕ(·) on

[a, b) and L(x) = U(x)/ϕ(x). Using L(·), E.1 and E.2, we get U(x) ≥ Ex

[
e−At∧τa∧τrnU(Xt∧τa∧τrn

)
]
,

t ≥ 1 for every large n ≥ 1. Fatou’s Lemma and the lower semi-continuity of U(·) imply U(x) ≥
Ex

[
e−At∧τaU(Xt∧τa)

]
= Ex

[
e−AtU(Xt)1{t≤τa}

]
+ Ex

[
e−AτaU(Xτa)1{t>τa}

]
≡ I + II for every t ≥ 0.

By E.1, {e−Atψ(Xt); t ≥ 0} is a nonnegative continuous supermartingale. Optional sampling and

E.4 imply that II = [U(a)/ψ(a)] ·Ex

[
e−Aτaψ(Xτa)1{t>τa}

]
≥ [U(a)/ψ(a)] ·Ex

[
e−Atψ(Xt)1{t>τa}

]
≥

Ex

[
e−AtU(Xt)1{t>τa}

]
, t ≥ 0. Finally, U(x) ≥ I + II ≥ Ex

[
e−AtU(Xt)

]
, t ≥ 0. �

Proof of Proposition 3.3. The expression (1.2) trivially implies that V (·) is a nonnegative majo-

rant of h(·). To prove that it is also excessive forX killed at rate A(·), fix any compact [l, r] ⊆ I; and

denote by σε
l and σε

r the stopping times such that Ey

[
e
−Aσε

yh(Xσε
y
)1{σε

y<∞}
]
> V (y)− ε, y ∈ {l, r},

ε > 0; and introduce the stopping time

τ ε ,

τl + σε
l ◦ θτl

, on {τl < τr},

τr + σε
r ◦ θτr , on {τl > τr}.

We have V (x) ≥ Ex

[
e−Aτεh(Xτε)1{τε<∞}

]
≥ V (l) Ex

[
e−Aτl 1{τl<τr}

]
+V (r)Ex

[
e−Aτr 1{τl>τr}

]
−ε for

every x ∈ [l, r]. By letting ε ↓ 0, we obtain V (x) ≥ V (l) Ex

[
e−Aτl 1{τl<τr}

]
+V (r)Ex

[
e−Aτr 1{τl>τr}

]
,

x ∈ [l, r], which leads to (i) and (ii) of Proposition 3.1 because of (2.4). Next, suppose a is reflecting,

and define the stopping times

ρε ,

τr + σε
r ◦ θτr , on {τr <∞},

∞, on {τr = ∞}.

Similarly, V (x) ≥ Ex

[
e−Aρεh(Xρε)1{ρε<∞}

]
≥ V (r)ψ(x)/ψ(r) − ε for every x ∈ [a, r]. Letting

ε ↓ 0 proves (iv). The proof of (iii) is similar, and Proposition 3.1 implies that V (·) is excessive

for X killed at rate A(·). Let U : I 7→ [0,∞) be another excessive majorant of h(·). Then

U(x) ≥ Ex

[
e−AτU(Xτ )1{τ<∞}

]
≥ Ex

[
e−Aτh(Xτ )1{τ<∞}

]
, x ∈ I for every τ ∈ S. By taking

supremum over τ ∈ S, we obtain U(x) ≥ V (x), x ∈ I. �

Proof of Proposition 3.4. Define Ṽ (x) , ϕ(x)W (F (x)), x ∈ I. Then Ṽ (·) is a nonnegative

majorant of h(·) such that Ṽ (·)/ϕ(·) is F -concave on I\Br
Abs ≡ I. The latter also implies that
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Ṽ (·)/ψ(·) is G-concave on I\B`
Abs. Moreover, Ṽ (·)/ϕ(·) is nondecreasing if b is reflecting. Therefore,

Ṽ (·) ≥ V (·) by Proposition 3.3. Next, let W̃ (y) , (V/ϕ) ◦ F−1(y), y ∈ F (I). Then W̃ (·) is

a nonnegative concave majorant of H(·) on F (I), which is also nondecreasing if b is reflecting.

Therefore, W̃ (·) ≥ W (·) on F (I), and Ṽ (x) = ϕ(x)W (F (x)) ≤ ϕ(x)W̃ (F (x)) = V (x), x ∈ I.

Hence Ṽ (·) = V (·). �

3.1. The properties of the value function V (·). We shall need next three propositions to

study the existence of optimal stopping rules in Section 3.2. They are also of interest on their

own. Propositions 3.5 and 3.6 show that the value function V (·) inherits some of its important

properties from the reward function h(·). Proposition 3.7 gives further some geometric insight. Note

that excessive functions of a linear diffusion are in general discontinuous at absorbing boundaries.

Proposition 3.5. If a (resp., b) is natural, then limx↓a V (x)/ϕ(x) = `a (resp., limx↑b V (x)/ψ(x) =

`b), where `a and `b are the quantities defined by (3.6).

Proof. It is similar to the proof of Proposition 5.4 in Dayanik and Karatzas [9]. �

Proposition 3.6. The value function V (·) is continuous on I\ (B`
Abs∪Br

Abs), and V (a) ≤ limx↓a V (x)

if a is absorbing, and V (b) ≤ limx↑b V (x), if b is absorbing. If h(·) is continuous on I, then V (·) is

also continuous on I.

Proof. Since V (·)/ϕ(·) (V (·)/ψ(·), respectively) is F -concave on I\Br
Abs (G-concave on I\B`

Abs,

respectively), and ϕ(·) and ψ(·) are continuous on I, V (·) is continuous on int(I), and V (a) ≤
limx↓a V (x) if a ∈ I, and V (b) ≤ limx↑b V (x) if b ∈ I. If a ∈ I is reflecting, then V (a)/ψ(a) ≥
V (x)/ψ(x) for every x ≥ a, and V (a) ≥ limx↓a V (x). If b ∈ I is reflecting, then V (b)/ϕ(b) ≥
V (x)/ϕ(x) for every x ≤ b, and V (b) ≥ limx↑b V (x). Hence, V (·) is continuous on I\ (B`

Abs∪Br
Abs). If

h(·) is continuous on I, and the left-boundary a ∈ I is absorbing, one can show V (a) ≥ limx↓a V (x)

as in Dynkin and Yushkevich [14, pages 112-119]. �

In the remainder of this section, we shall assume that the reward function h(·) is continuous on

I. Therefore, the value function V (·) will be continuous on I by Proposition 3.6. Define

Γ , {x ∈ I : V (x) = h(x)} and C , I\Γ = {x ∈ I : V (x) > h(x)}.

Since both h(·) and V (·) are continuous, C is a countable union of open subintervals of I.

Proposition 3.7. Suppose (l, r) ⊆ C for some l, r ∈ I. Then

V (x)
ϕ(x)

=
V (l)
ϕ(l)

F (r)− F (x)
F (r)− F (l)

+
V (r)
ϕ(r)

F (x)− F (l)
F (r)− F (l)

, x ∈ [l, r], r /∈ Br
Abs, (3.9)

V (x)
ψ(x)

=
V (l)
ψ(l)

G(r)−G(x)
G(r)−G(l)

+
V (r)
ψ(r)

G(x)−G(l)
G(r)−G(l)

, x ∈ [l, r], l 6∈ B`
Abs. (3.10)

Moreover, V (x) = Ex

[
e−Aτl∧τrV (Xτl∧τr)

]
for every x ∈ [l, r].
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Proof. Let τ , inf{t ≥ 0 : Xt /∈ (l, r)} be the exit time of X from the interval (l, r). Note that

τ = τl ∧ τr if X0 ∈ (l, r), and τ = 0 if X0 ∈ I\(l, r). Define L : I 7→ R as

L(x) , Ex

[
e−AτV (Xτ )

]
=


V (l)

ϕ(r)ψ(x)− ψ(r)ϕ(x)
ϕ(r)ψ(l)− ψ(r)ϕ(l)

+ V (r)
ψ(l)ϕ(x)− ϕ(l)ψ(x)
ϕ(r)ψ(l)− ψ(r)ϕ(l)

, if x ∈ (l, r)

V (x), if x /∈ (l, r)

 ,

by using Proposition 2.3. Because V (·) is excessive for X killed at rate A(·), we have V (·) ≥ L(·)
on I. On the other hand, L(·) is also excessive for X killed at rate A(·), and the reverse inequality

follows, once we prove that L(·) majorizes h(·) on I. We already have L(x) = V (x) ≥ h(x),

x ∈ I\(l, r). Assume contrarily that δ , maxx∈[l,r]

[
h(x) − L(x)

]
/ϕ(x) > 0. Then L(x) + δϕ(x)

is an excessive majorant of h(·) on I, and L(x) + δϕ(x) ≥ V (x) ≥ h(x), x ∈ I. Since L(·) is

continuous, and h(y) − L(y) ≤ 0 for y ∈ {l, r}, δ is attained at some x∗ ∈ (l, r). Therefore,

h(x∗) = L(x∗) + δϕ(x∗) ≥ V (x∗) ≥ h(x∗), i.e., h(x∗) = V (x∗). Hence, x∗ ∈ Γ ∩ (l, r); but

this contradicts with (l, r) ⊆ C. Finally, the righthand sides of (3.9) and (3.10) are the same as

L(x)/ϕ(x) and L(x)/ψ(x), respectively, for x ∈ [l, r]. �

Proposition 3.8 (The smooth-fit principle). Let x ∈ int(I). Suppose that the left- and right-

derivatives D±
F h(x) of h(·) with respect to F (·) at x exist, and h(x) = V (x). Then

D−
F (h/ϕ)(x) ≥ D−

F (V/ϕ)(x) ≥ D+
F (V/ϕ)(x) ≥ D+

F (h/ϕ)(x). (3.11)

If DF h(x) and DF ϕ(x) also exist, then DF h(x) = DF V (x).

Proof. By the definition of F (·) and Corollary 2.1, D±
Fϕ(·) exist everywhere on int(I). Therefore,

D±
F (h/ϕ)(x) exist. For every a < l < x < r < b, we have

(h/ϕ)(x)− (h/ϕ)(l)
F (x)− F (l)

≥ (V/ϕ)(x)− (V/ϕ)(l)
F (x)− F (l)

≥ (V/ϕ)(r)− (V/ϕ)(x)
F (r)− F (x)

≥ (h/ϕ)(r)− (h/ϕ)(x)
F (r)− F (x)

,

since V (·) majorizes h(·) on I, and V (·)/ϕ(·) is F -concave on I\Br
Abs. As l and r tend to x, (3.11)

follows. If DF (h/ϕ)(x) also exists, then DF (V/ϕ)(x) exists and is equal to DF (h/ϕ)(x). �

3.2. Existence of an optimal stopping time. Let us define the stopping time

τ , inf{t ≥ 0 : Xt ∈ Γ}, and U(x) , Ex

[
e−Aτh(Xτ )1{τ<∞}

]
, x ∈ I. (3.12)

If there is an optimal stopping time τ∗ ∈ S, then it can be shown that τ is also optimal; see, e.g.,

El Karoui [15], Karatzas and Shreve [25, Appendix D]. Therefore, we shall investigate here the

necessary and sufficient conditions for the optimality of τ . Since V (·) ≥ U(·), the stopping time τ

is optimal if and only if U(x) ≥ V (x) for every x ∈ I.

Proposition 3.9. The function U(·) of (3.12) is continuous and excessive for X killed at rate A(·).
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Proof. Observe that U(x) = Ex

[
e−AτV (Xτ )1{τ<∞}

]
, x ∈ I. Since the value function V (·) is

excessive forX killed at rate A(·), the same for U(·) follows from the strong additivity of A(·), strong

Markov property of X, and the optional sampling theorem for nonnegative supermartingales. The

proof of the continuity of U(·) on I\(B`
Abs∪Br

Abs) is the same as that of V (·); see Proposition 3.6. If

a is absorbing, then U(a) = V (a). Since V (·) is excessive for X killed at rate A(·) and continuous,

we have U(a) = V (a) = limx↓a V (x) ≥ limx↓a Ex

[
e−AτV (Xτ )1{τ<∞}

]
= limx↓a U(x). Finally,

excessivity of U(·) implies limx↓a U(x) ≥ U(a). The proof of the continuity of U(·) at an absorbing

right-boundary point b is similar. �

Propositions 3.9 and 3.3 imply that U(·) ≥ V (·) if and only if U(·) majorizes the reward function

h(·) on I. By Proposition 3.10, the latter is always true, if either (i) I is closed and bounded, or

(ii) for every natural boundary of X, the corresponding limit `a or `b of (3.6) is zero.

Proposition 3.10. Suppose that the quantity `a (resp., `b) of (3.6) is zero, if the left-boundary

point a (resp., the right-boundary point b) is natural. Then the stopping time τ of (3.12) is optimal.

What happens if `a or `b is nonzero? Suppose that the left-boundary point a is natural and

`a > 0. Suppose also that (a, r) ⊆ C for some r ∈ int(I). Then Px(τ > τr) = 1, and U(x) =

Ex

[
e−AτV (Xτ )1{τ<∞}

]
≤ Ex

[
e−AτV (Xτ )1{τr<τ}

]
≤ Ex

[
e−AτrV (Xτr)1{τr<τ}

]
≤ V (r)ψ(x)/ψ(r),

x ∈ (a, r). Thus, limx↓a U(x)/ϕ(x) ≤ limx↓a[V (r)/ψ(r)] · [ψ(x)/ϕ(x)] = 0 since a is natural. Thus,

limx↓a U(x)/ϕ(x) = 0 < `a = limx↓a V (x)/ϕ(x) by Proposition 3.5, and U(x) 6= V (x) for some

x ∈ I. Therefore, τ cannot be an optimal stopping time. Similarly, if the right-boundary point b is

natural with `b > 0, and (l, b) ⊆ C for some l ∈ int(I), then τ cannot be an optimal stopping time.

Our next result, however, shows that these are the only cases without an optimal stopping time.

Proposition 3.11. Suppose that at least one of the boundary points is natural with nonzero limit

`a or `b. The stopping time τ of (3.12) is optimal, if and only if

(i) {r ∈ I : (a, r) ⊆ C} = ∅ if the left-boundary point a is natural with `a > 0, and

(ii) {l ∈ I : (l, b) ⊆ C} = ∅ if the right-boundary point b is natural with `b > 0.

Proof of Proposition 3.10. It is enough to prove U(·) ≥ h(·). Assume on the contrary that

δ , sup
x∈I

h(x)− U(x)
ψ(x) + ϕ(x)

> 0. (3.13)

We claim that δ is attained at some x∗ ∈ I. This is clear from the continuity of h(·), U(·),
ψ(·) and ϕ(·) on I, if both boundary points are contained in I. If a is natural, then limx↓a[h(x)−
U(x)]/[ψ(x)+ϕ(x)] ≤ limx↓a h

+(x)/ϕ(x) = `a = 0. If b is natural, then limx↑b[h(x)−U(x)]/[ψ(x)+

ϕ(x)] ≤ limx↑a h
+(x)/ψ(x) = `b = 0. Therefore, the function (h(x)−U(x))/(ψ(x)+ϕ(x)) vanishes,

or becomes negative near natural boundaries, and we can still find some x∗ ∈ I where δ is attained.

Define U(x) , U(x) + δ[ψ(x) + ϕ(x)], x ∈ I. According to Proposition 3.1, ψ(·) and ϕ(·) are

excessive for X killed at rate A(·). Therefore, U(·) is an excessive majorant of h(·) on I. By

Proposition 3.3, U(·) ≥ V (·). In particular, h(x∗) ≤ V (x∗) ≤ U(x∗) = U(x∗) + δ[ψ(x∗) + ϕ(x∗)] =
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h(x∗). This implies x∗ ∈ Γ, and U(x∗) = h(x∗); equivalently δ = 0, which contradicts with

(3.13). �

Proof of the sufficiency in Proposition 3.11. Note that the same proof of Proposition 3.10

will work if we can show that δ of (3.13) would be attained in I, should it be strictly positive.

By means of (i) and (ii), we shall prove that U(·) ≥ h(·) in some neighborhood of each natural

boundary with positive limit, `a or `b. Thus, {x ∈ I : h(x)−U(x) > 0} should still be contained in

a closed and bounded subinterval of I, and δ should be attained in I, if it were positive. Suppose

that the left-boundary point a is natural with `a > 0, and there is no r ∈ I such that (a, r) ⊆ C.

Therefore, there exists a sequence (an)n≥1 ⊆ Γ, strictly decreasing to a. For every x < a1 in I,

there are two cases. Case I: x ∈ Γ. Then U(x) = V (x) ≥ h(x). Case II: x ∈ C. Because C is open

and an < x < a1 for some n ≥ 1, x is contained in a subinterval (α, β) ⊆ C for some α, β ∈ Γ.

Then Proposition 3.7 implies that U(x) = Ex

[
e−Aτα∧τβV (Xτα∧τβ

)
]

= V (x) ≥ h(x). Hence, for some

a1 ∈ I, U(x) = V (x) ≥ h(x) for every x < a1 if a is natural with `a > 0. Similarly, (ii) guarantees

that, for some b1 ∈ I, U(x) = V (x) ≥ h(x) for every x > b1 if b is natural with `b > 0. �

4. Examples

Examples 4.1, 4.2, and 4.4 are from Beibel and Lerche [2]. Example 4.3 is a modification of

Example 4.2 and turns out to have a nontrivial two-sided optimal stopping region.

4.1. Standard Brownian motion: State-dependent discounting. LetX be a standard Brow-

nian motion. For some constants r > 0 and α > 0, consider the optimal stopping problem

V (x) , sup
τ≥0

Ex

[
exp

{
−r

∫ τ

0
X2

t dt

} (
X+

τ

)α1{τ<∞}

]
, x ∈ R, (4.1)

with the continuous additive functional A(t) , r
∫ t
0 X

2
sds, t ≥ 0 and reward function h(x) , (x+)α,

x ∈ R. First, we shall determine the functions ψ(·) and ϕ(·) of (2.2). Beibel and Lerche [2] notice

that the nonnegative function

φ(x) , e−x2/4 25/4

Γ(1/2)

∫ ∞

0
ext−t2/2 1√

t
dt, x ∈ R

satisfies φ′′(x) = 1
4x

2φ(x);

φ(0) = 1, lim
x→−∞

φ(x) = 0, lim
x→∞

φ(x)
√
x

ex2/4
= K (4.2)

for some constant K > 0, and the function u(x) , φ
(
(8r)1/4x

)
, x ∈ R, solves 1

2u
′′(x) = rx2u(x).

Since φ(·) is also bounded on (−∞, y] for every y ∈ R, the process {e−Atu(Xt); t ≥ 0} is a positive

local martingale; by optional sampling, E0

[
e−Aτy

]
= 1/u(y) and Ex

[
e−Aτ0

]
= u(x), x ≤ 0 ≤ y.

Therefore, ψ(x) = u(x), x ∈ R if c = 0 in (2.2).

On the other hand, the positive function v(x) , u(−x), x ∈ R satisfies 1
2v

′′(x) = rx2v(x), x ∈ R.

Since limx→∞ v(x) = limx→−∞ u(x) = 0 by (4.2), it is bounded on every [y,∞), y ∈ R; therefore,

{e−Atv(Xt); t ≥ 0} is a positive local martingale. By optional sampling, we have E0

[
e−Aτx

]
=
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1/u(x) and Ey

[
e−Aτ0

]
= u(y), x ≤ 0 ≤ y. Therefore, ϕ(x) = v(x) = φ

(
− (8r)1/4x

)
, x ∈ R if c = 0

in (2.2).

The boundaries of the state-space I = (−∞,∞) are natural. By (4.2), we have

`−∞ , lim
x→−∞

h+(x)
ϕ(x)

= 0, `∞ , lim
x→∞

h+(x)
ψ(x)

= K · lim
x→∞

xα

√
(8r)1/4x

e(8r)1/2x2/4
= 0.

By Propositions 3.2 and 3.10, the value function V (·) of (4.1) is finite, and the stopping time τ

(a)

α > 1

α ≤ 1

h(·)

0 1 0 1 y0 z0z0

W (·) W (·)
H(·)

H(·)

Lz0(·) Lz0(·)

0

(b) 0 < α ≤ 1 (c) α > 1

Figure 1. (Brownian Motion: State–dependent discounting) The sketch of

(a) the reward function h(·), the function H(·), W (·) if (b) 0 < α ≤ 1, and (c) α > 1.

of (3.12) is optimal. By Proposition 3.4, we have V (x) = ϕ(x)W (F (x)), x ∈ R, where F (·) =

ψ(·)/ϕ(·), and W (·) is the smallest nonnegative concave majorant of H(y) , (h/ϕ) ◦ F−1(y),

y ∈ [0,∞). The function H(·) vanishes on [0, 1] and is twice-differentiable everywhere on (0,∞)

except y = 1. If 0 < α ≤ 1, then it is strictly concave on [1,∞). If α > 1, then it is convex on

[1, y0] and concave on [y0,∞) with y0 , F
(
[α(α− 1)/2r]1/4

)
> 1 (cf. Figure 1(b,c)). In both cases,

there is unique z0 > 1 such that the line Lz0(·), tangent to H(·) at z0, passes through the origin.

This point is the unique solution z0 > 1 of H(z0)/z0 = H ′(z0). Therefore,

W (y) =

Lz0(y), 0 ≤ y ≤ z0

H(y), y ≥ z0

 and V (x) =


h(x0)

F (x)
F (x0)

, x ≤ x0

h(x), x > x0

 ,

where x0 , F−1(z0) > 0 is unique solution of x0ψ
′(x0) = αψ(x0). The optimal stopping region is

Γ , {x ∈ R : V (x) = h(x)} = [x0,∞), and the stopping time τ = inf{t ≥ 0 : Xt ≥ x0} is optimal.

4.2. Brownian motion: Discounting with respect to local time. Let X be a standard

Brownian motion, and L be its local time at zero, which is a continuous additive functional of X.

Consider the optimal stopping problem

V (x) = sup
τ≥0

Ex

[
e−rLτ

(
X+

τ

)α1{τ<∞}
]
, x ∈ R
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(a)

α > 1

α ≤ 1

h(·)

0 1 0 1z0

W (·)

H(·)

Lz0(·)

0

W (·)

H(·)

1/r 1/r

(c) α = 1(b) 0 < α < 1

Figure 2. (Brownian motion: Discounting with respect to the local time

at zero) The sketch of (a) the reward function h(·), and the functions H(·) and

W (·) when (b) 0 < α < 1, and (c) α = 1.

with the reward function h(x) = (x+)α, x ∈ R, where r > 0 and α > 0 are constant. Because L

increases only when X hits 0, we have Ex[e−rLτ0 ] = 1, and we know from Borodin and Salminen

[5, p. 199] that E0[e−rLτy ] = 1/(1 + r|y|) for every y ∈ R. Therefore,

ψ(x) =

 1, x ≤ 0

1 + rx, x > 0

 and ϕ(x) =

 1− rx, x ≤ 0

1, x > 0


if we take c = 0 in (2.2). Both boundaries of the state-space I = (−∞,∞) are natural. Since

`−∞ , lim
x→−∞

h+(x)
ϕ(x)

= 0, and, `∞ , lim
x→∞

h+(x)
ψ(x)

=


∞, α > 1

1/r, α = 1

0, α < 1

 ,

Propositions 3.2 and 3.10 imply that
V ≡ ∞, if α > 1

V <∞, and an optimal stopping time may not exist, if α = 1

V <∞, and τ of (3.12) is optimal, if 0 < α < 1

 .

(By using Proposition 3.10, we shall show below that no optimal stopping rule exists when α = 1).

In the remainder of this subsection, we shall assume 0 < α ≤ 1. Then the value function is

V (x) = ψ(x)W (F (x)), where F (x) = ψ(x)/ϕ(x) = (1 − rx)−11(−∞,0](x) + (1 + rx)1(0,∞)(x),

and W (·) is the smallest nonnegative concave majorant of H(y) , (h/ϕ) ◦ F−1(y), y ∈ (0,∞).

The function H(·) vanishes on (−∞, 1] and is twice-differentiable everywhere on (1,∞), strictly

increasing and concave on [1,∞) (cf. Figure 2).

Suppose 0 < α < 1. Then H(·) is strictly concave on [1,∞), and there exists a unique z0 > 1

such that the line Lz0(·), tangent to H(·) at z0, passes through the origin. The point z0 is the

unique solution of the equation H(z0)/z0 = H ′(z0). The smallest nonnegative concave function
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W (·) of H(·) and the value function become

W (y) =


H(z0)
z0

y, 0 ≤ y ≤ z0

H(y), y > z0

 , and V (x) =



xα
0

1 + rx0
, x ≤ 0

xα
0

1 + rx

1 + rx0
, 0 < x ≤ x0

xα, x > x0


,

thanks to Proposition 3.4, where x0 , F−1(z0) = α/[r(1−α)] > 0. The optimal stopping region is

Γ = [x0,∞), and τ = inf{t ≥ 0 : Xt ≥ x0} is an optimal stopping time.

If α = 1, then H(y) = (y − 1)+/r, y ≥ 0 (cf. Figure 2(c)). Therefore, the smallest nonnegative

concave majorant of H(·) on [0,∞) becomes W (y) = y/r, y ≥ 0, and Proposition 3.4 implies

V (x) = ϕ(x)W (F (x)) = (1/r) + x+. Since C , {x ∈ R : V (x) > h(x)} = R and `∞ > 0, there is

no optimal stopping time by Proposition 3.11.

Observe that V (x) = V (0), x ≤ 0 in all cases. This is intuitively clear since the discounting does

not start before the process reaches the origin, which happens with probability one.

4.3. Continuation. Let us replace the reward function in Example 4.2 with h(x) , |x|β1(−∞,0)(x)+

xα1[0,∞)(x) for some constants 0 < β ≤ α < ∞, and consider the optimal stopping problem

V (x) , supτ∈S Ex

[
e−rLτh(Xτ )1{τ<∞}

]
, x ∈ R. The functions ψ(·), ϕ(·) and F (·) do not change;

we have

`−∞ =


0, 0 < β < 1

1/r, β = 1

∞, β > 1

 and `∞ =


0, 0 < α < 1

1/r, α = 1

∞, α > 1

 .

The value function V (·) is infinite everywhere by Proposition 3.2 when α > 1 and/or β > 1.

Otherwise, it is finite, and V (x) = ϕ(x)W (F (x)) by Proposition 3.4, where W (·) is the smallest

nonnegative concave majorant of H(y) , (h/ϕ) ◦ F−1(y), y ∈ [0,∞).

If 0 < β ≤ α < 1, then H(·) is strictly concave on [0, 1] and [1,∞), strictly increasing on [1,∞),

and H(0+) = H(1) = 0 (Figure 3(a)). One can therefore find two unique numbers 0 < z1 < 1 <

z2 <∞ such that H ′(z1) = [H(z2)−H(z1)]/[z2−z1] = H ′(z2). If L(·) is the line tangent to H(·) at

z1 and z2, then W (·) coincides with L(·) on (z1, z2) and with H(·) everywhere else. If xi , F−1(zi),

i = 1, 2, then the value function V (·) is given by

V (x) =


ϕ(x)

[
h(x1)
ϕ(x1)

· F (x2)− F (x)
F (x2)− F (x1)

+
h(x2)
ϕ(x2)

· F (x)− F (x1)
F (x2)− F (x1)

]
, x ∈ (x1, x2)

h(x), x /∈ (x1, x2)

 , (4.3)

and x1 < 0 < x2 solve

−β
r
(−x1)β−1 + (1− β)(−x1)β =

(1− rx1)xα
2 − (−x1)β

(1 + rx2)(1− rx1)− 1
= αxα−1

2 .

The stopping time τ , inf{t ≥ 0 : Xt /∈ (x1, x2)} is optimal by Proposition 3.10.
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Lz0(·)

101

(a) 0 < β ≤ α < 1

W (·)

H(·)

z20 z1

(b) 0 < β < α = 1

0 1

1/r−1/r

H(·)

W (·)

(c) α = β = 1

1/r

1/r
1/r

1/r

W (·)

H(·)

L(·)

z0

Figure 3. (Example 4.2 continued) The sketch of functionsH(·) andW (·) when

(a) 0 < β ≤ α < 1, (b) 0 < β < α = 1, and (c) α = β = 1.

If 0 < β < α = 1, then H(·) is strictly concave on [0, 1], and it is a straight line with slope

1/r on [1,∞). Let z0 be the unique solution of H ′(z) = 1/r, 0 < z ≤ 1, and Lz0(·) be the

tangent line of H(·) at z0 (Figure 3(b)). The function W (·) is equal to H(·) on [0, z0] and to

Lz0(·) on [z0,∞). Moreover, x0 , F−1(z0) < 0 solves 1 = |x|β−1
(
β + r(1 − β)|x|

)
, and we have

V (x) = |x ∧ x0|β + (x− x0)+/r, x ∈ R. Since Γ , {x ∈ R : V (x) = h(x)} = (−∞, x0] and `∞ > 0,

an optimal stopping time does not exist according to Proposition 3.11.

Finally, if α = β = 1, then H(y) = |y − 1|/r, and W (y) = (1/r)(1 + y), y ≥ 0 (Figure 3(c)).

Therefore V (x) = ϕ(x)W (F (x)) = (2/r) + |x|, x ≥ 0. Since Γ , {x ∈ R : V (x) = h(x)} = ∅ and

`∓ > 0, no stopping time is optimal according to Proposition 3.11.

4.4. Geometric Brownian motion with reflecting boundary. LetX be a geometric Brownian

motion in I = [1,∞) with dynamics dXt = Xt(µdt+σdBt), X0 ≥ 1 for constant µ, σ ∈ R. Assume

that the left-boundary 1 of the state-space I is instantaneously reflecting. Consider the optimal

stopping problem

V (x) , sup
τ≥0

Ex

[
e−βτXα

τ 1{τ<∞}

]
, x ≥ 1

with the reward function h(x) = xα, x ≥ 1, where α ≥ 0 and β ≥ 0 are constant. Note that

At = βt, t ≥ 0 in (1.2).

Let u : I → R (resp., v : I → R) be a nondecreasing (resp., nonincreasing) solution of Au = βu,

u′(1) = 0 (resp., Av = βv, v(∞) = 0), where Au(x) , (1/2)σ2x2u′′(x)+µxu′(x) is the infinitesimal

generator of X. Then ψ(·) and ϕ(·) of (2.2) are positive multiples of u(·) and v(·), respectively; see

also Borodin and Salminen [5, II.1.7-10].

The functions w1(x) = xη1 and w2(x) = xη2 are decreasing and increasing solutions of Aw = βw,

respectively, where η1 < 0 < η2 are the roots of σ2m2 − (σ2 − 2µ)m− 2β = 0. Then the functions

u(x) , w2(x) − [w′2(1)/w′1(1)]w1(x) = xη2 − (η2/η1)xη1 and v(x) , w1(x), x ≥ 1 have the desired

boundary behaviours: u′(0) = v(∞) = 0. We shall set

ψ(x) , −η1 u(x) = η2x
η1 − η1x

η2 , and ϕ(x) , v(x) = xη1 , x ≥ 1
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α < 1

(b) 0 < α < η2

W (·)

(c) α = η2

H(·) −η2
η1

− 1
η1

H(·)

W (·)
H(y0)

(a)

− 1
η2−η1

− 1
η2−η1 y0 00

α > 1

1

h(·)
1

η2−η1

1
η2−η1

Figure 4. (Geometric Brownian motion with reflecting boundary) The

sketch of (a) the reward function h(·), and the functions H(·) and W (·) when (b)

0 < α < η2, and (c) α = η2. In (b), H(·) is strictly concave on [−(η2 − η1)−1, 0]

with unique maximum at −(η2 − η1)−1 < y0 < G(+∞). Therefore, W (·) remains

constant at level H(y0) on [−(η2 − η1)−1, y0], and coincides with decreasing and

concave H(·) on [y0, 0]. In (c), H(·) is an increasing straight line. Since W (·) has to

be nonincreasing, it is the flat line touching H(·) at y = 0.

for convenience. The right-boundary ∞ of the state-space I is natural, and

`∞ , lim
x→∞

h+(x)
ψ(x)

= lim
x→∞

xα

η2xη1 − η1xη2
=


∞, α > η2

− η1, α = η2

0, α < η2

 .

Therefore, Propositions 3.2 and 3.10 imply that
V ≡ ∞, α > η2

V <∞, and an optimal stopping time may not exist, α = η2

V <∞, and τ of (3.12) is an optimal stopping time, α < η2

 .

(Using Proposition 3.11, we prove below that there is no optimal stopping time when α = η2.)

Suppose that 0 < α ≤ η2. If we define G(x) , −ϕ(x)/ψ(x), x ≥ 1 and H(y) , (h/ψ) ◦ G−1(y),

y ∈ [G(1), G(∞)] with G(1) = −1/(η2 − η1), G(∞) = 0, and W (·) is the smallest nonnegative,

nonincreasing, concave majorant of H(·) on [G(1), G(∞)], then V (x) = ψ(x)W (G(x)), x ≥ 1 by

Remark 3.4.

If 0 < α < η2, then it is increasing on [G(1), y0], decreasing on [y0, G(∞)] and concave on

[G(1), G(∞)], where y0 , G(x0), and x0 , {η2(α− η1)/[η1(α− η2)]}1/(η2−η1); see Figure 4(b). By

Remark 3.4 and Proposition 3.10, we have

W (y) =

H(y0), G(1) ≤ y < y0

H(y), y0 ≤ y ≤ G(∞)

 , V (x) =


xα

0

η2x
η1 − η1x

η2

η2x
η1
0 − η1x

η2
0

, 1 ≤ x < x0

xα, x ≥ x0

 ;
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the optimal stopping region is Γ , {x ≥ 1 : V (x) = h(x)} = [x0,∞), and the stopping time

τ = inf{t ≥: Xt ≥ x0} is optimal. If α = η2, then H(·) is a straight line with positive slope −η2/η1,

see Figure 4(c); therefore, W ≡ −1/η1 and V (x) = ψ(x)W (G(x)) = xη2 − (η2/η1)xη1 , x ≥ 1. Since

`∞ > 0 and C , {x ≥ 1 : V (x) > h(x)} = [1,∞), there is no optimal stopping rule in this case by

Proposition 3.11.

Beibel and Lerche [2] discuss a special case, where µ < 0, β , r + µ and α , 1, in order to

reproduce the price of the Russian option and the optimal exercise policy.

5. The connection with Dynkin’s concave characterization of excessive functions

In this last section, we would like to recall Dynkin’s concave characterizations of excessive func-

tions and show their difference from ours. E. Dynkin gives two characterizations. In the first one, a

one-dimensional diffusion X killed at some time ζ is regular on a closed state space I = [a, b]; in our

setting, this means that both a and b can only be instantaneously reflecting; see Proposition 5.1.

In the second characterization, the end-points a and b are excluded from the state space; namely,

they are both natural in our setting; see Proposition 5.2. E. Dynkin did not study the cases where

the behavior of the process on the left and right boundaries of the state space are different.

Proposition 5.1 (Dynkin [13, Volume II, p. 146, Theorem 15.10]). Suppose that the process X

killed at rate A(·) is regular on the state space I = [a, b]. Then a function U : [a, b] 7→ [0,∞) is

excessive for this process; namely, (3.1) is satisfied, if and only if

(i) the mapping x 7→ U(x)/π(x) is p(·)-concave on x ∈ [a, b], and

(ii) the boundary conditions

D−
p (U/π)(b) ≥ −1− α2

α2
(U/π)(b) and D+

p (U/π)(a) ≤ 1− α1

α1
(U/π)(a) (5.1)

are satisfied; here, p(x) , Px{τa > τb | τa ∧ τb < ζ} is the intrinsic scale function, and

π(x) , Px{τa ∧ τb < ζ}, α1 , Pa{τb < ζ} > 0, α2 , Pb{τa < ζ} > 0.

If Dynkin’s first characterization is compared with Proposition 3.1, one notices that the roles of

the functions (ψ, F ) and (ϕ,G) are now being played by (π, p) defined above. To calculate π(·) and

p(·), one still needs the harmonic functions ψ(·) and ϕ(·), and Lemma 2.3 gives

π(x) = Ex

[
exp{−Aτa∧τb

}1{τa∧τb<∞}
]

=
ψ(x)ϕ(a)− ψ(a)ϕ(x) + ψ(b)ϕ(x)− ψ(x)ϕ(b)

ψ(b)ϕ(a)− ψ(a)ϕ(b)

p(x) = Ex

[
exp{−Aτb

}1{τa>τb}
]
/π(x) =

ψ(x)ϕ(a)− ψ(a)ϕ(x)
ψ(x)ϕ(a)− ψ(a)ϕ(x) + ψ(b)ϕ(x)− ψ(x)ϕ(b)

.

(5.2)

It is not obvious if simple algebra is enough to show that p-concavity of U(·)/π(·) is equivalent to

F -concavity of U(·)/ϕ(·), which must be the case since both propositions characterize the same

objects. Moreover, unlike the boundary conditions in (3.5), which are equivalent by Remark 3.4 to



OPTIMAL STOPPING WITH RANDOM DISCOUNTING 21

(iii) and (iv) of Proposition 3.1, boundary conditions in (5.1) are not simple, since by (2.3)

α1 = Ea[exp{−Aτb
}1{τb<∞}] =

ψ(a)
ψ(b)

and α2 = Eb[exp{−Aτa}1{τa<∞}] =
ϕ(b)
ϕ(a)

are strictly between 0 and 1, and depend both end-points, a and b, of the state space.

However, a direct connection can be established between our and Dynkin’s characterization if

one applies first a suitable h-transformation. Let us define a new probability measure by

Pϕ
x(A) =

1
ϕ(x)

Ex

[
1{ζ>t}ϕ(Xt)1A

]
, A ∈ Ft ∩ {ζ > t}. (5.3)

Under Pϕ
x , the process X is still a diffusion killed at time ζ, and (5.3) also holds when t is replaced

with an F-stopping time T ; see, e.g., Chung and Walsh [7, Chapter 11], Borodin and Salminen [5,

pp. 33-34]; therefore, new characteristics of the process become

πϕ(x) , Pϕ
x{ζ > τa ∧ τb} =

1
ϕ(x)

Ex

[
1{ζ>τa∧τr}ϕ(Xτa∧τb

)
]

=
1

ϕ(x)
Ex

[
exp{−Aτa∧τb

}ϕ(Xτa∧τb
)1{τa∧τb<∞}

]
= 1 by Lemma 2.1,

pϕ(x) , Pϕ
x{τa > τb | ζ > τa ∧ τb} = Pϕ

x{τa > τb, ζ > τa ∧ τb}

=
1

ϕ(x)
Ex

[
1{ζ>τa∧τb}ϕ(Xτa∧τb

)1{τa>τb}
]

=
ϕ(b)
ϕ(x)

Ex

[
e−Aτb 1{τa>τb}

]
=
ϕ(b)
ϕ(x)

· ψ(x)ϕ(a)− ψ(a)ϕ(x)
ψ(b)ϕ(a)− ψ(a)ϕ(b)

=
F (x)− F (a)
F (b)− F (a)

by Lemma 2.3,

αϕ
1 , Pϕ

a{τb < ζ} =
1

ϕ(a)
Ea

[
1{ζ>τb}ϕ(Xτb

)
]

=
1

ϕ(a)
Ea

[
e−Aτbϕ(Xτb

)1{τb<∞}
]

=
ϕ(b)
ϕ(a)

Ea

[
e−Aτb 1{τb<∞}

]
=
ϕ(b)
ϕ(a)

· ψ(a)
ψ(b)

=
F (a)
F (b)

by (2.3),

αϕ
2 , Pϕ

b {τa < ζ} =
1

ϕ(b)
Eb

[
1{ζ>τa}ϕ(Xτa)

]
=

1
ϕ(b)

Eb

[
e−AτaϕXτa1{τa<∞}

]
=
ϕ(a)
ϕ(b)

Eb[e−Aτa 1{τa<∞}] =
ϕ(a)
ϕ(b)

· ϕ(b)
ϕ(a)

= 1 by (2.3) again.

Namely, under probability measure Pϕ the process X is almost surely never killed on (a, b]; the

right boundary b is reflecting, and the intrinsic scale function is an affine transformation of F (·) =

ψ(·)/ϕ(·).
It is easy to check that a function U(·) is P-excessive for the killed process X if and only if

Uϕ(·) , U(·)/ϕ(·) is Pϕ-excessive for the same process. Therefore, Proposition 5.1 implies that a

function U(·) is P-excessive for the killed process X if and only if (i) the function Uϕ(·)/πϕ(·) ≡
U(·)/ϕ(·) is concave with respect to F (·), and (ii) the boundary conditions

D−
F (U/ϕ)(b) ≥ 0 and D+

F (U/ϕ)(a) ≤ (U/ψ)(a) (5.4)

are satisfied, which are obtained from (5.1) by substituting for U(·) the function Uϕ(·) ≡ U(·)/ϕ(·)
and for π(·), p(·), α1, α2 the Pϕ-characteristics πϕ(·) ≡ 1, pϕ(·), αϕ

1 , α
ϕ
2 = 1, calculated above ex-

plicitly. Note that the first inequalities of (3.5) and (5.4) are the same, and if we show that
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the second inequalities are also identical, then this will complete by Remark 3.2 the proof of

equivalence between Proposition 3.1 and Proposition 5.1 in this special case. However, since

G(·) = −ϕ(·)/ψ(·) = −1/F (·) ≤ 0, we have D+
FG = D+

F (−1/F ) = 1/F 2 = G2, (D+
FG)(D+

GF ) = 1,

D+
F

(
U

ϕ

)
= (D+

FG)D+
G

(
U

ψ
F

)
= (D+

FG)
[
D+

G

(
U

ψ

)
F +

U

ψ
D+

GF

]
= (−G)D+

G

(
U

ψ

)
+
U

ψ
;

therefore, the second inequality in (5.4) becomes −G(a)D+
G(U/ψ)(a)+(U/ψ)(a) ≤ (U/ψ)(a), equiv-

alently D+
G(U/ψ)(a) ≤ 0, which is the same as the second inequality in (3.5).

The concave characterization of excessive functions in terms of π(·) and p(·) is very illuminating,

but computing these functions by using (5.2) makes this characterization less useful than that is

given by Proposition 3.1.

Dynkin’s second concave characterization is for one-dimensional killed diffusions X that are

regular in an open interval I = (a, b) and is quite close to ours in Proposition 3.1. Note that

Dynkin’s result below does not provide information at accessible boundary points (absorbing or

reflecting) and when the diffusion’s behavior at left and right boundaries are different (natural,

absorbing, reflecting).

Proposition 5.2 (Dynkin [13, Volume II, pp. 149, 155, Theorems 16.1, 16.4]). Let X be a one-

dimensional continuous strong Markov process regular in (a, b), and q1(·) > 0 and q2(·) be any two

linearly independent harmonic functions. Then q2(·)/q1(·) is strictly increasing.

A nonnegative function U(·) is excessive for X on (a, b); i.e., (3.1) holds with τ = inf{t ≥
0; Xt /∈ (l, r)} for every [l, r] ⊂ (a, b), if and only if U(·)/q1(·) is concave with respect to q2(·)/q1(·).

Proposition 5.2 suggests that any pair of linearly independent positive harmonic functions q1(·)
and q2(·) may play the roles of ϕ(·) and ψ(·) in Propositions 3.2, 3.4, 3.5, 3.8, 3.10, and 3.11.

Indeed, for every such pair the function, q1(·)/q2(·) is always strictly monotone, and therefore, it is

also invertible. In this generality, if the boundaries can be handled in a similar fashion that we did

with ϕ(·) and ψ(·), Dynkin’s interesting observation can be very useful in applications to optimal

stopping problems, especially when certain harmonic functions are easier to calculate than others,

or the transformations (h/ϕ) ◦ F−1 and (h/ψ) ◦ G−1 are easier to calculate, plot, or analyze for

their smallest nonnegative concave majorants if ϕ(·), ψ(·) are replaced with q1(·), q2(·). E. Dynkin

did not investigate the important implications of excessive functions’ concave characterizations for

the solution of optimal stopping problems (except the beautiful treatment of standard Brownian

motion case in [14]), and in this paper we tried to fill this gap.
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