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Abstract

We consider an assemble–to–order (ATO) system: Components are made to stock by pro-

duction facilities with finite capacities, and final products are assembled only in response to

customers’ orders. The key performance measures in this system, such as order fill rates, in-

volve evaluation of multivariate probability distributions, which is computationally demanding

if not intractable. The purpose of this paper is to develop computationally efficient perfor-

mance estimates. We examine several ideas scattered in diverse literatures on approximations

for multivariate probability distributions, and determine which approach is most effective in the

ATO application. To do so, we first tailor different approximation ideas to the ATO setting to

derive performance bounds, and then compare these bounds theoretically and numerically. The

bounds also allow us to make connections between capacitated and uncapacitated ATO systems

and gain various insights.
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1 INTRODUCTION

This paper is concerned with the performance evaluation techniques for the increasingly popular

assemble–to–order (ATO) manufacturing systems. There are multiple components and multiple

products. Inventories are kept only at the component level; final products are assembled in response

to customer orders. Such systems are considered to be ideal for realizing mass customization,

because they fully enjoy the benefit of risk pooling at the component level and postpone product

differentiation to the latest point in the entire production process. The performance measure of

primary interest to management is the order fill rate with a time window, which is the probability of

fulfilling a customer order within a prespecified time window, under any given component base-stock

levels.

We assume that interarrival times of customer orders are independently and identically dis-

tributed. There is a fixed probability that a customer requests any given product. The production

of each component is governed by a dedicated production facility with exponential service times,

following a base-stock policy. Since each customer order (a final product) typically consists of sev-

eral components and the product can not be assembled unless all those components are available,

the order fill rate involves evaluation of multivariate probability distributions, which is computa-

tionally challenging. The problem is further complicated by the fact that different products require

different but overlapping sets of components.

When the interarrival and production times are exponentially distributed, which we call the

Markovian model, Song, Xu and Liu (1999) present an exact approach for performance evaluation.

The method, however, is computationally efficient only for small to medium sized problems. The

goal of this paper is to develop easier-to-compute performance estimates to overcome the complexity

of the exact approach. For exponentially distributed interarrival times but generally distributed

production times, Glasserman and Wang (1998) demonstrate an asymptotic linear relationship

between inventory and delivery leadtime at high service level. The current paper has a different

focus and uses different approaches. We aim to approximate the service level in all ranges, rather

than only at high service level. We refer the reader to the above mentioned papers and Song and

Zipkin (2001) for other related literature.

The computational complexity of multivariate probability distributions is well known. Several

approaches have been developed in the literature of multivariate statistics. The basic idea of these

approaches is to develop bounds that involve solving smaller problems than the original one. If

we can develop bounds like these, then for the smaller problems we can apply the results in Song,

Xu and Liu. In addition, there has been some recent development in performance bounds in the

theory of queues with signals. But can all these approaches apply to our setting? If so, which one
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is better? These are the questions we aim to answer.

We first tailor different approximation ideas that spread over diverse literatures into the capac-

itated ATO setting to derive performance bounds, and then compare these bounds theoretically

and numerically. As such, the work requires several different kinds of techniques, such as stochas-

tic comparison and queueing network analysis. It also requires extensive computation, including

simulation.

The conclusions of our study are clear, which are summarized in the last section. The numerical

results also shed light on various managerial insights, such as the quantitative change in system per-

formance as product structure changes. Since the study clarifies the effectiveness of different ideas,

we hope the results here will facilitate both real implementations and future research developments.

Throughout the derivation of the bounds, whenever it applies, we also mention the parallel

development of similar bounds in the literature on uncapacitated ATO systems (i.e., systems with

i.i.d./ leadtimes). We further discuss the connections between the capacitated and uncapacitated

ATO systems in Section 6.

The rest of the paper is organized as follows. Section 2 presents a simple ATO system with

Markovian structures. We call this the basic model. Section 3 develops several lower bounds

for the performance measures of the basic model. These include 1) setwise lower bounds based

on the dependence structure of the system; 2) distribution–free Bonferroni–type lower bounds

commonly used to bound multivariate distributions (see, e.g., Costigan 1996); 3) setwise–Bonferroni

combination lower bounds which combine the setwise and Bonferroni lower bounds to overcome

the degeneracy problem (i.e., the null probability as a lower bound) which sometimes occurs in the

Bonferroni bounds (also see Costigan 1996); and 4) the signal lower bound based on the study of

quasi–reversibility of queueing network with signals (Chao, Miyazawa and Pinedo 1999). We show

analytically that the setwise bounds are tighter than the signal bound. We also develop several

algorithms to improve the computational efficiency of several bounds.

Section 4 develops several upper bounds for the performance measures of the basic model. These

bounds are setwise upper bounds and Frechet–type upper bounds, which use a lower dimensional

distribution to bound a higher dimensional distribution (Joe 1997). We show that the setwise

bounds are tighter than the Frechet bounds of the same order.

Section 5 reports the numerical results. For small– to medium–size systems with unit-demand

and Markovian structures, the bounds are compared against the exact solutions developed in Song,

Xu and Liu. Otherwise the bounds are compared against the simulation results. Section 6 discusses

extensions to non-Markovian systems and connections with uncapacitated ATO systems. Finally,

Section 7 summarizes the key findings.
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2 THE BASIC MODEL

Denote by {1, ..., J} the component indices. For any subset K of Ω = {1, ..., J}, a product is said

to be of type–K if it is composed of a unit of each component in K. The overall demand process,

{D(t), t ≥ 0}, forms a Poisson process with arrival rate λ. There is a fixed probability, qK , that a

demand is of type–K (i.e., requesting product K). The type–K demand process will be denoted

by {DK(t), t ≥ 0}, which has demand rate λK , qKλ. (We use subscripts for component types,

and superscripts for order types.)

The inventory of component i is replenished by a single-machine production facility i, which

operates on a first-come, first-served (FCFS) basis and has i.i.d. exponential processing times

with rate µi. Let si be the base-stock level for component i. Whenever the inventory position of

component i is less than si, we send a replenishment order to make up the difference. Otherwise,

we do not order. The final assembly time is assumed to be negligible relative to the component

production times.

A demand for component i that cannot be filled immediately are queued in the backlog queue i

with capacity bi ≤ ∞ and is filled on the FCFS basis. (Except being a physical characterization of

many real systems, bi can also be used as a measure of customers’ patience). If upon the arrival of

a customer order, some of the components’ queues are full and others are not, we assume that we

accept the requests for the components whose queues are not full and reject otherwise. We refer

to this scheme as partial order service (POS). This is reasonable for distribution systems such as

online retailing, in which the a customer order consists of several different items (corresponding

to components), and the assembly of a product entails picking out the items in the customer’s

order and packaging them. An alternative assumption is that we reject the entire order in such a

situation, which is called total order service (TOS). The TOS scheme is more realistic if there is a

physical product to be assembled. However, the POS scheme is more tractable in developing the

bounds. For this reason, we focus on the former. Computational results show that it is reliable to

use the POS model to approximate the TOS model. See also a discussion in Song, Xu and Liu.

Note that the demand process for component i,

Di(t) =
∑

K:i∈K

DK(t),

is also a Poisson process, with rate

λi =
∑

K:i∈K

λK .

Due to the nature of the base-stock policy, the production facility of component i sees the same

arrival process as the demand process. Therefore, the supply system of component i constitutes an

M/M/1/Ni queueing system with arrival rate λi, service rate µi and maximum Ni = si + bi jobs.
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We now define several important random variables in steady-state:

IOi = inventory on order of component i, 0 ≤ IOi ≤ Ni,

Wi = delivery or waiting time (queue time plus service time) of component i,

Ii = on-hand inventory of component i,

Bi = number of backorders of component i.

These random variables are related as follows:

Ii = (si − IOi)+, i ∈ Ω, (1)

Bi = (IOi − si)+, i ∈ Ω, (2)

Wi =
[IOi+1−si]

+∑
j=1

Ti,j1{IOi<si+bi}. i ∈ Ω, (3)

Here, (x)+ = max{x, 0} for any real number x, and 1E is the indicator function of event E. Ti,j are

i.i.d. exponential random variables with rate µi, i ∈ Ω. The upper limit of the summation in (3) is

the position of the last unit in the backlog queue i. Equation (3) can be understood as follows: If

[IOi +1−si]+ = 0, then the component-i demand is serviced immediately by the existing inventory

of component i; otherwise the unit becomes the (IOi + 1− si)th job in the backlog queue i.

Throughout the paper, we use bold-faced letters to denote vectors. For example, IO =

{IO1, IO2, . . . , IOJ}. Define W, I,B, s,b and N similarly. For a J–dimensional vector a =

(a1, a2, . . . , aJ) and K ⊆ Ω, we let aK = (ai : i ∈ K) and aK
max = maxi∈K{ai}. Also, equality

in distribution between two random variables or vectors is denoted by =st. Inequalities between

vectors are componentwise inequalities.

For any K ⊆ Ω, the key order-based performance measures of interest include:

(a) Type–K order fill rate FK,x with window x for any given x ≥ 0. Let WK denote the steady-

state order delivery time for type–K demand, then

FK,x , P (WK ≤ x) = P (max
i∈K

Wi ≤ x). (4)

where Wi is given in (3). When x = 0, FK,0 is the immediate type–K fill rate, or simply

the type–K fill rate, which is the probability that a type–K order is filled immediately. For

simplicity, we drop the superscript 0 from its notation. We have

FK , FK,0 = P (IK > 0) = P (IOK < sK), K ⊆ Ω, (5)

where we apply the relation between Ii and IOi in (2).
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(b) Type–K service level SLK , which is the probability that a type–K order is accepted as a

whole and filled eventually:

SLK , P (BK < bK) = P (IOK < NK), (6)

where we apply the relation between Bi and IOi in (1).

For convenience, we write F {i} ≡ F i and F {i,j} ≡ F ij , for every i, j ∈ Ω (similarly for SLK).

Let F , SL and W be the fill rate, service level, and delivery time of an arbitrary order (regardless

of its type), respectively. Then

F =
∑
K⊆Ω

qKFK ,

SL =
∑
K⊆Ω

qKSLK ,

P (W ≤ x) =
∑
K⊆Ω

qKP (WK ≤ x).

It is clear that the outstanding order vector IO determines other performance vectors. For the

basic model, assuming bi can be∞ for at most one i, Song et al. develop a matrix–geometric solution

for the joint distribution of IO, which in turn leads to an exact procedure for performance evaluation

of other performance measures. Because a performance measure of a type–K order depends only on

the joint distribution of IOK = {IOi, i ∈ K}, K ∈ Ω, the computational complexity of the matrix–

geometric solution is mainly determined by the maximal cardinality of order types (of course, the

cardinality of the state space of IOK also plays a role in computational complexity), rather than the

total number of components in the system. For example, suppose that in a 20-component system,

there are total of 10 different order types with each order type containing at most 4 components.

While it would be a daunting task to compute the joint distribution of the 20–dimensional vector

IO , the matrix–geometric solution will allow us to more efficiently evaluate IOK for all 10 order

types, with the dimensionality of IOK no more than 4. Of course, the procedure becomes less

efficient when the maximum number of components in a single product (with upper bound J), the

number of different order types (with upper bound 2J − 1), or the cardinality of the state space of

IO is large. Also, the algorithm is only applicable to the systems with Markovian structure and a

unit demand for each component.

3 LOWER BOUNDS

This section develops several lower bounds of the outstanding order vector IOK , K ⊆ Ω, in the

basic model.
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3.1 Setwise Lower Bounds

The setwise lower bounds are based on the following idea: We construct a new demand process that

has the same marginal demand distributions as the original demand process, but is less correlated

across components. To this end, we partition the components in a type–K order into several

clusters such that the demands within each cluster are identically distributed as its counterpart in

the original process, but are independent across different clusters. As a result, a performance vector,

say IOK (with the new demand process), becomes a collection of several independent performance

subvectors, with the distribution of each subvector having a lower dimension than the original

vector. We shall show that the distribution of IOK is bounded below by that of IOK .

Similar bounds have appeared in various applications of multivariate stochastic processes, see,

for example, Baccelli and Makowski (1989), Baccelli, Makowski and Schwarz (1989), Mamer and

Smith (1993), Nelson and Tawani (1989), Connors and Yao (1996), Song (1998), and Lu, Song

and Yao (2003a). The notion of associated random variables is essential for the development the

bounds in these studies, which, unfortunately, is not applicable to the model setting considered

here. The results developed in Xu (1999) and Li and Xu (2000) are applicable, however. To apply

those results, we need to introduce the following definitions and properties (see, e.g., Tong (1980)

and Shaked and Shanthikumar (1997)).

Definition 3.1. Let X = (X1, . . . , XJ) and Y = (Y1, . . . , YJ) be two random vectors.

1. X is said to be larger than Y in the upper orthant order, denoted as X ≥uo Y, if for all

x ∈ RJ ,

P (X > x) ≥ P (Y > x).

X is said to be smaller than Y in the lower orthant order, denoted as X ≤lo Y, if for all

x ∈ RJ ,

P (X ≤ x) ≥ P (Y ≤ x).

If X ≥uo Y and X ≤lo Y , then X is said to be more positively quadrant dependent (PQD)

than Y. Roughly speaking, this means that the tendency that all the elements in X are small

or large is stronger than that of Y.

2. X is said to be stochastically greater than Y, denoted as X ≥st Y, if for any increasing

function f , Ef(X) ≥ Ef(Y).

It is well-known that (see, for example, Tong 1980):

X ≥st Y =⇒ X ≥uo Y and X ≥lo Y. (7)
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For a given K ⊆ Ω with size |K|, let us consider the subsystem that is only composed of the

components in K and call it subsystem SK . Then DK = {(Di(t), i ∈ K), t ≥ 0} is the demand

process of subsystem SK . Let {K1,K2, . . . ,Kν} be a partition of K. We construct a new demand

process, DK = {(Di(t), i ∈ K), t ≥ 0} = {DK` , ` = 1, . . . , ν}, such that the processes DK1 , . . . ,DKν

are mutually independent, but DK` =st DK` , ` = 1, 2, . . . , ν. That is, the new demand process of

each cluster is identically distributed as the original demand process of the corresponding cluster.

Denote by SK a new subsystem which has the demand process DK but otherwise identical features

as in SK . Let IOK be the outstanding order subvector in system SK , and define other performance

subvectors similarly. Use an overline to denote the corresponding performance vector in system

SK . According to Xu (1999), IOK is more PQD than IOK .

Theorem 3.2. BK is more PQD than BK , and IK is more PQD than IK , for any K.

Proof. Note that if X is more PQD than Y, and if fi, i = 1, . . . , J , are increasing functions,

then (f1(X1), . . . , fJ(XJ)), is more PQD than (f1(Y1), . . . , fJ(YJ)). Since Bi = [IOi − si]+ is an

increasing function of IOi, i ∈ Ω, BK is more PQD than BK . Now consider Ii = [si− IOi]+. First

note that if a random vector X is more PQD than another random vector Y, then −Y is more

PQD than −X. Therefore sK − IOK is more PQD than sK − IOK . Because [x]+ is an increasing

function of x, IK is more PQD than IK .

The above results allow us to derive lower bounds for the distribution of a performance vector,

such as IOK , WK , IK and BK . In particular, we have

P (IOK ≤ nK) ≥ P (IOK ≤ nK) =
ν∏

`=1

P (IOK` ≤ nK`), (8)

P (WK ≤ wK) ≥ P (WK ≤ wK) =
ν∏

`=1

P (WK` ≤ wK`). (9)

Instead of developing bounds for every performance measure, here and in the rest of the paper, we

shall derive bounds for the order fill rate FK only. The bounds for other performance measures

can be obtained similarly. Note that FK = SLK , K ⊆ Ω, for the lost-sales system. In addition,

with everything else equal, the service level for the partial backlogging system with Ni = si + bi

equals the service level for the lost-sales system with base-stock level Ni, i ∈ Ω.

For any given set K and a scalar m, m < |K|, we say K(m) is an order–m partition of K if

K(m) = {K1, ...,Kν : |K`| = m, ` 6= j, |Kj | = |K| −m(ν − 1) for some j}.

A lower bound resulting from an order–m partition is called an order–m setwise lower bound. Let

Pm(K) be the set of all order–m partitions of K. Then, from (5) and Theorem 3.2, the best
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order–m lower bounds for FK is:

FK = P (IOK < sK) ≥ max
K(m)∈Pm(K)

{ ∏
K`∈K(m)

FK`

}
. (10)

Observe that a setwise lower bound never degenerates, and reduces to the exact solution under

independence.

Although any higher–order setwise lower bound is tighter than the first–order setwise lower

bound, it is generally not true that the lower bound will become tighter as m increases. For

example, the best third–order bound may not be tighter than the best second–order bound. For

this reason, we shall pay special attention to the first– and second–order bounds of FK , which are

given by:

FK = P (IOK < sK) ≥
∏
j∈K

P (IOj < sj) (11)

FK ≥ max
K(2)∈P2(K)

{ ∏
K`∈K(2)

P (IOK` < sK`)

}
. (12)

The first–order bounds are the simplest, which require only the marginal distributions of IOi, i ∈ K.

However, the bounds may become loose for large |K|. The second–order bound requires evaluating

the joint distributions of IOij , i, j ∈ K, for which the matrix–geometric solution developed by

Song, Xu and Liu is especially efficient. Here P2(K) is also called the pair partition of K, in which

we partition K into pairs. In the case that |K| is odd, there exists one Kj ∈ P2(K) that contains

only one component. After F ij , i, j ∈ K, are computed, finding the best order-2 bound, given in

(12), becomes a nonbipartite weighted matching problem, which can be solved exactly by existing

algorithms in the combinatorial optimization literature. See a similar discussion in Song (1998).

The procedure may become impractical if we have to evaluate a large set of F ij for all pairs

(i, j) ⊆ K. In addition, for the higher–order partitions (m > 2), there do not exist efficient

algorithms to obtain the optimal partition of Pm(K), even if we are able to compute FK` for all

K` ∈ Pm(K). Therefore, we propose a heuristic partition of K which is based on arrival rates

λM , M ⊆ Ω, rather than m–variate distributions of outstanding orders. This algorithm is also the

basis of Algorithm 3.6, where we derive the combination bound for FK (see Section 3.3). This

algorithm at each step selects order type M , |M | = m, which has the highest aggregated order

arrival rate among the unsolicited components in K. The following is a greedy procedure to find

such a partition (Assume |K| > 3; recall that such a heuristic is valuable only when |K| is large).

Algorithm 3.3. A Greedy Heuristic for the mth Order Partition of K, |K| > m.

1. Set n = 1 and K(n) = K.
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2. Let

M∗(n) = argmax

{ ∑
L′⊆M⊆Ω

qM : L′ ⊆ K(n), |L′| = m

}
, (13)

and set K(n + 1) = K(n)−M∗(n).

3. If |K(n + 1)| > m, set n = n + 1 and go to step 2. Otherwise, set M∗(n + 1) = K(n + 1) and

P ∗
m(K) = (M∗(1), ...,M∗(n + 1)). STOP.

The above algorithm is motivated by the following reasoning: Among all unsolicited components

L′ ⊆ K(n) in the nth iteration, one expects that the components in set M∗(n), defined as in (13),

induce the highest correlation among components of IOM∗(n), compared with that of other IOL′
,

L′ ⊆ K(i), |L′| = m. Also, (13) means that the order type-M∗(n) is quite frequent, so it is wise to

trace the information of IOM∗(n). The heuristic then utilizes this information.

Example 3.4. Consider a six-component system with arrival rates qK given by

q1234 = 0.1, q2356 = 0.3, q23 = 0.2, q24 = 0.4.

Here we abbreviate the notation of a set {i1, i2, ..., ik} by i1i2...ik. All other qK ’s are zero. We wish

to obtain a good second–order partition of set (1, 2, 3, 4). By Algorithm 3.3,

max
(j,k)

{ ∑
(j,k)⊆M⊆(1,2,3,4)

qM

}
= q1234 + q2356 + q23 = 0.6.

Hence M∗(1) = (2, 3) and M∗(2) = (1, 4), i.e., the partition is {(2, 3), (1, 4)}. Note that even

though q24 is the largest among the pairs in (1, 2, 3, 4), (2,4) is not kept as a pair. This is because

that we expect correlation of IO23 to be stronger than that of IO24 due to the aggregated order

types 1234, 2356 and 23.

In Section 7, we will discuss the extension of setwise lower bounds to other types of ATO systems.

In particular, the setwise lower bound is still valid for the MX/M/1 type of ATO systems. The

next example illustrates the first-order bound for such a system.

Example 3.5. Suppose the interarrival time between two orders is exponentially distributed with

rate λ and batch size vector X has the distribution

P (XK = xK ,XΩ−K = 0) = qK
∏
i∈K

(1− pi)pxi−1
i , xK ≥ 1, K ⊆ Ω. (14)

This assumption implies that, with probability qK , an order will bring a geometric batch Xi to

facility i for each i ∈ K, K ∈ Ω. Assume Ni = ∞, i ∈ Ω. Then, by (11), the first–order setwise
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lower bound is

FK ≥
∏
i∈K

P (IOa
i + Xi ≤ si) =

∏
i∈K

si∑
xi=1

P (IOa
i ≤ si − xi)(1− pi)pxi−1

i .

Let

ρi =
1

(1− pi)µi

∑
K:i∈K

λqK =
λi

(1− pi)µi
< 1,

then the probability mass of IOa
i is given by (see, for example, Gross and Harris 1974)

P (IOa
i = 0) = 1− ρi

P (IOa
i = n) = (1− ρi)[pi + (1− pi)ρi]n−1[(1− pi)ρi], n > 0, i ∈ Ω.

3.2 Bonferroni-Type Bounds

The lower bounds developed in Section 3.1 depend heavily on PQD properties of performance

vectors. It is interesting to compare them with the commonly used, distribution–free, Bonferroni–

type bounds. By distribution–free, we mean that the construction of the bounds applies to any

distribution. In particular, let K = {i1, ..., i|K|}, then the Bonferroni–type lower bounds of orders

1–3 on FK are (see Costigan 1996 for references):

FK ≥
∑

i∈K F i − (|K| − 1) (first order)

FK ≥
∑|K|

j=2 F ij−1ij −
∑|K|−1

j=2 F ij (second order)

FK ≥
∑|K|

j=3 F ij−2ij−1ij −
∑|K|−1

j=3 F ij−1ij (third order).

(15)

A major shortcoming of a Bonferroni–type lower bound is that it may degenerate (to a non-

positive number), especially for large |K|. In addition, it does not yield the exact solution under

independence.

Cheng et al. (2002) use this type of bounds in a system with i.i.d./ leadtimes, and Zhang (1999)

apply similar bounds to a system with sequential general production times.

3.3 Setwise–Bonferroni Combination Bounds

For large |K|, the degeneracy issue of Bonferroni–type bounds can be resolved by the approach

of setwise–Bonferroni combination bounds (Costigan 1996) that first partition K into subsets

{K1, . . . ,Kν}, then apply Bonferroni–type bounds to each FKj , j = 1, . . . , ν. Next we give an

algorithm that computes the second order combination bounds. To simplify notation, we assume

|K| = mν, that is, K can be partitioned into ν subsets with each subset having cardinality m.
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Algorithm 3.6. The Second-Order Combination Lower Bound of FK , |K| = mν, m > 2

1. Apply Algorithm 3.3 to obtain the mth order partition P ∗
m(K) = (M∗

1 , . . . ,M∗
ν ) of K. Let

M∗
j = (i1,j , . . . , im,j), j = 1, 2, . . . , ν.

2. Use (15) to obtain the second–order Bonferroni–type lower bound for FM∗
j , j = 1, . . . , ν.

3. The second–order combination lower bound for FK is given by

ν∏
j=1

[
m∑

`=2

F i`−1,j i`,j −
m−1∑
`=2

F i`,j

]
.

3.4 Signal Lower Bound

Chao et al. (1999) show that a system with several parallel M/M/1 queues and simultaneous

arrivals can be modeled as a queueing network with concurrent movements by means of positive

signals. The authors also derive a stochastic upper bound for the joint queue lengths that has the

product–form distribution. Their approach can be adapted to our system of parallel M/M/1/N

queues and simultaneous arrivals to obtain a stochastic upper bound, denoted by ÎO, for IO. This,

in turn, can be used to derive a lower bound for FK , which is termed the signal lower bound.

In Appendix A, we provide a signal–queue formulation of the supply system of our model with

independent geometric batch arrivals having parameters pi, i = 1, . . . , J . The unit–batch case is

obtained by taking pi ≡ 0, i = 1, . . . , J . We can therefore show, using the results of Appendix A,

that ÎO has the distribution

P (ÎO = n) =
∏

i∈Ω:ρ̂i 6=1

(1− ρ̂i)ρ̂ni
i

1− ρ̂Ni+1
i

∏
i∈Ω:ρ̂i=1

1
Ni + 1

, where ρ̂i =
∑

K:i∈K αK
i

µi
, (16)

and nonnegative numbers αK
i , i ∈ Ω, K ⊆ Ω, are obtained by solving the the traffic equations

(A.7), and also that IO ≤st ÎO. Since stochastic order is closed under marginalization, we have

IOK ≤st ÎO
K

. From (7), this further implies IOK ≤lo ÎO
K

. Thus we obtain the signal lower

bound for FK :

FK = P (IOK < sK) ≥ P (ÎO
K

< sK) =
∏

i∈Ω:ρ̂i 6=1

1− ρ̂si
i

1− ρ̂Ni+1
i

∏
i∈Ω:ρ̂i=1

si

Ni + 1
. (17)

Note that if Ni = ∞, ÎOi is well defined only when ρ̂i < 1.

Example 3.7. Consider a two-component system with λ1 = 3, λ2 = 6, λ12 = 3, µ1 = 12 and

µ2 = 20. Also let si = 4 and Ni = ∞, i = 1, 2. Let us first compute the signal lower bound for

12



type-12 order. By (A.7),

α1
1 = λ1 = 3, α12

1 = λ12 = 3 and ρ̂1 =
λ1 + λ12

µ1
= 0.5

α2
2 = λ2 = 6, α12

2 =
α12

1

ρ̂1
=

3
0.5

= 6 and ρ̂2 =
α2

2 + α12
2

µ2
=

6 + 6
20

= 0.6

This yields the signal lower bound of F 12 as (1 − (0.5)4)(1 − (0.6)4) = 0.816. Note that the first–

order setwise lower bound of F 12 is (1 − (0.5)4)(1 − (0.45)4) = 0.899, which is significantly better

than the signal lower bound. It can be computed that the setwise upper bound (see Section 4.2)

of F 12 is (1 − (0.5)4)(1 − (0.3)4) = 0.930. The closeness of the setwise lower and upper bounds

indicates the high quality of the setwise bounds. Furthermore, if the arrival rate of the type–2

order were 15 instead of 6, then ρ̂2 > 1 and the signal bound no longer exists. The setwise lower

bound in this case is (1− (0.5)4)(1− (0.9)4) = 0.322.

This example illustrates that the signal lower bound may degenerate. It also raises the following

question: What is the relationship between a setwise lower bound given by (10) and the signal lower

bound given by (17)? We obtain the following result:

Theorem 3.8. Let IOI = (IOI
1, . . . , IOI

J) consist of independent components with IOi =st IOI
i .

That is, for λi =
∑

K:i∈K λK and ρi = λi/µi,

P (IOI ≤ n) =
∏

i∈Ω,ρi 6=1

1− ρni
i

1− ρNi
i

∏
i∈Ω,ρi=1

ni

Ni + 1
,

Also let ÎO have the distribution specified by the RHS of (16). Then

IO ≤lo IOI ≤st ÎO. (18)

Proof. From (8) we know that IO is more positively lower orthant dependent than IOI . Thus

it is sufficient to show that ÎO stochastically dominates IOI . We first show, by induction, that

αK
i ≥ λK , for any i ∈ K = {iK1 , . . . , iK|K|}. From (A.7), αK

iK1
= λK . Now assume that αK

iK`−1
≥ λK .

Then

αK
iK`

=


αK

iK`−1
(1 + 1

ρ̂
iK
`−1

) ≥ αK
iK`−1

≥ λK , if ` = 2, . . . , |K|, N` < ∞
αK

iK
`−1

ρ̂
iK
`−1

≥ αK
iK`−1

≥ λK , if ` = 2, . . . , |K|, N` = ∞

Since the above equation is true for every K ⊆ Ω,
∑

K:i∈K αK
i ≥

∑
K:i∈K λK = λi. Now, a sample

path coupling argument can be used to show that, in two parallel M/M/1/N queueing systems, if

the arrival rate to each queue in one system is larger than that in another system, with all other

13



parameters identical, then the stationary queue length vector in the former system stochastically

dominates its counterpart in the latter system.

The theorem implies that the first–order setwise bound, developed via the study of the depen-

dent structure of parallel M/M/1/N queues with simultaneous arrivals, is tighter than the signal

bound. Since a higher order setwise lower bound is always better than the first–order setwise lower

bound, we conclude that a setwise lower bound of any order is stochastically bigger than the signal

lower bound. It is also worth mentioning that, when Ni = ∞, i ∈ Ω, the signal bound is exactly

the same asymptotic bound obtained by Schwartz and Weiss (1993) via the asymptotic analysis

using large deviations.

4 UPPER BOUNDS

This section introduces two classes of upper bounds, Frechet–type upper bounds and setwise upper

bounds.

4.1 Frechet Upper Bounds

The Frechet–type upper bounds are distribution–free bounds. Let Gi, i ∈ K, be given univariate

distribution functions. Let G(Gi, i ∈ K) be the class (called the Frechet class) of |K|–variate

distributions with given marginals Gi, i ∈ K. The first–order Frechet upper bound of G(Gi, i ∈ K)

is given by

G(xK) ≤ min
i∈K

Gi(xi), for any G ∈ G(Gi, i ∈ K), xK = (xi : i ∈ K).

It is known that mini∈K Fi(xi) is a proper |K|–variate distribution function (Joe 1997). Notice that

the above bound only requires the information of the univariate marginal distribution functions.

For this reason, we call it the first–order Frechet upper bound.

Using this result, the first–order Frechet upper bound for the type–K order fill rate satisfies

FK ≤ min
i∈K

F i. (19)

(Song (1998) obtains the same bound for systems with deterministic leadtimes.) The bound is

rather intuitive, it states that an order fill rate cannot be greater than the fill rate of its each

individual component. The first–order Frechet upper bound is expected to perform satisfactorily

under high correlation and high component fill rates. For example, for a two-component system

with 90% fill rate for each component, the maximal percentage error of the first order Frechet upper

bound is
min{F 1, F 2} − F 12

F 12
≤ min{F 1, F 2} − F 1F 2

F 1F 2
=

0.9− (0.9)2

(0.9)2
= 11%

14



Similarly, we can assess the maximal percentage error of the first–order setwise lower bounds, which

is expected to perform well under lower correlation:

F 12 − F 1F 2

F 12
≤ 1− F 1 = 10%.

The above expressions imply that one can expect that both Frechet upper bound and setwise lower

bound perform relatively well with high component fill rates, regardless of the degree of correlation.

This perhaps explains why the independent approximation used in Glasserman and Wang works

well under high fill rate.

Now let G(GM ,M ⊆ K, |M | = m) be the Frechet class with given m–variate marginals GM .

Then

G(xK) ≤ min
M⊆K

GM , for any G ∈ G(GM , M ⊆ K, |M | = m).

The above bound attempts to use an m–variate marginal distribution to bound from the above the

|K|–variate distribution. This result leads to the mth–order Frechet upper bound for the type–K

order-fill rate:

FK ≤ min
M⊆K,|M |=m

FM .

For |K| = 3, the second–order Frechet upper bound of F i1i2i3 can be strengthened as follows:

F i1i2i3 ≤ min{F i1i2 , F i1i3 , F i2i3 , a4},

where a4 = 1−F i1 −F i2 − F i3 + F i1i2 + F i1i3 + F i2i3 , comes from the identity F
i1i2i3 = 1−F i1 −

F i2 − F i3 + F i1i2 + F i1i3 + F i2i3 − F ; since F
i1i2i3 ≥ 0, F i1i2i3 ≤ a4.

Note that in order to obtain the mth–order Frechet upper bound, one needs to evaluate FM

for all M ⊆ K and |M | = m (assuming the queues are not symmetric). This task becomes

formidable when the number of distribution functions to be evaluated becomes large. As a possible

approximation of the mth order Frechet upper bound, we propose the following approximate mth

order Frechet upper bound, which only needs to evaluate a single m–variate joint distribution

function. In the algorithm, we attempt to sequentially select m components that have the smallest

component-fill rates; in the case that several candidate components have identical component fill

rates, we choose the component that has the weakest correlation with the previously selected

component. This is because an order fill rate is bounded above by these low component fill rates;

furthermore, due to the lower orthant property of IO, the fill rate of a less correlated pair of

components is smaller than the fill rate of a more correlated pair of components, given that the

corresponding marginals of the two pairs are identical (see Xu (1999), for a detailed account on

how correlated arrival processes lead improved system performances.)
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Algorithm 4.1. The Approximate mth-Order Frechet Upper Bound, m ≥ 2

1. Compute F i, i ∈ K, and λ̂ij =
∑

i,j∈M λM , i, j ∈ K. Also set n = 1, M = ∅ and K(n) = K.

2. Let U , argmini∈K(1){F i}. If U = i(1) is a singleton, let M ∪ i(1) → M , K(2) = K(1)− i(1),

n = 2 and go to Step 3. If U is not a singleton, let λ̂i(1),i(2) = mini,j∈U{λ̂i,j}, where ties

are broken arbitrarily. Let M ∪ {i(1), i(2)} → M . If m = 2, go to Step 4; otherwise let

K(3) = K(1)− i(1)− i(2), n = 3 and go to Step 3.

3. Let U , argmini∈K(n){F i}. If U = i(n) is a singleton, let M∪i(n) → M . If n = m, go to Step

4, otherwise set K(n+1) = K(n)− i(n), n → n+1 and repeat Step 3. If U is not a singleton,

let λ̂i(n−1),i(n) = minj∈U{λ̂i(n−1)j}. Again, ties are broken arbitrarily. Let M ∪ i(n) → M . If

n = m, go to Step 4; otherwise let K(n + 1) = K(n)− i(n), n → n + 1 and repeat Step 3.

4. Compute the type-M fill rate FM , which is an approximate mth order Frechet upper bound.

4.2 Setwise Upper Bounds

The setwise upper bounds are aimed at improving the Frechet upper bounds without substantially

increasing computational complexity. Here is the idea: Let FM∗(1) be the mth–order Frechet

upper bound of FK , that is, FM∗(1) = minM⊆K{FM : M ⊆ K, |M | = m}). For any M ⊆ Ω,

M∩M∗(1) 6= ∅ and M∩(K−M∗(1)) 6= ∅, we treat such a type-M order as a type M∩M∗(1) order,

that is, we accept component i, whenever possible, if i ∈ M ∩M∗(1) and discard the component

otherwise. Clearly, the demand process for components in M∗(1) is unchanged, but the new demand

process for components in K −M∗(1) becomes stochastically smaller (which can be shown easily

using a stochastic coupling argument), and the two demand processes are independent. As a result,

the number of outstanding orders of components in K −M∗(1) is also stochastically smaller. The

new demand process for the components in K −M∗(1) is Poisson with the adjusted rates:

λ̂M =
∑

M⊆L′⊆Ω−M∗(1)

λL′
, M ⊆ K −M∗(1). (20)

Let FK−M∗(1)(2) be the fill rate of type K−M∗(1) order corresponding to the new arrival process,

with all other parameters kept the same as in the original system. Then we obtain:

FK ≤ FM∗(1)FK−M∗(1)(2). (21)

We can repeat the above procedure, and develop an upper bound for FK−M∗(1)(2), if |K−M∗(1)| >
m. The algorithm below gives the mth–order setwise upper bound for FK , K ⊆ Ω and |K| ≥ 2.

Algorithm 4.2. The mth–order Setwise Upper Bound of FK , |K| ≥ 2

16



1. Set n = 1, K(n) = K, Ω(n) = Ω.

2. For each M ⊆ K(n), let

λM (n) =
∑

M⊆L′⊆Ω(n)

λL′
and λi(n) =

∑
i∈M⊆K(n)

λM , i ∈ K(n).

Let ρi(n) = λi(n)/µi. If m = 1, for each i ∈ K(n), compute

F i(n) =


1− (ρi(n))si

1− (ρi(n))Ni+1
, if ρi(n) 6= 1

si

Ni + 1
if ρi(n) = 1

 .

If m > 1, apply the matrix–geometric solution developed by Song, Xu and Liu to compute

FM (n) for each |M | = m and M ⊆ K(n), using the new arrival process with arrival rate

λM (n).

3. Let

M∗(n) = argmin{FM (n) : M ⊆ K(n), |M | = m}.

Ties are broken arbitrarily. Set K(n + 1) = K(n) −M∗(n) and Ω(n + 1) = Ω(n) −M∗(n) .

If |K(n + 1)| ≤ m, let M∗(n + 1) = K(n + 1) and FM∗(n+1)(n + 1) = FM∗(n+1)(n) and go to

Step 4; otherwise go to Step 2.

4. Compute the setwise upper bound as:

FK ≤
dK

m
e∏

n=1

FM∗(n)(n), (22)

where dae is the smallest integer greater than or equal to a. Stop.

Because FM∗(1)(1) = min{FM : M ⊆ K, |M | = m} is the mth order Frechet upper bound, the

next claim follows (22) immediately.

Theorem 4.3. The mth order setwise upper bound is tighter than the Frechet upper bound of the

same order.

Since the setwise upper bound yields the exact solution under independence, we expect the

improvement of the setwise upper bound over the Frechet upper bound of the same order to be

significant when demand correlation is low. Also, if computing the exact mth order Frechet upper

bound turns out to be impractical, Algorithm 4.1 may be inserted in Step 2 of Algorithm 4.2 to

obtain the approximate mth order setwise upper bound.

We now illustrate the above algorithm via an example.
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Example 4.4. Consider a four-component system with the following parameters:

λ123 = 1, λ134 = 1, λ12 = 2, λ24 = 1, λ1 = 5, λ2 = 2, λ3 = 5, and λK = 0 otherwise;

µi = 10, si = 4 and Ni = ∞, i = 1, 2, 3, 4.

We wish to use Algorithm 4.2 to compute the first–order setwise upper bound of F 123.

In Step 1, we set n = 1, K(1) = K = {1, 2, 3}, Ω(1) = Ω = {1, 2, 3, 4}.
In Step 2, we set λM (1) = λM , M ⊆ Ω(1). We also obtain

λ1(1) =
∑

1∈M⊆Ω(1)

λM = λ123 + λ134 + λ12 + λ1 = 9 and ρ1(1) = 0.9.

Similarly, λ2(1) = 5, ρ2(1) = 0.5, λ3(1) = 7 and ρ3(1) = 0.7. Hence the component fill rates

satisfy:

F 1(1) = F 1 = 1− (0.9)4, F 2(1) = F 2 = 1− (0.5)4, F 3(1) = F 3 = 1− (0.7)4.

In Step 3, we obtain argmin{F i(1), i = 1, 2, 3} = 1. Set K(2) = K(1) − {1} = {2, 3} and

Ω(2) = Ω(1)− {1} = {2, 3, 4}. Since |K(2)| = 2 > m = 1, we return to Step 2.

In Step 2, we compute

λ2(2) =
∑

2∈M⊆Ω(2)

λM = λ2 + λ24 = 3, ρ2(2) = 0.3,

λ3(2) =
∑

3∈M⊂Ω(2)

λM = λ3 = 5, ρ3(2) = 0.5.

This gives F 2(2) = 1− (0.3)4 and F 3(2) = 1− (0.5)4. Go to Step 3.

In Step 3, we obtain argmin{F i(2), i = 2, 3} = 3. Set K(3) = K(2) − {3} = {2} and Ω(3) =

Ω(2)− {3} = {2, 4}. Since |K(3)| = 1, set M∗(3) = K(3) = 2 and F 2(3) = F 2(2) = 1− (0.3)4 and

go to Step 4.

In Step 4, we compute the first order setwise upper bound as

F 123 ≤ F 1(1)F 3(2)F 2(3) = (1− (0.9)4)(1− (0.5)4)(1− (0.3)4) = 0.3198.

and then stop. The corresponding Frechet upper bound is 1 − (0.9)4 = 0.3439. The first order

setwise lower bound is FK ≥ F 1F 2F 3 = 0.245.

Example 4.5. Suppose the interarrival time between two orders is exponentially distributed with

rate λ and batch size vector X has the distribution

P (XK = xK ,XΩ−K = 0) = qK
∏
i∈K

(1− pi)pxi−1
i , xK ≥ 1, K ⊆ Ω. (23)
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This assumption implies that, with probability qK , an order will bring a geometric batch Xi to

facility i for each i ∈ K, K ∈ Ω. Assume Ni = ∞, i ∈ Ω. Then, the first–order setwise lower bound

is

FK ≥
∏
i∈K

P (IOa
i + Xi ≤ si) =

∏
i∈K

si∑
xi=1

P (IOa
i ≤ si − xi)(1− pi)pxi−1

i .

Let

ρi =
1

(1− pi)µi

∑
K:i∈K

λqK =
λi

(1− pi)µi
< 1,

then the probability mass of IOa
i is given by (see, for example, Gross and Harris 1974)

P (IOa
i = 0) = 1− ρi

P (IOa
i = n) = (1− ρi)[pi + (1− pi)ρi]n−1[(1− pi)ρi], n > 0, i ∈ Ω.

5 NUMERICAL RESULTS

In this section we conduct numerical comparisons of the bounds developed in the previous sections

under various system configurations. Both backlogging and lost–sales cases are considered. Sub-

sections 5.1-5.3 examine how product variety, facility utilization and component base-stock levels

affect bounds on order performance measures in systems with three, six and nine components,

respectively. Numerical results are tabulated and gathered in Appendix B. In all these examples,

we assume the Markovian property.

In Tables 4–6, we report percentage errors for various lower and upper bounds on the imme-

diate system-based fill-rate F for various production systems. Those tables also contain the exact

immediate overall fill rate and the overall order serviceability for comparison.

Tables 1–3 describe the parameter choices for the production systems. The parameters of

the production systems are designed such that the service levels are the same for both partial

backlogging and lost-sales cases. Since the fill rates and service levels are the same in a lost-sales

case, the percentage errors of various bounds on the service levels in the partial backlogging cases

are the same as those of immediate fill rates in the lost-sales cases. The percentage error for a

bound is calculated by [(bound− exact quantity)/exact quantity]× 100%. As such, the percentage

error for a lower bound is negative and an upper bound positive.

The legends used in the tables are as follows: “U” = Utilization (“h” = high, “l” = low), “C”

= Correlation (“h” = high, “l” = low), “P” = Policy (“b” = backlogging, “l” = lost–sales), “Fill

Rate” = Exact overall immediate order fill rate, “Serv’blty” = Exact overall serviceability, “Signal”

= Signal Bound, “Bf” = Bonferroni, “CMB” = Combination, “StL” = Setwise Lower, “EStL” =

Exact Setwise Lower, “GStL” = Greedy Setwise Lower, “StU” = Setwise Upper, “Frcht” = Frechet.
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5.1 Three Component Systems

We start with a small system with three components. We consider two levels of product variety

and call them Order Profile 1 and Order Profile 2. e believe that the quality of bounds is mainly

affected by traffic intensity and correlation level of product demand. Therefore, for each order

profile, we consider both the backlogging and lost–sale cases and also vary machine utilization and

demand correlation from high to low. This gives us totally sixteen cases. For both order profiles

we assume λ1 + λ2 + λ3 = 8.1. Other parameters are specified in Table 1.

Table 4 summarizes the test results of the sixteen cases. From the table, we observe that the

first–order setwise lower bound (StL1) outperforms all other first–order bounds. The first–order

combination lower bound (CMB1) does better than Bonferroni lower bound (Bf1) on average,

especially when Bf1 is likely to degenerate, which often occurs for the system with high utilization,

high demand correlation and backlogging. It also appears that the signal lower bound cannot

compete with other bounds.

The second-order bounds perform better than the first–order bounds, as expected, and they are

quite satisfactory on average. There are no significant differences between the average performance

of the second–order bounds, partly because a three–component system is not large enough to

observe the differences. Also, it appears that for the small system the first order bound gives the

reliable prediction of the exact fill rate.

The results indicate that the quality of the first– and second–order lower bounds improves as

the fill rate increases or demand correlation decreases. With the high fill rate, all lower bounds,

except for signal bounds, perform extremely well, regardless of the correlation level. However, with

the low fill rate, their performance is sensitive to demand correlation.

The setwise upper bounds perform better than the Frechet upper bounds, but only marginally.

Note that the second–order upper bound significantly improves its first–order counterpart.

Overall, it appears that for a fixed fill rate, the lower bound performs better than the upper

bound of the same order.

5.2 Six Component Systems: The PC Examples

We next consider a six-component PC assembly system under different parameter settings. We

consider both the unit demand and geometric batch demand cases. In each case, the total arrival

rate of orders equals λ = 2. We again examine the backlogging and lost–sale cases and vary

utilization from high to low. This results in eight different system configurations, with system

parameters specified in Table 2. The base-stock levels and production queue capacities are chosen

in such a way that the overall serviceability of orders are at least as high as 0.90. Table 5 summarizes
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the results.

We again observe superior performances of the setwise lower and upper bounds compared against

other bounds. The combination lower bound performs better than the Bonferroni lower bound. No-

tice that the difference between the first order and second order bounds becomes more pronounced

for this mid-sized problem. Thus, when the problem size grows, it becomes necessary to compute

the second order bound when the fill rate is low and demand correlation is high.

The numerical results also show the greedy second–order setwise lower bound (GStL2), com-

puted by Algorithm 3.3, performs extremely well, as they give identical results compared against

the exact second–order setwise lower bound (EStL2) using (12).

The setwise upper bound performs slightly better than the Frechet upper bound. In general,

the upper bound is of high quality only when the fill rate is very high.

5.3 Nine Component Systems

We now present the experiments for a nine-component system with different order profiles. Under

both scenarios, λ1 + λ2 + · · ·+ λ9 = 37.8. Other parameter selections are summarized in Table 3.

Note that production capacity Ni is chosen so that the overall serviceability of component i is at

least 0.85, for i = 1, . . . , 9. Table 6 summarizes our findings.

The signal lower bound is not satisfactory in general. Degeneracy of Bonferroni lower bounds

occurs quite frequently for this large system. In such a case, the combination bound does better

than the Bonferroni bound. This is mainly because the combination bound uses the Bonferroni

bounds on smaller subsets of components, which reduce the possibility of degeneracy.

The second–order lower bounds are more accurate than the first–order lower bounds (with the

exception that first order setwise lower bound does better than the second order Bonferroni bound

if the latter degenerates). The second–order exact setwise lower bound is the best among all the

lower bounds. The greedy setwise lower bound is quite close to the exact setwise lower bound. It

is

also worth noting that the second–order combination bound does almost as good as the second

order setwise bounds in some cases.

The setwise upper bounds are better than the Frechet bounds. The difference is more pro-

nounced in the first–order case.

6 Extensions and Connections with Uncapacitated ATO Systems

To what extent the bounds developed in this paper for the basic capacitated ATO system, modeled

as a set of M/M/1/N queues, can be generalized to other types of ATO systems in which demand
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and service processes follow general distributions? We answer this question for both the capacitated

system (with the supply system for each component modeled as a single server queue) and the

uncapacitated system (with the supply system for each component modeled as an infinite-server

queue or a finite-server loss system).

Consider the setwise bounds first. For the capacitated ATO system, the setwise lower bounds

for M/M/1/N queues, N ≤ ∞, are rested on a fundamental property of a multivariate Poisson

process: It is known that a multivariate Poisson process generated by exponential interarrival

times and parameter set {qK ,K ⊆ Ω} is positively quadrant dependent (PQD), regardless of the

distribution of {qK ,K ⊆ Ω}. In addition, the QPD property of a multivariate Poisson process is

inherited by the inventory on order vector IO. It can be shown that the above conclusion still holds

even if the service time of each queue follows a general distribution. As a result, the setwise lower

bound is still valid for the M/G/1 type of ATO systems (in fact, it is also true for the MX/G/1

type of ATO systems, where X is the batch size).

However, if we move away from the multivariate (compound) Poisson demand process, then the

dependence structure of the demand process, and henceforth IO, is no longer independent of the

parameter set {qK ,K ⊆ Ω}. Indeed, counterexamples exist that show that simultaneous demand

may even result in negatively dependent inventory on order vector IO, for certain multivariate

renewal processes. In order to derive the setwise lower bound for the G/G/1 type of ATO systems,

we require an additional condition that the demand type indicator vector X = (X1, ..., XJ), whose

distribution is given by {qK ,K ⊆ Ω} (i.e. P (XK = 1,XΩ−K = 0) = qK , K ⊆ Ω), be more

PQD than XI , where XI is the independent counterpart of X. Under this condition, Xu (2002,

Section 5.3) shows that the setwise lower bound holds for the G/G/1 type of ATO systems. The

performance bounds for the ATO system with batch demands can be found in Li and Xu (2001)

and Xu (2002, Section 5.2).

As mentioned earlier, the setwise lower bounds have been established in the literature for the

uncapacitated, M/G/∞ type ATO systems. Again, these results rely on the properties of multi-

variate Poisson processes. If we move away from the multivariate Poisson demand process, then

two complications arise. First, as in the capacitated system, the multivariate non-Poisson renewal

process specified by general inter-arrival time distribution G and the parameter set {qK ,K ⊆ Ω}
may not be PQD. Consequently, IO may not be PQD. Second, the i.i.d./ leadtimes may cause

orders to cross over, that is, the orders for each component may be received in a different sequence

as they are placed. This makes it difficult to have the sample-path representation of the IO pro-

cess, an essential step to carry out the dependence analysis of a performance vector. However, the

following partial results are known: If X is more PQD than XI , then the setwise bounds exist for

the GX/M/N/N , N ≤ ∞, and G/D/∞ types of uncapacitated ATO systems (see Xu 2002, Section
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6).

Besides the setwise lower bounds, other types of bounds developed in this paper can also be

generalized to various types of capacitated and uncapacitated systems. The Bonferroni-type lower

bounds and the Frechet upper bounds are distribution free and therefore can be used for systems

with uncapacitated leadtimes. The setwise upper bounds in Section 4.2 can also apply to various

capacitated and uncapacitated leadtimes by adjusting the arguments, particularly for the systems

mentioned above. However those results have not appeared in the literature. The combination

lower and upper bounds and various heuristics for improved bounds can also be adapted to systems

with capacitated and uncapacitated leadtimes. The signal lower bound relies on the Markovian

assumption and can only be derived, similar as in Section 3.4, for the MX/M/1/N system. As

shown in Section 4.2, the setwise upper bound is tighter than the first-order Frechet upper bound.

The evaluations of these bounds, on the other hand, are non-trivial. This is because, unlike the

M/M/1/N type of ATO systems which can be evaluated via the matrix-geometric solution, most of

non-Markovian queues defy exact solutions, even for single-server queues (e.g., the G/G/1 queue).

However, our analysis indicates that, assuming good bounds are available for individual queues,

the first-order lower bound can produce an adequate surrogate for the fill-rate of a non-Markovian

ATO system, especially under high fill-rate.

The applicability of the first-order setwise bounds to both the capacitated and uncapacitated

systems allows us to gain insights into how different supply systems affect ATO performance mea-

sures. For example, consider two ATO systems having the same arrival process and the same

component base-stock levels si. Since only first-order bound is considered, we assume there is no

limit on the backorder queue size, i.e., bi = ∞. In the first system, the production facility of com-

ponent i is a FCFS exponential server with mean 1/µi. Thus, the supply system for component i

is an M/M/1 queue. As a result,

F i = P (Ii > 0) = P (IOi < si) = 1− ρsi
i .

So, the system fill rate (fill rate of an arbitrary order)

F ≈
∑
K

qK
∏
i∈K

(1− ρsi
i ). (24)

In the second system, each order of component i experiences a leadtime with mean 1/µi and a

general distribution. Thus, the supply system for component i is an M/G/∞ queue. Use a tilde to

distinguish the performance measures of this system, we have

F̃ i = P (Ĩi > 0) = P (ĨOi < si) = e−ρi

si−1∑
k=0

ρk
i

k!
,
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and

F̃ ≈
∑
K

qK
∏
i∈K

(
si−1∑
k=0

ρk
i

k!
)e−ρi . (25)

Note that

e−ρi

∞∑
k=si

ρk
i

k!
= e−ρiρsi

i

∞∑
k=0

ρk
i

(k + si)!
≤ e−ρiρsi

i

∞∑
k=0

ρk
i

k!
= ρsi

i .

So F̃ i ≥ F i for all i, and consequently F ≤ F̃ . That is, other things being equal, the fill-rate of the

uncapacitated system is higher than that of the capacitated system.

As illustrated above, using the first-order approximation, the comparison of the two types of

ATO systems reduces to the comparison of the marginal distributions. Thus, up to this approxi-

mation, the qualitative insights one gains from the single-component systems on the effects of the

supply systems would carry through to ATO systems. As shown in Chapter 7 of Zipkin (2000), the

difference between the two single-component systems is the same as that between a single-server

queue and an infinite-server queue. In the first, the asymptotic behavior of the system is expo-

nential, but in the second, it is normal. Also, the uncapacitated system can handle increases in

load much more easily. For an uncapacitated system, the cost is proportional to the square root of

the mean demand rate, but in a capacitated system, the cost is convex in the mean demand rate.

Because of the multiplications of the marginal distributions, we expect that these effects are not

less in the ATO systems.

The applicability of various bounds on the two types of ATO systems also suggests that the

approximation-based optimization techniques developed for ATO systems with uncapacitated lead-

times are likely to be applicable in the capacitated systems, or vice versa. Indeed, it can be shown

that, if we only consider one final product, then the greedy algorithm developed in Song and Yao

(2002) for the problem of minimizing inventory holding cost subject to a fill rate constraint in the

uncapacitated system can be applied here. Similarly, the techniques developed in Cheng et al.

(2002), Lu and Song (2002) and Lu et al. (2003b) for the uncapacitated systems can be adapted

to the corresponding capacitated systems as well.

7 Concluding Remarks

7.1 Summary

We provided an in-depth comparison of the effectiveness of several bounding ideas to estimate the

order fill rates in capacitated assemble–to–order systems. In particular, we considered four lower

bounds, including the setwise lower bound based on dependence structure of outstanding orders,
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the distribution–free Bonferroni bounds, the combination bound aimed at using a setwise partition

of a high–dimensional joint distribution to deal with the degeneracy of the Bonferroni bound, and

the signal bound originated from the study of the quasi–reversibility of queueing networks. We also

considered two upper bounds: The Frechet upper bound that uses the distribution of a subvector

to bound the original distribution, and the setwise upper bound based on the refinement of the

Frechet upper bound. We introduced several algorithms to improve the computational efficiency in

calculating the bounds.

We showed analytically that the setwise bound of any order is tighter than the signal bound.

Numerical tests also indicated that the performance of the signal bound is very disappointing.

The Bonferroni bound provides satisfactory performance only for the system with few components

or with high fill rate, otherwise its performance degrades caused by degeneracy. The combination

bound outperforms the Bonferroni bound as the setwise partition approach reduces the likelihood of

degeneracy of the Bonferroni bound. The setwise bound in most cases performs the best compared

against all other bounds. Generally, we found that the performances of all lower bounds, except for

the signal bound, are satisfactory for the system with a moderate fill rate (e.g., greater than 80%).

We also showed analytically that the setwise upper bound is tighter than the Frechet upper

bound of the same order. However, numerical results showed that the difference is negligible.

Overall, the quality of upper bounds is not as good as that of lower bounds and it is a reliable

indicator of the performance measure only when the fill rate is very high (e.g., greater than 95%).

Finally, we discussed possible extensions of these bounds to systems with non-Markovian fea-

tures. We also made connections with the uncapacitated ATO systems, which allowed us to gain

qualitative insights with regard to the effect of different supply systems on ATO system perfor-

mance.
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9812994, DMI-9896339 and DMI-0084922. The authors thank the Senior Editor and the referees
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APPENDIX

A A Signal Queue Approach

Consider the supply system in our basic model with batch arrivals, with the batch size distribution

P (XK = xK ,XΩ−K = 0) = qK
∏
i∈K

(1− pi)pxi−1
i , xK ≥ 1, K ⊆ Ω,

25



for some 0 ≤ pi < 1, i = 1, . . . , J (allowing pi = 0 will take us back to the unit–batch case). In

other words, with probability qK , an order brings a geometric batch Xi to facility i for each i ∈ K,

K ∈ Ω.

This supply system can be formulated as a queueing network with a single class of customers

denoted by c and 2J −1 classes of positive signals denoted by K, K ⊆ Ω. Node i has a single server

with service time exponentially distributed with rate µi and a finite buffer with capacity Ni, i ∈ Ω.

Suppose K = (iK1 , . . . , iK|K|). Class–K positive signals arrive at node iK1 from outside according to a

Poisson process with rate λK . The effect of a class–K positive signal on node iK` , ` = 1, . . . , |K|, is

as follows: It adds min(Xi, Ni − ni) class–c customers to node iK` , if, upon arrival, the signal finds

0 ≤ ni ≤ Ni customers at node i, and then leaves for node iK`+1 (with probability 1) as a class–K

positive signal. Here and in the sequel, we denote iK|K|+1 = 0, K ⊆ Ω and node 0 is the outside

world. In this way, the arrival of a class K positive signal will simultaneously create an arrival at

each node in K, K ∈ Ω. We can describe the dynamics of node i by the following quantities: For

every ni, n′i = 0, . . . , Ni, i ∈ Ω, and u = c or K, K ⊆ Ω, define

pA
iu(ni, n

′
i) = The probability that a type–u arrival to node i changes its state from ni to n′i,

qD
iu(ni, n

′
i) = The transition rate of node i from ni to n′i due to a type–u departure,

fiu,u′(ni, n
′
i) = The probability that a type–u arrival to node i changes the state of the node

from ni to n′i and immediately trigger a type-u′ departure.

riu,ju′ = The probability that a type–u departure from node i joins node j as a type-u′

arrival.

The above quantities becomes

pA
jK(nj , n

′
j) =


(1− pj)p

nj−n′j−1

j , if 0 ≤ nj ≤ Nj − 2 and nj + 1 ≤ n′j ≤ Nj − 1

pNj−nj−1, if 0 ≤ nj ≤ Nj − 1 and n′j = Nj

1, if nj = n′j = Nj

 ,

fjK,K(nj , n
′
j) =

 1, pA
jK(nj , n

′
j) > 0

0, otherwise

 , riK,jK =

{
1, i = iK` , j = iK`+1, ` = 1, . . . , |K|
0, otherwise

}
,

and qD
ic (ni, ni−1) = µi, 0 < ni ≤ Ni, i ∈ Ω. Any parameter that is not explicitly mentioned above

is set to zero.

Let αi = {αK
i , i ∈ K ⊆ Ω}, and αK

i be the arrival rate of type K positive signals to node i,

i ∈ K. At this stage we treat αK
i as a dummy variable and will determine it later by the traffic

26



equations (A.5). If we let ρ̂j ,
∑

K:j∈K αK
j /[(1 − pj)µj ], then the stationary distribution of the

number of customers in node j will be given as

π
αj

j (0) =


1− ρ̂j

1− ρ̂j

[
pj + (1− pj)ρ̂j

]Nj
, if pj + (1− pj)ρ̂j 6= 1,

1
1 + (1− pj)ρ̂jNj

, if pj + (1− pj)ρ̂j = 1,

(A.1)

and, for every ` = 1, 2, . . .

π
αj

j (`) =

 π
αj

j (0)
[
pj + (1− pj)ρ̂j

]`−1
(1− pj)ρ̂j , if pj + (1− pj)ρ̂j 6= 1,

π
αj

j (0)(1− pj)ρ̂j , if pj + (1− pj)ρ̂j = 1.

(A.2)

To proceed, we need the following background, taken from Chao et al.

Definition A.1. (Quasi–reversibility of node i with signals) Let Si be the state space of node i

and Ti the collection of class types. If there exist two sets of nonnegative numbers {αu
i } and {βu

i }
such that ∑

n′i∈Si

qA
iu(ni, n

′
i) = αu

i , ni ∈ Si, u ∈ Ti, (A.3)

∑
n′i∈Si

παi
i (n′i)

qD
iu(n′i, ni) +

∑
u′∈Ti

qA
iu′(n

′
i, ni)fiu′,u(n′i, ni)

 = βu
i παi

i (ni), i ∈ Si, u ∈ Ti, (A.4)

then queue i with signals is said to be quasi–reversible with respect to {qA
iu, fiu,u′ : u, u′ ∈ Ti} and

qD
iu, u ∈ Ti}.

Theorem A.2. If each node i with signals, i = 1, . . . , J , is quasi–reversible with αi = {αu
i , u ∈ Ti}

that is the solution of the traffic equations

αu
i =

∑
j

∑
u′∈Tj

βu
i rju′,iu, i = 1, . . . , J, u ∈ Ti, (A.5)

then the queueing network with signals has the product–form stationary distribution

π(n) =
J∏

i=1

παi
i (ni), n = (n1, . . . , nJ), (A.6)

where παi
i is the stationary distribution of qαi

i , i = 1, . . . , J .
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It can be checked that the nodes of our network are not quasi–reversible. However, by introduc-

ing additional Poisson departures of class-c and class-K entities, we can obtain a quasi–reversible

network. More precisely, if we let qD
jc(0, 0) , µjpj and qD

jc(Nj , Nj) , µj

[
pj+(1−pj)ρ̂j

]
, j = 1, . . . , J ;

and for all K and j ∈ K,

qD
jK(0, 0) ,

[
1 +

1
(1− pj)ρ̂j

]
αK

j , and qD
jK(nj , nj) ,

[
1 +

1
(1− pj)ρ̂j

− 1
ρ̂j

]
αK

j ,

then LHS of (A.4) is satisfied with

βc
j , µj

[
pj + (1− pj)ρ̂j

]
, j = 1, . . . , J, and βK

j ,

[
1 +

1
(1− pj)ρ̂j

]
αK

j , K ⊆ Ω, j ∈ K.

If we denote the outstanding order vector of the new system by ÎO, then Theorem A.2 implies that

the stationary distribution of ÎO is of the product–form (A.6); and αK
i , i ∈ K ⊆ Ω, are determined

by the traffic equations (A.5):

αK
j =



λK , if j = iK1 ,[
1 +

1(
1− piKm−1

)
ρ̂iKm−1

]
αK

iKm−1
, if iKm = j, m = 2, 3, . . . , |K|, Nj < +∞,

αK
iKm−1

ρ̂iKm−1

, if i = iKm, m = 2, 3, . . . , |K|, Ni = ∞,

0, otherwise.

(A.7)

The traffic equations for αK
i can be solved as follows: It is immediate from (A.7) that αK

1 = λK

if 1 ∈ K ⊆ Ω and zero otherwise. Once we know αK
1 for each K ⊆ Ω, we can also compute

ρ̂1 = α1/µ1 =
∑

K:1∈K αK
1 /µ1. Then we can compute αK

2 based on αK
1 , K ⊆ Ω and ρ̂1, and, later,

ρ̂2 =
∑

K:2∈K αK
2 /µ2, and so on.

Since the new network has additional departures of positive signals, which subsequently will

introduce more customers into the network, one can show, via sample path construction, that

IO ≤st ÎO.
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B Tables

Order Profile Utilization Correlation Policy

High Backlogging

qi = 0.05, i = 1, 2, 3 Nj = 7, sj = 4

q123 = 0.85 Lost Sales

High Nj = 7, sj = 7

ρj = 0.90 Low Backlogging

j = 1, 2, 3 qi = 0.25,i = 1, 2, 3 Nj = 7, sj = 4

q123 = 0.25 Lost Sales

#1 Nj = 7, sj = 7

Order Types: High Backlogging

{1, 2, 3, 123} qi = 0.05, i = 1, 2, 3 Nj = 7, sj = 4

q123 = 0.85 Lost Sales

Low Nj = 7, sj = 7

ρj = 0.50 Low Backlogging

j = 1, 2, 3 qi = 0.25,i = 1, 2, 3 Nj = 7, sj = 4

q123 = 0.25 Lost Sales

Nj = 7, sj = 7

High Backlogging

qi = 0.05, i = 1, 2, 3 Nj = 7, sj = 4

q12 = q13 = q23 = 0.225 Lost Sales

High q123 = 0.175 Nj = 7, sj = 7

ρj = 0.90 Low Backlogging

j = 1, 2, 3 qi = 0.25, i = 1, 2, 3 Nj = 7, sj = 4

q12 = q13 = q23 = 0.083 Lost Sales

#2 Nj = 7, sj = 7

Order Types: High Backlogging

{1, 2, 3, qi = 0.05, i = 1, 2, 3 Nj = 7, sj = 4

12, 13, 23, 123} q12 = q13 = q23 = 0.225 Lost Sales

Low q123 = 0.175 Nj = 7, sj = 7

ρj = 0.50 Low Backlogging

j = 1, 2, 3 qi = 0.25, i = 1, 2, 3 Nj = 7, sj = 4

q12 = q13 = q23 = 0.083 Lost Sales

Nj = 7, sj = 7

Table 1: Parameter Settings: Three–component Systems
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