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Abstract. In the classical bandit problem, the arms of a slot machine are always available.

This paper studies the case where the arms are not always available. We first consider the

problem where the arms are intermittently available with some time-dependent probabilities.

We prove the non-existence of an optimal index policy and propose the so-called Whittle

index policy after reformulating the problem as a restless bandit. The index strikes the

balance between exploration and exploitation: it converges to the Gittins index as the

probability of availability approaches to one and to the immediate one-time reward as it

approaches to zero. We then consider the problem where the arms may break down and

repair is an option at some cost, and we derive the corresponding Whittle index policy.

We show that both problems are indexable and that the proposed index policies cannot

be dominated uniformly by any other index policy over the entire class of bandit problems

considered here. We illustrate how to evaluate one of the indices on a numerical example in

which rewards are Bernoulli random variables with unknown success probabilities.

1. Introduction

The multi-armed bandit problem considers the trade-off between exploration and exploita-

tion. It deals with the situations in which one needs to decide between actions that maximize

immediate reward and actions acquiring information that may help increase one’s total re-

ward in the future. In the classical multi-armed bandit problem, the decision maker has to

choose at each stage one arm of an N -armed slot machine to play in order to maximize his

expected total discounted reward over infinite time horizon. The reward obtained from an

arm depends on the state of a stochastic process that changes only when the arm is played.

Gittins and Jones [5] showed that each arm is associated with an index that is a function

of the state of the arm, and that the expected total discounted reward over infinite-horizon is

maximized if every time an arm with the largest index is played. We call an arm active if it

is played and passive otherwise. The proof (see, for example, Whittle [22] and Tsitsiklis [19])

relies on the condition that only active arms change their states. Due to this limitation, the
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range of problems where optimal index policies are guaranteed to exist is small. Nevertheless,

the Gittins index policy is important because it considerably reduces the dimension of the

optimization problem by splitting it into N independent subproblems. Moreover, since at

each stage only one arm changes its state, at most one index has to be re-evaluated. For

this reason, many authors have generalized the classical multi-armed bandit problem and

studied performance of Gittins-like index policies for them.

In this paper, we study bandit problems where passive and active arms may become un-

available temporarily or permanently. Therefore, these are not classical multi-armed bandit

problems, and the Gittins index policies are not optimal any more.

For example in clinical trials, one chooses sequentially between alternative medicines to

prescribe to a number of patients. The arms correspond to medicines, and the state of

each arm corresponds to the state of knowledge about the corresponding medicine’s efficacy.

There are, however, situations where some medicine cannot be applied to certain patients.

For example, some medicines may go out of stock, or some patients are allergic to certain

ingredients of some medicines.

The bandit problems are also common in economics. In the face of the trade-off between

exploration and exploitation, rational decision makers are assumed to act optimally using

Gittins index policy. This framework has been used to explain, for example, insufficient

learning (Rothschild [18], Banks and Sundaram [1], and Brezzi and Lai [4]), matching and

job search (Jovanovic [10] and Miller [14]) and mechanism design (Bergemann and Valimaki

[3]). However, decision makers do not act in the same way when alternatives may become

unavailable in the future. Intuitively, the more pessimistic a decision maker is about the

future availability of the alternatives, the more focused he gets to immediate payoffs. There-

fore, it is questionable to expect that decision makers use the Gittins index policy in the

situations where the alternatives occasionally become unavailable.

In a variation of the above-mentioned problem, we assume that arms may break down,

and that the decision maker has the option to fix them. For example, if an energy company

loses the access to oil due to an unexpected international conflict, will it be worth the effort

to get another access to oil or will it be better to rely on other resources available to the

company such as natural gas or coal? Bandit problems with switching costs (see, for example,

Jun [11]) is a special case; arms break down immediately if they are not engaged, and if a

broken arm is engaged, then the switching cost is incurred to repair. According to Bank

and Sundaram [2], it is difficult to imagine an economic problem where the agent can switch

costlessly between alternatives. They also showed that an optimal index policy does not

exist in the presence of switching costs.
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We generalize the classical multi-armed bandit problem as follows. There are N arms,

and each arm is available with some state-dependent probability. At each decision stage,

the decision maker chooses M arms to play simultaneously and collects rewards from each

arm. The reward from arm n depends on a stochastic process Xn = (Xn(t))t≥0, whose state

changes only when the arm is played. The process Xn may represent, for example, the state

of the knowledge about the reward obtainable from arm n.

At every iteration, only a subset of the arms are available. We denote by Yn(t) the

availability of arm n at time t; it is one if the arm is available at time t, and zero otherwise.

Unlike Xn, the stochastic process Yn changes even when the arm is not played. The objective

is to find a policy that chooses arms so as to maximize the expected total discounted reward

collected over infinite horizon. We study the following two problems:

Problem 1. Each arm is intermittently available. Its availability at time t is unobservable

before time t. The conditional probability that an arm is available at time t+ 1 given

(i) the state X(t) and its availability Y (t) of the arm, and

(ii) whether or not the arm is played at time t

is known at time t. An arm cannot be played when it is unavailable.

This problem will not be well-defined unless there are at least M available arms to play

at each stage. We can, however, let the decision maker pull less than M arms at a time by

introducing sufficient number of arms that are always available and always give zero reward.

Problem 2. Arms are subject to failure, and the decision maker has the option to repair a

broken arm. Whether or not an arm is played at time t, it may break down and may not be

available at time t+ 1 with some probability that depends on

(i) the state X(t) of the arm at time, and

(ii) whether or not the arm is played at time t.

If an arm is broken, then the decision maker has the option to repair it at some cost (or

negative reward) that depends on X(t). Repairing an arm is equivalent to playing the arm

when it is broken. If an arm is repaired at time t, then it will be available at time t+ 1 with

some conditional probability that depends only on the state X(t) of the arm at time t. On

the other hand, if it is not repaired, then the arm remains broken at time t+ 1.

We show that an optimal index policy does not exist for either problem. Nevertheless,

there exists a near-optimal index policy that cannot be dominated uniformly by any other

index policy over all instances of either problem. The index we propose is based on the

Whittle index proposed for the restless bandit problems. We evaluate the performance of

the index policy for each problem both analytically and numerically.
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The restless bandit problem was introduced by Whittle [23], and it is a generalization of

the classical bandit problem in three directions: (i) the states of passive arms may change,

(ii) rewards can be collected from passive arms, and (iii) M ≥ 1 arms can be played simul-

taneously. Therefore, Problems 1 and 2 fall in the class of restless bandit problems. These

problems are computationally intractable; Papadimitriou and Tsitsiklis [16] proved that they

are PSPACE-hard. As in a typical restless bandit problem, we assume that rewards can be

collected from passive arms and that more than one arm can be pulled simultaneously.

Whittle [23] introduced the so-called Whittle index to maximize long-term average reward

and characterized the index as a Lagrange multiplier for a relaxed conservation constraint,

which ensures that on average M arms are played at each stage. The Whittle index policy

makes sense if the problem is indexable. Weber and Weiss [20, 21] proved that under indexa-

bility, the Whittle index policy is asymptotically optimal as M and N tend to infinity while

M/N is constant. The verification of indexability is hard in general. Whittle [23] gave an

example of a unindexable problem. However, indexability can be verified, and Whittle index

policy can be developed analytically, for example, for the dual-speed restless bandit problem

[7] and the problem in [8] with improving active arms and deteriorating passive arms.

Glazebrook et al. [6] considered a problem in which passive arms are subject to permanent

failure. They modeled it as a restless bandit, showed its indexability, and developed the

Whittle index policy. Problems 1 and 2 are the generalizations of their problem in that a

broken arm is allowed to get back to the system, and that both passive and active arms may

break down. We prove that Problems 1 and 2 are indexable and derive the Whittle indices.

Glazebrook et al.’s [6] and Gittins’ indices turn out to be the special cases of those indices.

We also evaluate the Whittle index numerically. Like the Gittins index, the Whittle

indices for Problems 1 and 2 are also the solutions to suitable optimal stopping problems.

We generalize Katehakis and Veinott’s [12] restart-in formulation of Gittins index to Problem

1’s Whittle index. Problem 2’s Whittle index turns out to be similar to the Gittins index,

and we use the original restart-in problem to calculate the index for Problem 2.

In Section 2, we start by modeling Problems 1 and 2 as restless bandits. In Section 3,

we review Whittle index and indexability. In Sections 4 and 5, we verify the indexability

of Problems 1 and 2 and develop corresponding Whittle indices; we also prove the non-

existence of an optimal index policy. A generalization of the restart-in problem that is

used to calculate Problem 1’s Whittle index is discussed in Section 6. We then consider a

numerical example in which the reward process is a Bernoulli process with unknown success

probability, and we evaluate the index policy. The example is introduced in Section 7, and

the results for Problems 1 and 2 are given in Sections 8 and 9, respectively. Section 10

contains the concluding remarks.
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2. Model

We first model a general restless bandit problem that subsumes Problems 1 and 2, and

then specialize to the latter ones in Sections 4 and 5, respectively.

Using the stochastic processes X and Y defined in the previous section, the state of arm n

at time t can be denoted by Sn(t) = (Xn(t), Yn(t)). We denote by S(t) = (S1(t), S2(t), . . . , SN(t))

the state at time t of the system consisting of N arms.

Suppose that Xn takes values in Xn, n = 1, . . . , N , and let Sn = Xn × {0, 1}. The process

(Xn(t), Yn(t)) is a controlled time-homogeneous Markov process with the control

an(t) =

{
1, if arm n is played at time t,

0, otherwise.

Let a(t) = (a1(t), a2(t), . . . , aN(t)) denote the control action at time t ≥ 0.

For every 1 ≤ n ≤ N , the process (Xn(t))t∈≥0 evolves according to a one-step transition

probability matrix p(n) = (p
(n)
xx′)x,x′∈Xn , if arm n is available and is played, and does not

change otherwise; that is, for every x, x′ ∈ Xn,

P {Xn(t+ 1) = x′|Xn(t) = x, Yn(t) = y, an(t) = a} =

{
p

(n)
xx′ , if y = a = 1,

δxx′ , if y = 0 or a = 0,

where δxx′ equals one if x = x′ and zero otherwise. Hence, even if arm n is active, the process

Xn does not change if the arm is unavailable. In Problem 2, activating an unavailable arm is

equivalent to repairing it. In that case, the process Xn does not change; namely, repairing an

arm only changes its availability. In Problem 1, activating an unavailable arm is not allowed.

We denote the conditional probability that arm n is available at time t + 1, given Xn(t),

Yn(t), and an(t) by

θa
n(x, y) , P {Yn(t+ 1) = 1|Xn(t) = x, Yn(t) = y, an(t) = a} ,(1)

for every (x, y) ∈ Sn, a ∈ {0, 1}, t ≥ 0, and 1 ≤ n ≤ N . In other words, the random variable

Yn(t+ 1) has conditionally Bernoulli distribution with success probability θ
a(t)
n (Xn(t), Yn(t))

given Xn(t) and Yn(t). For every x ∈ Xn and a, y ∈ {0, 1}, let

Ra
n(x, y) , expected reward collected from arm n when Xn(t) = x, Yn(t) = y, an(t) = a,

and as in the classical bandit problem, we assume that Ra
n(x, y) is bounded uniformly over

x ∈ X and y ∈ {0, 1}. Let 0 < γ < 1 be a given discount rate. Then the expected

discounted immediate reward at time t equals E
[
γt
∑N

n=1R
an(t)
n (Xn(t), Yn(t))

]
. If ai(t) = 1

and Yi(t) = 1, then Xi(t) changes to Xi(t+1) according to p(i). If aj(t) = 0 or Yj(t) = 0, then

Xj(t + 1) = Xj(t). If ai(t) = 1, then Yi(t + 1) equals one with probability θ1
i (Xi(t), Yi(t)),
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and zero with probability 1 − θ1
i (Xi(t), Yi(t)). If aj(t) = 0, then Yj(t + 1) equals one with

probability θ0
j (Xj(t), Yj(t)), and zero with probability 1− θ0

j (Xj(t), Yj(t)).

The stochastic process (X, Y ) = (X(t), Y (t))t≥0 is Markovian; therefore, we only need to

consider stationary policies π : S1 × . . . × SN 7→ A ,
{
a ∈ {0, 1}N : a1 + . . .+ aN = M

}
.

Denote for every fixed ((x1, y1), . . . , (xN , yN)) ∈ S1 × . . .× SN , the value under a stationary

policy π by Jπ(((x1, y1), . . . , (xN , yN))), and it equals

Eπ

[
∞∑

t=0

γt

N∑
n=1

Ran(t)
n (Xn(t), Yn(t))

∣∣∣∣∣Xn(0) = xn, Yn(0) = yn, n = 1, 2, . . . , N

]
,

where an(t) = π((X1(t), Y1(t)), . . . , (XN(t), YN(t))) for every t ≥ 0. A policy π∗ ∈ Π

is optimal if it maximizes Jπ(((x1, y1), . . . , (xN , yN))) over π ∈ Π for every initial state

((x1, y1), . . . , (xN , yN)) in S1 × . . .× SN .

3. The Whittle index and indexability

Let us fix an arm and denote its state (X(t), Y (t)) as in Section 2, and consider the

following auxiliary problem. At each time, the decision maker can either activate the arm

or leave it resting. Suppose the current state of the arm is (x, y). If the arm is activated,

then reward R1(x, y) is obtained. If it is rested, then a subsidy W ∈ R and the passive

reward R0(x, y) are obtained. The objective is to maximize the expected total discounted

reward. Whittle [22] called this problem as the “W -subsidy problem”, and it is a variant

of the retirement problem (see, for example, Ross [17, Chapter VII]). The so-called Whittle

index corresponds to the smallest value of W for which it is optimal to rest the arm. After

Whittle index is calculated for every arm, the Whittle index policy is to activate an arm with

the largest index. However, this policy makes sense only if any arm which is rested under

a subsidy W is also rested under any subsidy W ′ > W . Namely, the set of states at which

it is optimal to rest the arm increases monotonically as the value of subsidy W increases.

This property is called indexability. These concepts were originally introduced by Whittle

[23] in the average-reward case, and their counterparts in the discounted case are described

by other authors; see, e.g., Niño-Mora [15].

3.1. Definitions. Because the indexability and Whittle index are examined for each fixed

isolated arm, we omit the subscripts identifying the arm. In the restless bandit problem, a

passive arm may change its state and give a nonzero reward. We denote the state process of

the arm by the controlled Markov process S = (S(t))t≥0 on some state space S, the control

action at time t by a(t), its transition matrix by

pa
ss′ = P{S(t+ 1) = s′|S(t) = s, a(t) = a}, s, s′ ∈ S, a ∈ {0, 1},
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and the expected reward obtained from the arm under action a ∈ {0, 1} by Ra(s), s ∈ S.

The arm is said to be active if action a = 1 is taken and passive otherwise.

For every fixed W ∈ R, the value function of the W -subsidy problem satisfies

V (s,W ) = max
{
L1(s,W ), L0(s,W )

}
,(2)

where

L1(s,W ) = R1(s) + γ
∑
s′∈S

p1
ss′V (s′,W ), L0(s,W ) = W +R0(s) + γ

∑
s′∈S

p0
ss′V (s′,W )

are the maximum expected total rewards if the first action is to activate or to rest the arm,

respectively. We let Π(W ) be the subset of S in which it is optimal to choose the passive

action when the passive subsidy is W . Namely,

Π(W ) ,
{
s ∈ S : L1(s,W ) ≤ L0(s,W )

}
, W ∈ R.

If an arm is indexable and it is optimal to rest the arm when the value of subsidy is W , then

it is also optimal to rest the same arm whenever the value of subsidy is greater than W .

Definition 3.1 (Indexability). An arm is indexable if Π(W ) is increasing in W ; namely,

W1 > W2 =⇒ Π(W1) ⊇ Π(W2).(3)

Definition 3.2 (Whittle index). The Whittle index of an indexable arm equals

W (s) , inf{W ∈ R : s ∈ Π(W )} in every state s ∈ S.(4)

Under indexability, the Whittle index is the smallest value of W for which both the active

and passive actions are optimal.

Definition 3.3 (Whittle index policy). Suppose that the arms of a restless bandit problem

are indexable. The Whittle index policy plays M arms with the largest Whittle-indices.

The W -subsidy problem is a special instance of Problems 1 and 2. If an optimal index

policy exists for those problems, then it must also be optimal for W -subsidy problem. This

observation will imply the non-existence of an optimal index policy; see Sections 4.5 and 5.3.

4. The Whittle index for Problem 1

This section presents an index policy for Problem 1. We obtain the Whittle index for

Problem 1 by studying the W -subsidy problem and prove the non-existence of an optimal

index policy. We will see that the Whittle index policy is the unique optimal index policy for

the W -subsidy problem up to a monotone transformation. Because the W -subsidy problem

is a special case of Problem 1, if there exists an optimal index policy for Problem 1, then it
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must be a strict monotone transformation of the Whittle index policy. We prove the non-

existence of an optimal index policy by showing an example in which the Whittle index policy

is not optimal. We also show that there does not exist an index policy that is uniformly

better than our Whittle index policy over all instances of Problem 1.

If an arm is unavailable, then only passive action is available, and the following holds.

Condition 4.1. For every x ∈ X , we have

(x, 0) ∈ Π(W ), W ∈ R. (inf ∅ ≡ −∞)(5)

4.1. TheW -subsidy problem for Problem 1. Recall from Section 1 that S(t) = (X(t), Y (t))t≥0

is the state process of a potentially unavailable arm. If the current state is s = (x, y) for

some x ∈ X and y ∈ {0, 1}, then the probability that the arm is available at the next stage

is given by θ1(x, y) if the arm is active, and by θ0(x, y) if it is passive; see (1).

For fixed W ∈ R, let the value function for the corresponding W -subsidy problem be

V ((·, ·),W ) : X × {0, 1} 7→ R. As in (2), it satisfies the Bellman equation

V ((x, y),W ) = max{L1((x, y),W ), L0((x, y),W )}, x ∈ X , y ∈ {0, 1},

where

L1((x, y),W ) = R1(x, y) + γ
∑
x′∈X

pxx′
[
(1− θ1(x, y))V ((x′, 0),W ) + θ1(x, y)V ((x′, 1),W )

]
,

L0((x, y),W ) = W +R0(x, y) + γ
[(

1− θ0(x, y)
)
V ((x, 0),W ) + θ0(x, y)V ((x, 1),W )

]
.

Let P1,0 be the probability law induced by the policy that the arm is active whenever it is

available, and it is passive otherwise. Similarly, let P0,0 be the probability law induced when

the arm is always rested. That is, P1,0 {X(t+ 1) = x′, Y (t+ 1) = y′|X(t) = x, Y (t) = y} is pxx′
[
θ1(x, 1)

]y′ [
1− θ1(x, 1)

]1−y′
, y = 1

δxx′
[
θ0(x, 0)

]y′ [
1− θ0(x, 0)

]1−y′
, y = 0

 ,

and P0,0 {X(t+ 1) = x′, Y (t+ 1) = y′|X(t) = x, Y (t) = y} = δxx′ [θ0(x, y)]
y′

[1− θ0(x, y)]
1−y′

.

Let E1,0
x,y[·] and E0,0

x,y[·] be the expectations with respect to P1,0 and P0,0, respectively, given

that X(0) = x and Y (0) = y.

Denote by ρ(x, y) the expected total discounted reward from a passive arm whose current

state is (x, y) ∈ X × {0, 1}; namely,

ρ(x, y) , E0,0
x,y

[
∞∑

t=0

γtR0(X(t), Y (t))

]
= E0,0

x,y

[
∞∑

t=0

γtR0(x, Y (t))

]
.(6)
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Let (Ft)t≥0 be the filtration generated by (X(t))t≥0 and (Y (t))t≥0, and S be the set of all

almost-surely (a.s.) positive stopping times of (Ft)t≥0, and define

S , {τ ∈ S : Y (τ) = 1 a.s.}

as the set of positive stopping times at which the arm is available.

The following proposition states that there exists an optimal index policy for the W -

subsidy problem. This will be used to obtain the Whittle index and prove the non-existence

of an optimal index policy for Problem 1. All of the proofs are deferred to the appendix.

Proposition 4.1. In the W -subsidy problem, resting the arm is optimal at state (x, 1),

namely (x, 1) ∈ Π(W ), if and only if

W ≥ (1− γ) sup
τ∈S

E1,0
x,1

[∑τ−1
t=0 γ

tRY (t)(X(t), Y (t)) + γτρ(X(τ), Y (τ))
]
− ρ(x, 1)

1− E1,0
x,1

[
(1− γ)

∑τ−1
t=1 γ

t1{Y (t)=0} + γτ
] .(7)

4.2. Including passive rewards. The Whittle index and indexability of Problem 1 are

easy consequences of Proposition 4.1. Note that the right-hand side of (7) is the minimum

value of subsidy at which it is optimal to make the arm passive when the state of the arm is

(x, 1); therefore, it corresponds by definition to the Whittle index of the arm.

Proposition 4.2. For every x ∈ X and y ∈ {0, 1}, the arm is indexable with the index

(8) W (x, y) ,
(1− γ) sup

τ∈S

E1,0
x,1

[∑τ−1
t=0 γ

tRY (t)(X(t), Y (t)) + γτρ(X(τ), Y (τ))
]
− ρ(x, 1)

1− E1,0
x,1

[
(1− γ)

∑τ−1
t=1 γ

t1{Y (t)=0} + γτ
] , if y = 1,

−∞, otherwise.

The index in (8) is the generalization of that of Glazebrook et al., [6], who studied a

problem where only passive arms may become unavailable, and once arms are unavailable,

they never become available. This is a special case of Problem 1 with the following condition.

Condition 4.2. For every x ∈ X , suppose that θ1(x, 1) = 1 and θ1(x, 0) = θ0(x, 0) = 0.

Corollary 4.1 (Glazebrook et al. [6, Theorem 2]). Suppose Conditions 4.1 and 4.2 hold.

Then the arm is indexable with the index W (x, y) defined for every x ∈ X by


(1− γ) sup

τ∈S

E1,0
x,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t)) + γτρ(X(τ), Y (τ))
]
− ρ(x, 1)

1− E1,0
x,1 [γτ ]

, if y = 1

−∞, otherwise

 .

(9)
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4.3. The Whittle index if passive arms do not give rewards. We now derive the

Whittle index when passive arms do not give rewards. That is, in addition to Condition 4.1,

we also assume the following.

Condition 4.3. Suppose that R0(x, y) = 0 holds for every x ∈ X and y ∈ {0, 1}.

The arm is indeed indexable, and the Whittle index is given by the following corollary.

Corollary 4.2. If Conditions 4.1 and 4.3 hold, then the arm is indexable with the index

W (x, y) =


(1− γ) supτ∈S E1,0

x,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t))1{Y (t)=1}
]

1− E1,0
x,1

[∑τ−1
t=1 (1− γ)γt1{Y (t)=0} + γτ

]
,

if y = 1

−∞, otherwise

 , x ∈ X .

(10)

We omit the proof as the result is immediate from Proposition 4.2 after substituting

R0(x, y) = 0 for every x ∈ X and y ∈ {0, 1}. The index (10) can be simplified further when

the probability of availability does not depend on the state of X and Y .

Corollary 4.3. Suppose Conditions 4.1 and 4.3 hold, and θ0(x, y) = θ1(x, y) = θ ∈ [0, 1] is

constant for every x ∈ X and y ∈ {0, 1}. Then the arm is indexable with the index

W (x, y) =


(1− γ) supτ∈S E1,0

x,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t))1{Y (t)=1}
]

1− γ(1− θ)− θE1,0
x,1 [γτ ],

if y = 1

−∞, otherwise

 , x ∈ X .

(11)

4.4. The convergence of the Whittle index to the Gittins index or to the immedi-

ate expected reward. We now analyze the Whittle index (11) as a function of probability

of availability θ ∈ [0, 1]. Firstly, the Whittle index is a generalization of the Gittins index:

they coincide when the arm is always available, as the next corollary shows; therefore, they

are optimal for the classical bandit problem.

Corollary 4.4. Suppose the arm is always available; i.e.,

θ0(x, y) = θ1(x, y) = 1, x ∈ X , y ∈ {0, 1}.(12)

Then the arm is indexable with the index

W (x, y) =


sup
τ∈S

E1,0
x,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t))
]

E1,0
x,1

[∑τ−1
t=0 γ

t
] , if y = 1

−∞, otherwise

 , x ∈ X .(13)
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Since each arm is available with probability one, the probability law P1,0 chooses the active

action all the time. Thus, the Whittle index policy is optimal in the classical bandit problem.

Secondly, if θ0(x, y) = θ1(x, y) = 0 for every x ∈ X and y ∈ {0, 1}, then the index becomes

W (x, 1) = R1(x, 1), x ∈ X .(14)

The next proposition shows that the limits of the Whittle index in (11) as θ ↗ 1 and θ ↘ 0

exist and coincide with its extreme values in (13) and (14), respectively.

Proposition 4.3. The Whittle index W (x, 1) defined in (11) converges to the Gittins index

as θ ↗ 1, and to the one-time reward R1(x, 1) as θ ↘ 0 uniformly over x ∈ X .

The result is also intuitive. If the probability of availability is small, then the decision

maker becomes myopic; she does not care too much about the future rewards, because she

expects that the arm will not be available for most of the time. Consider, for example, the

situation in which there is one arm which is always available and gives her a constant reward

while the other arms are available today, but she knows that they will not be available in the

future. The optimal strategy is to pick today the arm with the highest immediate reward

and to pick tomorrow and in the future the only arm that is available. On the other hand,

as θ ↗ 1, the problem becomes more similar to the classical bandit problem, and the index

converges to the optimal Gittins index by Proposition 4.3.

4.5. The non-existence of an optimal policy. We conclude this section by proving the

non-existence of an optimal index policy for Problem 1. This is true even in a special case

in which M = 1, passive arms do not give rewards, and the probability of availability is

consistent. We claim that if there exists an optimal index policy, then it must be a strict

monotone transformation of the index defined by (8). We then show the non-existence of an

optimal index policy by showing an example in which the index policy is not optimal.

Proposition 4.4. Any index that is optimal for every instance of Problem 1 must be a strict

monotone transformation of the index W (·, ·) in (8).

Proposition 4.5. An optimal index policy does not exist for Problem 1.

If an optimal index policy exists for Problem 1, then it must be a strict monotone trans-

formation of (8) by Proposition 4.4. For, otherwise, it will not be optimal for the W -subsidy

problem, a special case of Problem 1. This also means that there does not exist an index

policy that uniformly dominates Whittle index policy over all of the instances of Problem 1.
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5. The Whittle index for Problem 2

Unlike in the previous problem, here we assume that the active action is still available

even when the arm is unavailable. Activating the arm is equivalent to repairing the arm.

We denote by Cn(x) > 0 the repair cost when arm n is broken at state x. If a broken arm

is not repaired, then it will be unavailable (or stay broken) the next time with probability

one. We assume that passive arms do not give rewards, and that the reward obtained from

activating an available arm is positive as in the following condition.

Condition 5.1. For every x ∈ X , y ∈ {0, 1}, and n = 1, . . . , N , suppose that R1
n(x, 1) ≥ 0,

R1
n(x, 0) = −Cn(x) < 0, R0

n(x, y) = 0, and θ0
n(x, 0) = 0.

5.1. The W-subsidy problem and the Whittle index for Problem 2. As for Problem

1, we first consider the W -subsidy problem for Problem 2. Under Condition 5.1, the value

function of the W -subsidy problem satisfies

V ((x, y),W ) = max{L1((x, y),W ), L0((x, y),W )},

where for every x ∈ X , we have

L1((x, 1),W ) = R1(x, 1) + γ
∑
x′∈X

pxx′
[
(1− θ1(x, 1))V ((x′, 0),W ) + θ1(x, 1)V ((x′, 1),W )

]
,

L0((x, 1),W ) = W + γ
[
(1− θ0(x, 1))V ((x, 0),W ) + θ0(x, 1)V ((x, 1),W )

]
,

and

L1((x, 0),W ) = −C(x) + γ
[
(1− θ1(x, 0))V ((x, 0),W ) + θ1(x, 0)V ((x, 1),W )

]
,

L0((x, 0),W ) = W + γV ((x, 0),W ).

Similar to P1,0 and P0,0 of the previous section, let P1,1 be the probability law induced by

the policy that activates the arm forever and E1,1 denote the expectation with respect to

P1,1. Moreover, let ψ(x) be the expected total discounted reward if the arm is active forever

starting in state (x, 1) at time zero. Namely,

ψ(x) , E1,1
x,1

[
∞∑

t=0

γt
{
R1(X(t), Y (t))1{Y (t)=1} − C(X(t))1{Y (t)=0}

}]
.(15)

Condition 5.2. Suppose that we have ψ(x) ≥ −C(x)/(1− γ) for every x ∈ X .

Condition 5.2 is satisfied, for example, if

(i) the arm never breaks under the active action; i.e., θ1(x, 1) = 1 for every x ∈ X , or

(ii) C(X(t)) is constant or non-increasing almost surely under the active action.
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Proposition 5.1. Under Condition 5.2, in the W -subsidy problem for Problem 2, activating

the arm is optimal if and only if

W ≥ (1− γ) sup
τ∈S

E1,1
x,y

[∑τ−1
t=0 γ

tR1(X(t), Y (t))
]

1− E1,1
x,y [γτ ]

.

Proposition 5.2. If Condition 5.2 holds, then the arm is indexable with the index

W (x, y) = (1− γ) sup
τ∈S

E1,1
x,y

[∑τ−1
t=0 γ

tR1(X(t), Y (t))
]

1− E1,1
x,y [γτ ]

, x ∈ X , y ∈ {0, 1}.(16)

Remark 5.1. If Condition 4.2 holds, then the problem reduces to a problem studied by

Glazebrook et al. [6] where passive arms do not give rewards, and the indices coincide.

5.2. The connection to the bandit problems with switching costs. The problem is

reduced to the classical bandit problem with switching costs if θ1(x, 1) = 1, and if Cn(x) is

the cost of switching to arm n when the current state of arm n is x. Condition 5.2 holds

because θ1(x, 1) = 1; therefore, the Whittle index is indexable. Glazebrook et al. [9] have

formulated the problem as a restless bandit problem. Their formulation is slightly different

from ours in that one does not have to wait for the arm to be fixed; when one plays a broken

arm, he obtains its immediate reward minus the switching cost and the arm is guaranteed to

be available the next time. Nevertheless, the form of their index is the same as ours. They

showed numerically that their index policy is nearly optimal.

5.3. The non-existence of an optimal policy. As in Problem 1, an optimal index policy

does not exist for Problem 2. We again show that if there exists one, then the corresponding

index must be a strict monotone transformation of our index, and we give an example where

our index policy is not optimal. Proof of Proposition 5.3 is omitted because it is very similar

to that of Proposition 4.4.

Proposition 5.3. If there is an optimal index policy for Problem 2, then the index must be

a strict monotone transformation of the index W (·, ·) in (16).

Proposition 5.4. An optimal index policy does not exist for Problem 2.

6. The restart-in problem

We have developed the Whittle indices for Problems 1 and 2 in the previous sections.

Here we assume that passive arms do not give rewards and discuss how to compute the

indices in (10) and (16). To this end, we develop the restart-in problem representation of the

indices. The restart-in problem representation of the Gittins index for the classical multi-

armed bandit problem was introduced by Katehakis and Veinott [13]. The index in (16) is
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similar to the Gittins index; therefore, we first formulate it as a restart-in problem. We then

propose a generalization of restart-in problem representation for the Whittle index in (10).

6.1. The restart-in problem for the Gittins index. We first review the restart-in prob-

lem formulated by Katehakis and Veinott [13]. Consider the classical multi-armed bandit

problem where a fixed arm follows a stochastic process S = (S(t))t≥0 on some state space S
and evolves according to a transition matrix p = (pss′)ss′∈S under the active action, and let

R(s) be the one-time reward obtained when the state of the arm is s and when it is active.

Katehakis and Veinott [13] showed that the Gittins index of the arm at state s̃ ∈ S equals

(1− γ)νs̃, where ν = (νs)s∈S satisfies the optimality equation

νs = max

(
R(s) + γ

∑
s′∈S

pss′νs′ , R(s̃) + γ
∑
s′∈S

ps̃s′νs′

)
, s ∈ S;(17)

particularly,

νs̃ = sup
τ>0

E
[∑τ−1

t=0 γ
tR(S(t))

∣∣S(0) = s̃
]

E [1− γτ ]
= sup

τ>0

E
[∑τ−1

t=0 γ
tR(S(t))

∣∣S(0) = s̃
]

(1− γ)E
[∑τ−1

t=0 γ
t
] .

The Gittins index at a fixed state s̃ is the solution of |S| equations defined by (17), and it

can be calculated by the value-iteration algorithm applied to (17).

We now characterize the Whittle indices in (5.2) and (10) of a potentially unavailable arm

as the value function of a restart-in problem.

6.2. The restart-in problem representation of (16). Because (16) and Gittins index

are similar, we can use the restart-in problem representation of the Gittins index, after we

multiply each one-time reward by (1− γ). Namely, W (x̃, ỹ) equals νx̃,ỹ if R1(x, 0) = −C(x)

and (νx,y)x∈X ,y∈{0,1} satisfies for every x ∈ X and y ∈ {0, 1},

(18) νx,y = max

(
(1− γ)R1(x, y) + γ

∑
x′∈X

pxx′
[
θ1(x, y)νx′,1 + (1− θ1(x, y))νx′,0

]
,

(1− γ)R1(x̃, ỹ) + γ
∑
x′∈X

px̃x′
[
θ1(x̃, ỹ)νx′,1 + (1− θ1(x̃, ỹ))νx′,0

])
.

6.3. The restart-in problem representation for (10). Fix x̃ ∈ X and define (νx,y)x∈X ,y∈{0,1}

such that, for every x ∈ X ,

(19) νx,1 = max

(
(1− γ)R1(x, 1) + γ

∑
x′∈X

pxx′
[
θ1(x, 1)νx′,1 + (1− θ1(x, 1))νx′,0

]
,

(1− γ)R1(x̃, 1) + γ
∑
x′∈X

px̃x′
[
θ1(x̃, 1)νx′,1 + (1− θ1(x̃, 1))νx′,0

])
,
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and

νx,0 = (1− γ)νx̃,1 + γ
(
θ0(x, 0)νx,1 + (1− θ0(x, 0))νx,0

)
.(20)

Next proposition shows that if (νx,y)x∈X ,y∈{0,1} satisfies (19) and (20), then νx̃,1 coincides

with the index in (2) of the arm in state (x̃, 1).

Proposition 6.1. If (νx,y)x∈X ,y∈{0,1} satisfies (19) and (20), then we have

νx̃,1 = (1− γ) sup
τ∈S

E1,0
x̃,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t))1{Y (t)=1}
]

1− E1,0
x̃,1

[∑τ−1
t=1 (1− γ)γt1{Y (t)=0} + γτ

] .(21)

Remark 6.1. Suppose θ1(x, 1) = 1 for every x ∈ X as in the classical multi-armed bandit

problem. Then (19) becomes

νx,1 = max

{
(1− γ)R1(x, 1) + γ

∑
x′∈X

pxx′νx′,1, (1− γ)R1(x̃, 1) + γ
∑
x′∈X

px̃x′νx′,1

}
,

which is Katehakis and Veinott’s [13] restart-in problem representation of the Gittins index

after multiplication by (1−γ). Indeed, νx̃,1 equals the Gittins index of the arm in state (x̃, 1).

7. An example

We will illustrate how to evaluate Whittle indices in (10) and (16) and compare Whittle

and other index policies for Problems 1 and 2, in which the reward of each arm is a Bernoulli

random variable with some unknown success probability. The success probability of arm n

is a random variable λn having beta distribution with parameters an and bn; namely,

P {λn ∈ dr} =
Γ(an + bn)

Γ(an)Γ(bn)
ran−1(1− r)bn−1dr,

and let Cn > 0 be the repair cost for arm n in Problem 2.

Katehakis and Derman [12] approximate the Gittins index for the classical two-armed

bandit problem with Bernoulli distributed rewards. We generalize their approximation to

calculate the Whittle indices in (10) and (16). In the next section, we compute the Whittle

indices and evaluate corresponding index policies. Here we shall omit the subscripts that

identify the arms, because we compute the index for each arm separately.

If the parameters of the current beta distribution of λ are (a, b), and if c successes and d

failures are observed after c+ d plays, then the posterior probability distribution of λ is also

beta with parameters (a+ c, b+ d).

Let X(t) denote the parameters of the posterior beta distribution of λ after t plays. Then

the pair (X,Y ) stores all of the information needed; it is a Markov process that evolves
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under the active action according to transition probabilities

p(a,b),(a+1,b) =
a

a+ b
, p(a,b),(a,b+1) =

b

a+ b
.

The one-time expected reward given X(t) = (a, b) and Y (t) = 1 at time t is a/(a + b).

We formulate the restart-in problem representation for Problems 1 and 2 and describe a

computational method analogous to that of Katehakis and Derman [12].

7.1. The restart-in problem for Problem 1. Specializing (19) and (20), the Whittle

index of the arm in state (x, 1) = ((ã, b̃), 1) is given by W ((ã, b̃), 1) = ν(ã,b̃),1, which satisfy

ν(a,b),1 = max(L(a, b),L(ã, b̃)),(22)

ν(a,b),0 = (1− γ)ν(ã,b̃),1 + γ
[
θ0((a, b), 0)ν(a,b),1 + (1− θ0((a, b), 0))ν(a,b),0

]
,(23)

for every (a, b) ∈ N2, where

L(a, b) = (1− γ)R1((a, b), 1) + γ
[
θ1((a, b), 1)

(
p(a,b)(a+1,b)ν(a+1,b),1 + p(a,b)(a,b+1)ν(a,b+1),1

)
+(1− θ1((a, b), 1))

(
p(a,b)(a+1,b)ν(a+1,b),0 + p(a,b)(a,b+1)ν(a,b+1),0

)]
= (1− γ)

a

a+ b
+ γ

[
θ1((a, b), 1)

(
a

a+ b
ν(a+1,b),1 +

b

a+ b
ν(a,b+1),1

)
+(1− θ1((a, b), 1))

(
a

a+ b
ν(a+1,b),0 +

b

a+ b
ν(a,b+1),0

)]
.

7.2. The restart-in problem for Problem 2. The Whittle index of the arm at state

(x̃, ỹ) = ((ã, b̃), ỹ) is given by W ((ã, b̃), ỹ) = ν(ã,b̃),ỹ, which satisfy

ν(a,b),y = max(L((a, b), y),L((ã, b̃), ỹ))(24)

for every (a, b) ∈ N2 and y ∈ {0, 1}, where L((a, b), y) equals

(1− γ)R1((a, b), y) + γ
[
θ1((a, b), y)

(
p(a,b)(a+1,b)ν(a+1,b),1 + p(a,b)(a,b+1)ν(a,b+1),1

)
+(1− θ1((a, b), y)

(
p(a,b)(a+1,b)ν(a+1,b),0 + p(a,b)(a,b+1)ν(k,l+1),0

)]
= (1− γ)

(
a

a+ b
1{1}(y)− C1{0}(y)

)
+ γ

[
θ1((a, b), y)

(
a

a+ b
ν(a+1,b),1 +

b

a+ b
ν(a,b+1),1

)
+(1− θ1((a, b), y)

(
a

a+ b
ν(a+1,b),0 +

b

a+ b
ν(a,b+1),0

)]
.

7.3. Computing the Whittle indices. We can calculate the Whittle indices (10) and (16)

by solving, with the value iteration algorithm, the Bellman equations (22), (23), and (24),

respectively. Katehakis and Derman [12] calculated the Gittins index for a classical bandit

problem with two Bernoulli arms after truncating the state space of the process X to

ZL =
{
(a, b) ∈ N2 : a+ b ≤ L

}
(25)
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for some fixed integer L > 0. In the same manner, we only consider states s = (x, y) where

x = (a, b) ∈ ZL and y ∈ {0, 1}. Katehakis and Derman [12] proved that as L increases, their

approximation converges to the true value of the Gittins index. It is easy to prove that the

same result holds in our settings.

7.4. Some bounds on the optimal value function of the restart-in problem. We dis-

cuss how to obtain some upper and lower bounds on the optimal value function. In principle,

the optimal values can be computed by solving the dynamic programming equations using,

for example, the value iteration algorithm. In practice, however, they are computationally

intractable when the number of arms is large.

Let J∗(s) denote the optimal value when the state of arm n is sn = ((an, bn), yn) for

n = 1, . . . , N . Let j and j be some upper and lower bounds of J∗, respectively. Namely,

j(s) ≤ J∗(s) ≤ j(s), s ∈ S1 × . . .× SN .

We truncate the state space to (ZL × {0, 1})N , where ZL is defined as in (25).

Now we can replace the reward at the boundaries by their bounds and use backward

induction to obtain bounds on the value function on the entire truncated state space. For

s ∈ (ZL × {0, 1})N , define J(s) = j(s) and J(s) = j(s) where ZL = {(a, b) ∈ N2 : a+b = L},
and calculate J(s) and J(s) by solving the same Bellman equation for J∗(·). By monotonicity,

J(s) ≤ J∗(s) ≤ J(s), s ∈ (ZL × {0, 1})N .

8. Numerical results for Problem 1

We provide numerical results obtained for Problem 1 in this section. We considered the

problem where the reward process is defined as in Section 7, and the probability that an arm

is available is constant. The corresponding Whittle index is given by (11).

8.1. Computing the Whittle indices. We computed the Whittle indices for probabilities

of availability θ = 0.1, 0.3, 0.5, 0.7, 0.9, 1.0 and γ = 0.9 using the algorithm described in the

previous section with L = 200. These indices are tabulated in Appendix B. Recall that the

Whittle index is a generalization of the Gittins index and coincides with the Gittins index

when θ = 1. Indeed, we obtained the same values as Katehakis and Derman [13] for θ = 1

after multiplying by (1 − γ). Moreover, as the value of θ decreases to 0, as we proved in

Proposition 4.3, the index converges to the one-time reward. Note that the indices are very

close to the one-time reward a/(a+ b) when θ = 0.1.
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θ1 θ2 θ3 lower/upper bounds Whittle (95 % CI) Gittins (95 % CI)

1.0 1.0 1.0 (6.49292, 6.60618) 6.5426 (6.5381, 6.5471) 6.5426 (6.5381, 6.5471)

0.7 0.7 1.0 (6.17190, 6.22723) 6.1782 (6.1737, 6.1827) 6.1673 (6.1630, 6.1716)

0.7 0.5 1.0 (6.04527, 6.09630) 6.0304 (6.0259, 6.0349) 6.0357 (6.0314, 6.0400)

0.7 0.3 1.0 (5.92097, 5.97950) 5.9295 (5.9248, 5.9342) 5.9076 (5.9033, 5.9119)

0.7 0.1 1.0 (5.81247, 5.88546) 5.8155 (5.8106, 5.8204) 5.7866 (5.7821, 5.7911)

0.5 0.5 1.0 (5.89183, 5.93610) 5.8942 (5.8897, 5.8987) 5.8826 (5.8783, 5.8869)

0.5 0.3 1.0 (5.74100, 5.79254) 5.7308 (5.7261, 5.7355) 5.7293 (5.7248, 5.7338)

0.5 0.1 1.0 (5.60574, 5.67005) 5.5987 (5.5938, 5.6036) 5.5868 (5.5821, 5.5915)

0.3 0.3 1.0 (5.55919, 5.62343) 5.5503 (5.5454, 5.5552) 5.5562 (5.5517, 5.5607)

0.3 0.1 1.0 (5.39082, 5.39082) 5.3924 (5.3871, 5.3977) 5.3864 (5.3815, 5.3913)

0.1 0.1 1.0 (5.18692, 5.31909) 5.1898 (5.1843, 5.1953) 5.1888 (5.1837, 5.1939)

Table 1. The comparison of the optimal policy and the Whittle and Gittins

index policies

8.2. Evaluation of the Whittle index policy. We start by comparing the Whittle index

policy and the optimal policy. Suppose that there are exactly three arms. Arms 1 and 2 are

available with some fixed probability θ ∈ [0, 1], and arm 3 is available with probability one.

With larger number of arms, an interesting and hopefully tight lower bound of the optimal

value can be obtained by applying the Gittins index. Analogous to the Whittle index policy,

we define the Gittins index policy

Definition 8.1 (Gittins index policy). The Gittins index policy chooses, by definition, the

arm with the largest Gittins index among the available arms. The Gittins index coincides

with the Whittle index when θ = 1.

When the number of arms is more than three, we compared the Whittle index policy with

the Gittins index policy. We have tested several cases in which M out of N arms are played

each time. The parameters of the initial beta distribution of the reward from each arm is

(a, b) = (1, 1), and there are always M arms with θ = 1. In case of a tie, we pick a random

subset of M arms with the largest indices.

8.3. Results. Table 1 compares the upper and lower bounds on the optimal expected total

discounted reward values and expected total discounted rewards obtained by applying the

Whittle and Gittins index policies when the number of arms is three. The bounds on the

optimal values were obtained by the backward induction algorithm as described in Section

7.4 with j(s) =
∑∞

t=0 γ
t1 = 1/(1 − γ), and j(s) = a3/(a3 + b3). Here, j(s) ≥ J∗(s) because

one-time reward is bounded from above by one, and j(s) ≤ J∗(s) because j(s) can be
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(e) θ1 = 0.7, θ2 = 0.3, θ3 = 1.0 (f) θ1 = 0.5, θ2 = 0.1, θ3 = 1.0

Figure 1. The upper/lower bounds on the optimal expected total discounted

reward and expected total discounted reward under the Whittle index policy

as a function of L at state (X1, Y1) = (X2, Y2) = (X3, Y3) = ((1, 1), 1).

attained by pulling arm 3, which is always available. The values under the Whittle and

Gittins index policies are calculated by Monte Carlo simulation based on 1,000,000 samples.

Figure 1 shows the upper and lower bounds and the value under the Whittle index policy

as a function of L used in the definition of the truncated space ZL in (25). The bounds

converge to the optimal value as L increases, and we can see how close the value obtained

by the Whittle index policy is to the optimal value.
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N M Whittle (95% CI) Gittins (95% CI) M Whittle (95% CI) Gittins (95% CI)

Case 1:

2 1 5.5474 (5.5313, 5.5635) 5.5587 (5.543, 5.5744)

6 1 6.6181 (6.6056, 6.6306) 6.4784 (6.4672, 6.4896)

12 1 6.9357 (6.9245, 6.9464) 6.5600 (6.5502, 6.5698) 2 13.7052 (13.6885, 13.7219) 13.3439 (13.3288, 13.3590)

18 1 7.0225 (7.0119, 7.0331) 6.6442 (6.6342, 6.6542) 3 20.6722 (20.6518, 60.6926) 20.1230 (20.1052, 20.1408)

24 1 7.0307 (7.0202, 7.0410) 6.6391 (6.6291, 6.6491) 4 27.6446 (27.6213, 27.6679) 26.8526 (26.8526, 26.8934)

30 1 7.0301 (7.0197, 7.0405) 6.6459 (6.6359, 6.6559) 5 34.6193 (34.5934, 34.6452) 33.6254 (33.6027, 33.6481)

36 1 7.0297 (7.0193, 7.0401) 6.6346 (6.6246, 6.6446) 6 41.5967 (41.5687, 41.6254) 40.3890 (40.3643, 40.4137)

Case 2:

3 1 5.9132 (5.8985, 5.9279) 5.9255 (5.9116, 5.9394)

6 1 6.6227 (6.6102, 6.6352) 6.4724 (6.4612, 6.4836)

12 1 6.9309 (6.9199, 6.9419) 6.5544 (6.5446, 6.5642) 2 13.5260 (13.5088, 13.5432) 13.1447 (13.1298, 13.1596)

18 1 6.9930 (6.9824, 7.0036) 6.5223 (6.5127, 6.5319) 3 20.4339 (20.4129, 20.4549) 19.7741 (19.7563, 19.7919)

24 1 7.0178 (7.0072, 7.0284) 6.4806 (6.4708, 6.4904) 4 27.3402 (27.3163, 27.3641) 26.4494 (26.4290, 26.4698)

30 1 7.0214 (7.0110, 7.0318) 6.4530 (6.4432, 6.4628) 5 34.2210 (34.1943, 34.2477) 33.0992 (33.0765, 33.1219)

36 1 7.0266 (7.0162, 7.037) 6.4499 (6.4401, 6.4597) 6 41.1573 (41.1283, 41.1863) 39.7806 (39.7561, 39.8051)

Case 3:

6 1 6.5085 (6.4958, 6.5212) 6.3575 (6.3459, 6.3691)

12 1 6.8716 (6.8604, 6.8828) 6.5676 (6.5574, 6.5778) 2 13.3253 (13.3079, 13.3427) 12.9986 (12.9829, 13.0143)

18 1 6.9434 (6.9326, 6.9542) 6.5944 (6.5842, 6.6046) 3 20.1669 (20.1457, 20.1881) 19.6288 (19.6098, 19.6478)

24 1 6.9805 (6.9699, 6.9911) 6.6165 (6.6065, 6.6265) 4 27.0206 (26.9963, 27.0449) 26.2567 (26.2350, 26.2786)

30 1 7.0076 (6.9970, 7.0182) 6.6249 (6.6149, 6.6349) 5 33.8775 (33.8504, 33.9044) 32.8960 (32.8717, 32.9203)

36 1 7.0178 (7.0071, 7.0283) 6.6399 (6.6299, 6.6499) 6 40.7183 (40.6842, 40.7434) 39.5345 (39.5079, 39.5609)

Table 2. The comparison of the expected total discounted rewards under

Whittle and Gittins index policies.

For larger number of arms, we compared the Whittle and Gittins index policies in the

following three cases, where M out of N arms are played every time; the results are shown

in Table 2.

case 1: N/2 arms are available with probability θ = 1.0 and 0.5,

case 2: N/3 arms are available with probability θ = 1.0, 0.7, and 0.3,

case 3: N/6 arms are available with probability θ = 1.0, 0.9, 0.7, 0.5, 0.3, and 0.1.

As seen from Table 1 and Figure 1, both the Whittle and Gittins index policies are as good

as the optimal policy, at least when the number of arms is small.

The Whittle index policy outperforms the Gittins index policy in most of the examples.

The Gittins index policy does not utilize the likelihood of each arm’s future availability, but

the Whittle index takes that information into account, and therefore it does better than the

Gittins index policy. Nevertheless, the Gittins index policy should give tight lower bounds

considering that the policy is optimal when each arm is always available.
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N M optimal values (95% CI)

1 1 5.0021 (4.9962, 5.0080)

2 1 6.0963 (6.0912, 6.1014)

5 1 6.8722 (6.8602, 6.8842)

20 1 7.0151 (7.0045, 7.0257)

40 1 7.0261 (7.0156, 7.0364)

80 1 7.0256 (7.0152, 7.0360)

Table 3. The approximation to the optimal value if all the arms are always available.

Consider a multi-armed bandit problem with large number of initially identical arms where

each arm is always available. Its optimal value can be used as a upper bound on the optimal

values of the problems in Table 2. We show in Table 3 the approximation of the optimal

values when the initial state of each arm is (a, b) = (1, 1) and θ = 1, calculated by Monte

Carlo simulation and by using the Gittins indices. Note that the value converges as N →∞,

which gives a rough upper bound of the optimal value, around 7.026 in this example.

The near-optimality of the Whittle index when N is large can be observed in Table 2

by comparing the values with the rough upper bound 7.026. When M = 1, the Whittle

index policy gets close to be optimal as N increases, because the number of arms having

θ = 1 increases with N , and the Whittle index policy tends to choose the arms with θ = 1;

therefore, the problem gets closer to a classical multi-armed bandit problem, and the Whittle

index policy acts like the Gittins index policy as long as it chooses the arms with θ = 1.

When M > 1, the Whittle index policy is still strong as the value of the policy is very close

to the upper bound per arm, 7.026. In this way, the numerical results shown in this section

show a strong performance of the Whittle index policy.

9. Numerical results for Problem 2

We evaluate the Whittle index policy for Problem 2 in a similar manner. We again consider

the problem with the reward process defined in Section 7 but with a simplification so that

the optimal value can be computed when the number of arms is small: the probability that

an arm is available does not depend on the state of X or whether or not it is active; namely,

θ1
n(x, 1) = θ0

n(x, 1) = θn(1), θ1
n(x, 0) = θn(0), θ0

n(x, 0) = 0, x ∈ X , n = 1, . . . , N,

for some θn(1) and θn(0). We evaluate the Whittle index policy in Problem 2 and compare it

with the optimal policy when the number of arms is two, and with Gittins-like index policies

defined later in this section. We focus on the case M = 1. The Whittle indices are calculated

using the algorithm described in Section 7 and are listed in Appendix C.



22 SAVAS DAYANIK, WARREN POWELL, AND KAZUTOSHI YAMAZAKI

The problem will be more practical if the controller has an option to retire, because when

all arms are broken he may think that it is not worth fixing any of the arms. We introduce

a dummy arm, type 0 arm, which is initially broken and whose repair cost is zero, and it

always breaks down immediately after every repair (i.e. θ1(x, 0) = 0). Its Whittle index

is always zero. Choosing this arm is equivalent to retiring; i.e., collecting 0 reward, in the

remainder. In this way, the retirement option can be added to Problem 2.

We first compare Gittins and Whittle index policies for Problem 2. Define Policy 1 and

Policy 2 such that

(i) Policy 1 always chooses the arm with the largest Gittins index among the available

arms. It retires if arms are broken.

(ii) Policy 2 always chooses the arm with the largest Gittins index among the available

arms. If no arm is available, then it chooses the arm with the largest Gittins index

pretending that all arms are available.

The Gittins index is calculated regardless of the value of the break-down probability or the

repair cost of the arm. The indices are defined only when the arm is available.

We expect Policies 1 and 2 to work reasonably well because they are optimal when arms

never break down. Policy 1 is antithetical to Policy 2 in that the former is pessimistic

while the latter is optimistic about repairing arms. In this problem, there is always a trade-

off between repairing and ignoring broken arms. We expect that the Whittle index policy

resolves this trade-off.

The initial prior of each arm is (a, b) = (1, 1), and each arm is initially available; i.e.,

Y (0) = 1. The upper and lower bounds on the optimal values when the number of arms

is two are obtained by the backward induction algorithm (see Section 7.4) starting with

j(s) = 1/(1− γ) and j(s) = 0, respectively, where the lower bound j(·) can be attained by

retiring (or by pulling forever type 0 arm). The values under the Whittle index policy, Policy

1, and Policy 2 are approximated by Monte Carlo simulation with 1, 000, 000 samples. We

study the following seven cases with various values of N ; the results are given in Table 4:

case 1: N arms with θ(1) = 0.5, θ(0) = 1.0, C = 1.0,

case 2: N arms with θ(1) = 0.5, θ(0) = 0.5, C = 1.0,

case 3: N arms with θ(1) = 0.5, θ(0) = 1.0, C = 0.5,

case 4: N arms with θ(1) = 0.5, θ(0) = 1.0, C = 2.0,

case 5: N arms with θ(1) = 0.9, θ(0) = 1.0, C = 1.0,

case 6: N/2 arms with θ(1) = 0.5, θ(0) = 1.0, C = 2.0; N/2 arms with θ(1) = 0.5,

θ(0) = 0.5, C = 1.0,
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N M Whittle (95% CI) Policy 1 (95% CI) Policy 2 (95% CI) lower/upper bounds

Case 1:

2 1 1.4681 (1.4648, 1.4714) 1.1957 (1.1935, 1.1979) 1.2234 (1.2193, 1.2275) (1.5154992,1.517639)

4 1 1.9119 (1.9084, 1.9154) 1.5450 (1.5426, 1.5474) 1.8741 (1.8706, 1.8776)

6 1 2.1548 (2.1515, 2.1581) 1.7543 (1.7519, 1.7567) 2.1512 (2.1479, 2.1545)

8 1 2.3198 (2.3165, 2.3231) 1.9020 (1.8996, 1.9044) 2.3179 (2.3146, 2.3212)

10 1 2.4412 (2.4379, 2.4445) 2.0125 (2.0101, 2.0149) 2.4381 (2.4348, 2.4414)

Case 2:

2 1 1.1374 (1.1354, 1.1394) 1.1968 (1.1946, 1.199) -0.8995 (−0.9038,−0.8952) (1.1976295,1.1976295))

4 1 1.4645 (1.4623, 1.4667) 1.5457 (1.5435, 1.5479) -0.1769 (−0.1810,−0.1728)

6 1 1.6653 (1.6631, 1.6675) 1.7555 (1.7531, 1.7579) 0.1800 (0.1761, 0.1839)

8 1 1.8037 (1.8013, 1.8061) 1.9034 (1.901, 1.9058) 0.4143 (0.4104, 0.4182)

10 1 1.9111 (1.9087, 1.9135) 2.0134 (2.011, 2.0158) 0.5867 (0.5828, 0.5906)

Case 3:

2 1 2.6785 (2.6746, 2.6824) 1.1976 (1.1954, 1.1998) 2.6789 (2.675, 2.6828) (2.690795,2.6942022)

4 1 3.2014 (3.1981, 3.2047) 1.5467 (1.5443, 1.5491) 3.2067 (3.2034, 3.2100)

6 1 3.4055 (3.4024, 3.4086) 1.7559 (1.7535, 1.7583) 3.4119 (3.4088, 3.415)

8 1 3.5232 (3.5201, 3.5263) 1.9028 (1.9004, 1.9052) 3.5254 (3.5223, 3.5285)

10 1 3.6048 (3.6017, 3.6079) 2.0158 (2.0134, 2.0182) 3.6103 (3.6072, 3.6134)

Case 4:

2 1 1.1945 (1.1923, 1.1967) 1.1978 (1.1956, 1.2000) -1.6795 (−1.6842,−1.6748) (1.1976295,1.1976295)

4 1 1.5420 (1.5398, 1.5442) 1.5468 (1.5444, 1.5492) -0.7870 (−0.7913,−0.7827)

6 1 1.7514 (1.7490, 1.7538) 1.7551 (1.7527, 1.7575) -0.3720 (−0.3761,−0.3679)

8 1 1.8967 (1.8943, 1.8991) 1.9029 (1.9005, 1.9053) -0.1089 (−0.1128,−0.105)

10 1 2.0069 (2.0045, 2.0093) 2.0152 (2.0128, 2.0176) 0.0919 (0.0880, 0.0958)

Case 5:

2 1 4.8036 (4.7985, 4.8087) 3.6948 (3.6903, 3.6993) 4.7785 (4.7736, 4.77834) (4.8408074,4.8647000)

4 1 5.5054 (5.5013, 5.5095) 4.6833 (4.6792, 4.6874) 5.4725 (5.4682, 5.4768)

6 1 5.7744 (5.7707, 5.7781) 5.1567 (5.1528, 5.1606) 5.7546 (5.7507, 5.7585)

8 1 5.9097 (5.9062, 5.9132) 5.4304 (5.4267, 5.4341) 5.9160 (5.9123, 5.9197)

10 1 5.9956 (5.9923, 5.9989) 5.6092 (5.6057, 5.6127) 6.0191 (6.0156, 6.0226)

Case 6:

2 1 1.1636 (1.1616, 1.1656) 1.1974 (1.1952, 1.1996) -1.2804 (−1.2849,−1.2759) (1.1976295,1.1976295)

4 1 1.5017 (1.4995, 1.5039) 1.5455 (1.5433, 1.5477) -0.4783 (−0.4824,−0.4742)

6 1 1.7071 (1.7047, 1.7095) 1.7563 (1.7539, 1.7587) -0.1007 (−0.1048,−0.0966)

8 1 1.8487 (1.8463, 1.8511) 1.9033 (1.9009, 1.9057) 0.1426 (0.1387, 0.1465)

10 1 1.9605 (1.9581, 1.9629) 2.0142 (2.0118, 2.0166) 0.3258 (0.3219, 0.3297)

Case 7:

2 1 4.0397 (4.0344, 4.045) 2.7604 (2.7561, 2.7647) 4.0183 (4.0134, 4.0232) (4.0711303,4.0931025)

4 1 4.8918 (4.8871, 4.8965) 3.7276 (3.7233, 3.7319) 4.7847 (4.7802, 4.7892)

6 1 5.2900 (5.2857, 5.2943) 4.2742 (4.2701, 4.2783) 5.1406 (5.1365, 5.1447)

8 1 5.5199 (5.5158, 5.524) 4.6326 (4.6287, 4.6365) 5.3666 (5.3627, 5.3705)

10 1 5.6692 (5.6653, 5.6731) 4.8892 (4.8853, 4.8931) 5.5210 (5.5171, 5.5249)

Table 4. Results for Problem 2
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case 7: N/2 arms with θ(1) = 0.9, θ(0) = 1.0, C = 1.0; N/2 arms with θ(1) = 0.5,

θ(0) = 1.0, C = 0.5.

As we expected, the Whittle index policy resolves the trade-off between repairing arms

and ignoring them very effectively. As Policy 1 and Policy 2 behave oppositely when all

the arms are unavailable, it is natural that Policy 1 works well when Policy 2 does not, and

vice versa. On the other hand, the results show that the Whittle index policy always works

at least as good as Policies 1 and 2, which implies that the Whittle indices are effective in

deciding whether or not arms should be repaired.

Note that a policy can attain a negative value that is bounded from below by −Cmax/(1−
γ) = −10Cmax. Considering this fact, even in comparison to the optimal value, the Whittle

index policy performs well in Problem 2 as it does in Problem 1.

10. Conclusion

In this paper, we have studied an important extension of the classical multi-armed bandit

problem, in which arms may become unavailable: arms may be intermittently unavailable

or they may break down and repair is an option at some cost. Passive arms that may break

down and can never get back into the system and the multi-armed bandit problems with

switching costs can be handled in this formulation.

Our results are both positive and negative. We showed that problems with availability

constraints do not admit an optimal index policy. However, the Whittle index policies we

calculated perform in numerical examples very well. Moreover, the index policies for each

problem enjoys the following properties:

(i) no index policy performs better uniformly,

(ii) it is optimal for the classical bandit problems and the W -subsidy problems,

(iii) it converges to the Gittins index as the probability of availability approaches to one

and to the immediate reward as it approaches to zero.

The Whittle indices can be computed by the value iteration algorithm using a variant of the

restart-in problem. Finally, the numerical results are consistent with the near-optimality of

Whittle index policies.
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Appendix A. Proofs

A.1. Proof of Proposition 4.1. Consider the W -subsidy problem with fixed W ∈ R. The

main argument in this proof is that if the process (X, Y ) enters a state (x, 1) for some x ∈ X
(and the arm is available) and if it is optimal to take the passive action, then it must be

optimal to take the passive action at every stage after that.

Consider (X, Y ) with initial state (X(0), Y (0)) = (x, 1). Let us suppose (x, 1) ∈ Π(W ),

meaning that it is optimal to take the passive action if the arm is in state (x, 1). Note that

X does not change under the passive action, and that when it becomes unavailable (when it

enters (x, 0)) it is also optimal to make it passive by Condition 4.1. Consequently, when the

arm becomes available, the new state is again (x, 1). As we are assuming that (x, 1) ∈ Π(W ),

the passive action is optimal again. Consequently, once the process (X, Y ) enters the state

(x, 1) ∈ Π(W ), the arm must stay passive forever.

Therefore, the W-subsidy problem is reduced to an optimal stopping problem; finding

the best time when the arm is available to switch to the passive action. We restrict our

attention to (Ft)t≥0-stopping times τ such that Y (τ) = 1 almost surely, and consider the

following strategy: until time τ − 1, activate the arm if it is available and choose the passive

action otherwise; at and after time τ always choose the passive action. The expected total

discounted reward of this strategy is

E1,0
x,1

[
τ−1∑
t=0

γt
(
RY (t)(X(t), Y (t)) +W1{Y (t)=0}

)
+

∞∑
t=τ

γtW + γτρ(X(τ), Y (τ))

]
.

On the other hand, stopping immediately in state (x, 1) gives
∑∞

t=0 γ
tW + ρ(x, 1) = W/(1−

γ) + ρ(x, 1). Therefore, (x, 1) ∈ Π(W ) if and only if, for every τ ∈ S we have

(26)
W

1− γ
+ ρ(x, 1) ≥ E1,0

x,1

[
τ−1∑
t=0

γt
(
RY (t)(X(t), Y (t)) +W1{Y (t)=0}

)
+ γτρ(X(τ), Y (τ)) +

∞∑
t=τ

γtW

]
.

Moreover, the expectation on the right-hand side equals

E1,0
x,1

[
τ−1∑
t=0

γtRY (t)(X(t), Y (t)) + γτρ(X(τ), Y (τ))

]
+WE1,0

x,1

[
τ−1∑
t=1

γt1{Y (t)=0} +
γτ

1− γ

]
.(27)

Substituting (27) into (26) and some algebra give

W ≥ (1− γ)
E1,0

x,1

[∑τ−1
t=0 γ

tRY (t)(X(t), Y (t)) + γτρ(X(τ), Y (τ))
]
− ρ(x, 1)

1− E1,0
x,1

[
(1− γ)

∑τ−1
t=1 γ

t1{Y (t)=0} + γτ
] ,

for every τ ∈ S. Thus, (x, 1) ∈ Π(W ) if and only if (7) holds.
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A.2. Proof of Proposition 4.2. Firstly, the Whittle index when the arm is not available

follows from its definition and Condition 4.1. Now consider the case when the arm is available.

By Proposition 4.1, (x, 1) ∈ Π(W ) if and only if (7) is satisfied. Therefore,

W1 > W2 =⇒ {(x, 1); (x, 1) ∈ Π(W1)} ⊇ {(x, 1); (x, 1) ∈ Π(W2)},

and by Condition 4.1 W1 > W2 =⇒ Π(W1) ⊇ Π(W2); therefore, the arm is indexable, and

W (x, 1) ≡ inf{W : (x, 1) ∈ Π(W )} coincides with the Whittle index.

A.3. Proof of Corollary 4.1. If Y (0) = 1, then by Condition 4.2 P1,0-a.s Y (t) = 1, t ≥ 0.

Thus, S can be replaced by S. Substituting 1{Y (t)=0} = 0 into (8) completes the proof.

A.4. Proof of Corollary 4.3. We obtain (11) after substituting into (10) the expression

(28) E1,0
x,1

[
τ−1∑
t=1

γt1{Y (t)=0}

]
= E1,0

x,1

[
∞∑

t=1

γt1{Y (t)=0}1{t<τ}

]
=

∞∑
t=1

E1,0
x,1

[
γt1{Y (t)=0}1{t<τ}

]
=

∞∑
t=1

γtE1,0
x,1

[
1{Y (t)=0}

]
E1,0

x,1

[
1{t<τ}

]
=

∞∑
t=1

γt(1− θ)E1,0
x,1

[
1{t<τ}

]
= E1,0

x,1

[
τ−1∑
t=1

(1− θ)γt

]
.

A.5. Proof of Corollary 4.4. If Y (0) = 1, then Y (t) = 1, P1,0-almost surely, for every

t ≥ 0 by (12). Therefore, S is the same as S, and after plugging θ ≡ 1 in (11), we obtain

W (x, 1) = (1− γ) sup
τ∈S

E1,0
x,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t))
]

1− E1,0
x,1 [γτ ]

= sup
τ∈S

E1,0
x,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t))
]

E1,0
x,1

[∑τ−1
t=0 γ

t
] .

A.6. Proof of Proposition 4.3. Only in this proof, in order to emphasize the dependence

of W and P1,0 on θ ∈ [0, 1], we replace them with Wθ and Pθ, respectively. Therefore,

Wθ(x, y) =


(1− γ) sup

τ∈S

Γ(θ, τ, x) ,
Eθ

x,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t))1{Y (t)=1}
]

1− γ(1− θ)− θEθ
x,1 [γτ ]

, if y = 1,

−∞, otherwise.

The Gittins index corresponds to M(x) = W1(x, 1) ≡ (1 − γ) supτ∈S Γ(1, τ, x). Let R̄ be a

finite constant such that |R(x, 1)| < R̄ for every x ∈ X .

We first prove the convergence to the immediate reward as θ ↘ 0. As immediate stopping

attains R1(x, 1), we have Wθ(x, 1) ≥ R(x, 1). Let

W̃θ(x, 1) , sup
τ∈S

Eθ
x,1

[
τ−1∑
t=0

γtR1(X(t), Y (t))1{Y (t)=1}

]
.

Because (1 − γ) ≤ 1− γ(1− θ)− θE1,0
x,1 [γτ ] for every τ ∈ S, we have W̃θ(x, 1) ≥ Wθ(x, 1).

Therefore, it is sufficient to show that W̃ (x, 1) − R1(x, 1) → 0 as θ → 0. Let K be the
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next time the arm is available. Then Pθ {K = k} = (1 − θ)k−1θ, k ≥ 1 and Eθ
[
γK
]

=

θγ/(1− γ(1− θ)) ≤ θγ/(1− γ); therefore,

W̃ (x, 1) ≤ R1(x, 1) + E1,0
x,1

[
γK

∞∑
t=0

γtR̄

]
< R1(x, 1) + θ

R̄γ

(1− γ)2

and R1(x, 1) ≤ Wθ(x, 1) ≤ W̃θ(x, 1) < R1(x, 1) + θR̄γ/(1 − γ)2 holds for every x ∈ X , and

Wθ(x, 1) converges to the immediate reward R1(x, 1) as θ ↘ 0 uniformly over x ∈ X . To

show the convergence to the Gittins index as θ ↗ 1, we will need the following lemma.

Lemma A.1. There is a finite constant B such that supτ∈S, x∈X |Γ(1, τ, x)− Γ(θ, τ, x)| <
B(1− θ).

Proof. For θ ∈ (0, 1), τ ∈ S, and x ∈ X , the difference |Γ(1, τ, x)− Γ(θ, τ, x)| equals∣∣∣∣∣E1
x,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t))
]

1− E1
x,1 [γτ ]

−
Eθ

x,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t))1{Y (t)=1}
]

1− γ(1− θ)− θEθ
x,1 [γτ ]

∣∣∣∣∣
≤

∣∣∣∣∣E1
x,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t))
]

1− E1
x,1 [γτ ]

−
Eθ

x,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t))1{Y (t)=1}
]

1− E1
x,1 [γτ ]

∣∣∣∣∣
+

∣∣∣∣∣Eθ
x,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t))1{Y (t)=1}
]

1− E1
x,1 [γτ ]

−
Eθ

x,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t))1{Y (t)=1}
]

1− γ(1− θ)− θEθ
x,1 [γτ ]

∣∣∣∣∣
=

∣∣E1
x,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t))
]
− Eθ

x,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t))1{Y (t)=1}
]∣∣

1− E1
x,1 [γτ ]

+ Eθ
x,1

[
τ−1∑
t=0

γtR1(X(t), Y (t))1{Y (t)=1}

] ∣∣∣∣ 1

1− E1
x,1 [γτ ]

− 1

1− γ(1− θ)− θEθ
x,1 [γτ ]

∣∣∣∣
≤
∣∣E1

x,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t))
]
− Eθ

x,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t))1{Y (t)=1}
]∣∣

1− γ

+
R̄

1− γ

∣∣∣∣ 1

1− E1
x,1 [γτ ]

− 1

1− γ(1− θ)− θEθ
x,1 [γτ ]

∣∣∣∣ .
Now it is sufficient to prove that there exist some finite numbers B1 and B2 such that

(i)
∣∣E1

x,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t))
]
− Eθ

x,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t))1{Y (t)=1}
]∣∣ ≤ B1(1− θ),

(ii)
∣∣∣ 1
1−E1

x,1[γτ ]
− 1

1−γ(1−θ)−θEθ
x,1[γτ ]

∣∣∣ ≤ B2(1− θ).

To this end, let L be the first time the arm is unavailable. Note that for every l ≥ 1,

the joint conditional Pθ-distribution of {(X(t), Y (t)); 0 ≤ t ≤ l − 1} given L = l is the

same as the joint unconditional P1-distribution of {(X(t), Y (t)); 0 ≤ t ≤ l − 1}, and we have

Pθ {L = l} = θl−1(1− θ), l ≥ 1 and Eθ
x,1

[
γL
]

= γ(1− θ)/(1− γθ) < (1− θ)γ/(1− γ). The
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inequality in (i) holds with B1 = (1− θ)2γR̄/(1− γ)2 because

∣∣∣∣∣E1
x,1

[
τ−1∑
t=0

γtR1(X(t), Y (t))

]
− Eθ

x,1

[
τ−1∑
t=0

γtR1(X(t), Y (t))1{Y (t)=1}

]∣∣∣∣∣
≤

∞∑
l=1

Pθ
x,1 {L = l}

∣∣∣∣∣E1
x,1

[
τ−1∑
t=0

γtR1(X(t), Y (t))

]
− Eθ

x,1

[
τ−1∑
t=0

γtR1(X(t), Y (t))1{Y (t)=1}

∣∣∣∣∣L = l

]∣∣∣∣∣ ,
where for every l ≥ 1, the absolute difference can be rewritten as

∣∣∣∣∣E1
x,1

[
τ−1∑
t=0

γtR1(X(t), Y (t))1{τ≤l−1}

]
− Eθ

x,1

[
τ−1∑
t=0

γtR1(X(t), Y (t))1{Y (t)=1}1{τ≤l−1}

∣∣∣∣∣L = l

]

+ E1
x,1

[
τ−1∑
t=0

γtR1(X(t), Y (t))1{τ>l−1}

]
− Eθ

x,1

[
τ−1∑
t=0

γtR1(X(t), Y (t))1{Y (t)=1}1{τ>l−1}

∣∣∣∣∣L = l

]∣∣∣∣∣
=

∣∣∣∣∣E1
x,1

[
τ−1∑
t=0

γtR1(X(t), Y (t))1{τ>l−1}

]
− Eθ

x,1

[
τ−1∑
t=0

γtR1(X(t), Y (t))1{Y (t)=1}1{τ>l−1}

∣∣∣∣∣L = l

]∣∣∣∣∣
≤

∣∣∣∣∣E1
x,1

[
l−1∑
t=0

γtR1(X(t), Y (t))1{τ>l−1}

]
− Eθ

x,1

[
l−1∑
t=0

γtR1(X(t), Y (t))1{Y (t)=1}1{τ>l−1}

∣∣∣∣∣L = l

]∣∣∣∣∣
+

∣∣∣∣∣E1
x,1

[
τ−1∑
t=l

γtR1(X(t), Y (t))1{τ>l−1}

]
− Eθ

x,1

[
τ−1∑
t=l

γtR1(X(t), Y (t))1{Y (t)=1}1{τ>l−1}

∣∣∣∣∣L = l

]∣∣∣∣∣
=

∣∣∣∣∣E1
x,1

[
τ−1∑
t=l

γtR1(X(t), Y (t))1{τ>l−1}

]
− Eθ

x,1

[
τ−1∑
t=l

γtR1(X(t), Y (t))1{Y (t)=1}1{τ>l−1}

∣∣∣∣∣L = l

]∣∣∣∣∣
which is less than

∑∞
t=l γ

t2R̄; therefore, the left-hand side of (i) is less than or equal to

∞∑
l=1

Pθ
x,1 {L = l}

∞∑
t=l

γt2R̄ =
2R̄

1− γ
Eθ

x,1

[
γL
]

= (1− θ)
2γR̄

(1− γ)2
.

The inequality in (ii) holds with B2 = γ(1− θ)/(1− γ)2 because

∣∣∣∣ 1

1− E1
x,1 [γτ ]

− 1

1− γ(1− θ)− θEθ
x,1 [γτ ]

∣∣∣∣ =

∣∣∣∣∣ −γ(1− θ)− θEθ
x,1 [γτ ] + E1

x,1 [γτ ](
1− E1

x,1 [γτ ]
) (

1− γ(1− θ)− θEθ
x,1 [γτ ]

)∣∣∣∣∣
≤
γ(1− θ) + θ

∣∣Eθ
x,1 [γτ ]− E1

x,1 [γτ ]
∣∣+ (1− θ)E1

x,1 [γτ ](
1− E1

x,1 [γτ ]
) (

1− γ(1− θ)− θEθ
x,1 [γτ ]

) ≤
(γ + 1)(1− θ) +

∣∣Eθ
x,1 [γτ ]− E1

x,1 [γτ ]
∣∣

(1− γ)2
,
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and
∣∣E1

x,1 [γτ ]− Eθ
x,1 [γτ ]

∣∣ ≤∑∞
n=1 Pθ

x,1 {L = l}
∣∣E1

x,1 [γτ ]− Eθ
x,1 [γτ |L = l]

∣∣ equals

∞∑
n=1

Pθ
x,1 {L = l}

∣∣E1
x,1

[
γτ1{τ≤l−1}

]
− Eθ

x,1

[
γτ1{τ≤l−1}|L = l

]
+E1

x,1

[
γτ1{τ>l−1}

]
− Eθ

x,1

[
γτ1{τ>l−1}|L = l

]∣∣
=

∞∑
n=1

Pθ
x,1 {L = l}

∣∣E1
x,1

[
γτ1{τ>l−1}

]
− Eθ

x,1

[
γτ1{τ>l−1}|L = l

]∣∣
=

∞∑
n=1

Pθ
x,1 {L = l}

∞∑
t=l

γt
∣∣P1

x,1 {τ = t} − Pθ
x,1 {τ = t|L = l}

∣∣
≤

∞∑
n=1

Pθ
x,1 {L = l}

∞∑
t=l

γt =
1

1− γ
Eθ

x,1

[
γL
]
< (1− θ)

γ

(1− γ)2
.

Therefore, the conclusion of Lemma A.1 follows if B , B1/(1− γ) +B2R̄/(1− γ). �

Fix x ∈ X . Let τ 1(x) and τ θ(x) attain M(x) = supτ∈S Γ(1, τ, x) and Wθ(x, 1) =

supτ∈S Γ(θ, τ, x), respectively. Then Lemma A.1 implies that

Γ(1, τ 1(x), x) ≥ Γ(1, τ θ(x), x) ≥ Γ(θ, τ θ(x), x)−B(1− θ)

≥ Γ(θ, τ 1(x), x)−B(1− θ) ≥ Γ(1, τ 1(x), x)− 2B(1− θ),

which completes the proof of Proposition 4.3 because

sup
x∈X

|M(x)−Wθ(x, 1)| = sup
x∈X

∣∣Γ(1, τ 1(x), x)− Γ(θ, τ θ(x), x)
∣∣ ≤ 2B(1 − θ)

θ↑1−−→ 0.

A.7. Proof of Proposition 4.4. The W -subsidy problem is a special case of Problem 1.

To see this, consider the situation where there are only two arms; arm 1 follows a generic

stochastic process (X(t), Y (t)) as defined in Section 2, and arm 2 is always available and

gives a constant reward a. Let (x1, 1) and (x2, 0) denote the current state of arm 1 and

arm 2, respectively. Therefore, by Proposition 4.1 it is optimal to rest the arm if and only

if a ≥ W (x1, 1). That is, the index of arm 1 must be a strict monotone transformation of

W (x1, 1) and that of arm 2 must be a monotone transformation of a. The process (X(t), Y (t))

of arm 1 is general, and any arm in the problem class has to satisfy the above mentioned

property. Moreover,

W (x2, 1) = (1− γ) sup
τ∈S

E1,0
x2,1

[∑τ−1
t=0 γ

tR1(X(t), Y (t))1{Y (t)=1}
]

1− E1,0
x2,1

[∑τ−1
t=1 (1− γ)γt1{Y (t)=0} + γτ

] = sup
τ∈S

E1,0
x2,1

[∑τ−1
t=0 γ

ta
]

E1,0
x2,1

[∑τ−1
t=0 γ

t
] = a.

Since any optimal index Ŵ (·, ·) must also be optimal on every W -subsidy problem, it is

immediate that any such index must be a strict monotone transformation of W (·, ·).
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A.8. Proof of Proposition 4.5. We give a counterexample in which an arm is available

now, but its future availability is highly unlikely: consider the case with two arms where

arm 1 is always available, and arm 2 is available with probability ε ∈ (0, 1). Suppose that

passive arms do not give rewards and M = 1.

The reward from arm 1 changes deterministically under the active action

1 → 100 → 10 → 10 → . . .→ 10 → . . . .

Let the corresponding states be x11, x12, x13, . . . . On the other hand, arm 2 does not change

its state and it gives a constant reward 40 whenever it is available. Denote its state by

x2. Suppose both arm 1 and arm 2 are currently available, and their states are x11 and x2,

respectively. Let ε = 0.01 and γ = 0.7. After obvious choices of stopping times τ in (11),

the index for arm 1 satisfies the bounds

W1(x11, 1) ≥ 1 + γ100

1 + γ
= 41.76, W1(x12, 1) ≥ 100

1
= 100, W1(x1n, 1) = 10, n ≥ 3,(29)

and the indices for arm 2 must satisfy W2(x2, 1) = 40 and W2(x2, 0) = −∞.

For contradiction, assume that the index policy defined by (11) is optimal. Then arm

1 must be pulled, if X1 = x11; arm 1 must be pulled, if X1 = x12; arm 2 must be pulled

whenever it is available and arm 1 must be pulled otherwise, if X1 = x13, . . .. That is, the

optimal policy is to pull arm 1 twice (at X1 = x11 and x12) and then pull arm 2 whenever it

is available and arm 1 otherwise. Therefore, the value function must satisfy

V ((x11, 1), (x2, 1)) = 1 + γ100 + γ2 {10(1− ε) + 40ε}+ γ3 {10(1− ε) + 40ε}+ . . . .

= 1 + γ100 + γ2

∞∑
k=0

{
γk(10 + 30ε)

}
≈ 87.8233,

and V ((x11, 1), (x2, 0)) = V ((x11, 1), (x2, 1)); however, pulling arm 2 at ((x11, 1), (x2, 1)) gives

40 + γ {εV ((x11, 1), (x2, 1)) + (1− ε)V ((x11, 1), (x2, 0))} ≈ 101.4763 > V ((x11, 1), (x2, 1)).

This contradicts with the optimality of V . Therefore, the index policy given by (11) cannot

be optimal, and by Proposition 4.4 no optimal index policy exists for Problem 1 in general.

A.9. Proof of Proposition 5.1. We prove the indexability and obtain the Whittle index

of the arm under Condition 5.1. We consider the cases W < −C(x) and W ≥ −C(x)

separately after the following two lemmas.

Lemma A.2. For every x ∈ X and W ∈ R, if (x, 0) ∈ Π(W ), then V ((x, 0),W ) = W/(1−
γ), which is obtained by taking the passive action all the time.
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Proof. Both X and Y do not change under the passive action. If (x, 0) ∈ Π(W ), then the

passive action remains optimal forever. Consequently, the expected total discounted reward

starting in (x, 0) becomes V ((x, 0),W ) =
∑∞

t=0 γ
tW = W/(1− γ). �

Lemma A.3. For every x ∈ X and W ∈ R, if (x, 1) ∈ Π(W ), then the stochastic process

(X, Y ) starting in (x, 1) visits only (x, 1) and/or (x, 0) under the optimal policy, and

V ((x, 1),W ) = max

{
E0,1

x,1

[
∞∑

t=0

γt
{
W1{Y (t)=1} − C(x)1{Y (t)=0}

}]
,
W

1− γ

}
,(30)

where P0,1 is the probability law induced by the policy that activates the arm as long as it is

unavailable and leaves it in rest otherwise.

Proof. First, note that X does not change under the passive action and when the arm is not

available. Therefore, the next time the arm is available, X = x. As we are assuming that

(x, 1) ∈ Π(W ), the passive action must be taken whenever the arm is available. Therefore,

only (x, 0) and (x, 1) will be visited by the process.

Now the optimal policy must be one of the following two: the policy under which the arm

is passive when it is in state (x, 1) or in (x, 0), and the policy under which the arm is passive

when it is in (x, 1), but is active when it is in (x, 0). The value under the former policy is

W/(1− γ) by Lemma A.2, and the value under the latter is the expectation in (30). �

Lemma A.4. If W < −C(x), and Condition 5.2 holds, then (x, y) /∈ Π(W ) for every

y ∈ {0, 1}; therefore, Π(W ) = ∅.

Proof. Suppose that (x, 0) ∈ Π(W ) for some x ∈ X . By Lemma A.2,

V ((x, 0),W ) = W/(1− γ).(31)

However, a lower bound on V ((x, 0),W ) can be obtained by considering the policy under

which the arm is active at (x, 0) and passive otherwise. Because W < −C(x), this policy

gives V ((x, 0),W ) > W/(1− γ), which contradicts with (31) and implies that

(x, 0) /∈ Π(W ), x ∈ X .(32)

Suppose now (x, 1) ∈ Π(W ) for some x ∈ X . Then, by Lemma A.3 and (32), we obtain

V ((x, 1),W ) = E0,1
x,1

[
∞∑

t=0

γt
{
W1{Y (t)=1} − C(x)1{Y (t)=0}

}]
≤ −C(x)

1− γ
.

However, this contradicts with the lower bound obtained by applying the policy under which

the arm is always active; namely,

V ((x, 1),W ) = E1,1
x,1

[
∞∑

t=0

γt
{
R1(X(t), Y (t))1{Y (t)=1} − C(X(t))1{Y (t)=0}

}]
> −C(x)

1− γ
,
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where the last inequality holds under Condition 5.2. Therefore, (x, 1) /∈ Π(W ), x ∈ X . �

Lemma A.5. If W ≥ −C(x), then (x, y) ∈ Π(W ) if and only if, for every τ ∈ S,

W ≥ (1− γ)
E1,1

x,y

[∑τ−1
t=0 γ

tR1(X(t), Y (t))
]

1− E1,1
x,y [γτ ]

.

Proof. The main argument in the proof is that in the W -subsidy problem, once the passive

action is optimal, it remains optimal to take the passive action thereafter. This follows for

y = 0 immediately from Lemma A.2.

Suppose now (x, 1) ∈ Π(W ) for some x ∈ X . By Lemma A.3, starting at (x, 1) under the

optimal policy, only (x, 0) and (x, 1) will be visited by the process (X,Y ), and (30) holds.

Moreover, W ≥ −C(x) implies

E0,1
x,1

[
∞∑

t=0

γt
{
W1{Y (t)=1} − C(x)1{Y (t)=0}

}]
≤ W

1− γ
;

thus, V ((x, 1),W ) = W/(1− γ), and the optimal policy always chooses the passive action.

Using the argument above, the W -subsidy problem is reduced to an optimal stopping

problem as in the proof of Proposition 4.2. The optimal strategy must choose the active

action until some stopping time τ and choose the passive action at and after time τ . The

main difference with Problem 1 is that it may be optimal to stop even when Y = 0. If

we switch from the active action to the passive action at some stopping time τ , then the

expected total discounted reward will be

E1,1
x,y

[
τ−1∑
t=0

R1(X(t), Y (t)) +
∞∑

t=τ

γtW

]
.

As in the proof of Proposition 4.2, (x, y) ∈ Π(W ) if and only if immediate stopping achieves

greater value than the displayed expectation for any positive stopping time τ ∈ S. Since

immediate stopping yields W/(1− γ), we have (x, y) ∈ Π(W ) if and only if

W

1− γ
≥ E1,1

x,y

[
τ−1∑
t=0

R1(X(t), Y (t)) +
∞∑

t=τ

γtW

]
for every τ ∈ S. �

Proposition 5.1 follows immediately from Lemmas A.4 and A.5.

A.10. Proof of Proposition 5.2. The monotonicity of W 7→ Π(W ) is clear by Proposition

5.1; therefore, the arm is indexable. By Proposition 5.1 and by definition of the Whittle

index (4), the Whittle index at (x, y) is given by (16).
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A.11. Proof of Proposition 5.4. Consider a variant of the situation in the proof for

Proposition 4.5 (see Proof of Proposition 4.5 in A.8) with the same value of ε and γ. Arm

1 is defined the same as in the proof of Proposition 4.5, and arm 2 again gives a constant

reward 40 whenever it is available. Arm 2 breaks down with probability (1 − ε), and it is

repaired with probability 1 the next time when it is repaired. The repair costs C = 100.

The index for arm 1 still satisfies the inequalities in (29) while the index for arm 2 satisfies

W2(x2, 1) ≤ 40, and

W2(x2, 0) = sup
τ∈S

E1,1
x2,0

[∑τ−1
t=0 γ

tR(X(t), Y (t))
]

E1,1
x2,0

[∑τ−1
t=0 γ

t
] ≤ sup

τ∈S
E1,1

x2,0

[
τ−1∑
t=0

γtR(X(t), Y (t))

]

≤ −C + γ40 + γ240 + . . . = −C +
40γ

1− γ
≤ 10.

Therefore, the index policy pulls arm 1 twice (at X1 = x11 and x12) and then arm 2 whenever

it is available and arm 1 otherwise. Therefore, the value function satisfies

V ((x11, 1), (x2, 1)) = 1 + γ100 + γ2
{
10(1− ε2) + 40ε2

}
+ γ3

{
10(1− ε3) + 40ε3

}
+ . . . .

= 1 + γ100 + γ2

∞∑
k=0

{
γk
(
10 + 30εk

)}
≈ 102.1370,

and V ((x11, 1), (x2, 0)) = V ((x11, 1), (x2, 1)); however, pulling arm 2 at ((x11, 1), (x2, 1)) gives

40 + γ {εV ((x11, 1), (x2, 1)) + (1− ε)V ((x11, 1), (x2, 0))} = 111.4959 > V ((x11, 1), (x2, 1)),

which contradicts with the optimality of V . Therefore, the index policy defined by (16)

cannot be optimal, and by Proposition 5.3 there is no optimal index policy for Problem 2.

A.12. Proof of Proposition 6.1. Since νx̃,1 = (1 − γ)R1(x̃, 1) + γ
∑

x′∈X px̃x′ [θ1(x̃, 1)νx′,1

+(1− θ1(x̃, 1))νx′,0], we have

νx,1 = max

{
(1− γ)R1(x, 1) + γ

∑
x′∈S

pxx′
[
θ1(x, 1)νx′,1 + (1− θ1(x, 1))νx′,0

]
, νx̃,1

}
, x ∈ X .

Together with (20), it is easy to see that

νx̃,1 = sup
τ∈S

E1,0
x̃,1

[
τ−1∑
t=0

γt
(
(1− γ)R1(X(t), Y (t))1{Y (t)=1} + (1− γ)νx̃,11{Y (t)=0}

)
+ γτνx̃,1

]
,
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which implies for every τ ∈ S that

νx̃,1 ≥ E1,0
x̃,1

[
τ−1∑
t=0

γt
(
(1− γ)R1(X(t), Y (t))1{Y (t)=1} + (1− γ)νx̃,11{Y (t)=0}

)
+ γτνx̃,1

]
,

νx̃,1

{
1− E1,0

x̃,1

[
τ−1∑
t=0

(1− γ)γt1{Y (t)=0} + γτ

]}
≥ E1,0

x̃,1

[
τ−1∑
t=0

γt(1− γ)R1(X(t), Y (t))1{Y (t)=1}

]
.

Hence,

νx̃,1 ≥ sup
τ∈S

E1,0
x̃,1

[∑τ−1
t=0 γ

t(1− γ)R1(X(t), Y (t))1{Y (t)=1}
]

1− E1,0
x̃,1

[∑τ−1
t=0 (1− γ)γt1{Y (t)=0} + γτ

] .(33)

However, we also have νx̃,1 = (1−γ)R1(x, 1)+γ
∑

x′∈X pxx′ [θ1(x, 1)νx′,1 + (1− θ1(x, 1))νx′,0],

which implies that there exists τ ∗ ∈ S such that τ ∗ > 0 a.s. and

νx̃,1 = E1,0
x̃,1

[(
τ∗−1∑
t=0

γt
(
(1− γ)R1(X(t), Y (t))1{Y (t)=1} + (1− γ)νx̃,11{Y (t)=0}

))
+ γτ∗

νx̃,1

]
,

and the arguments similar to the above show that the equality holds in (33).

Appendix B. Whittle index table for Problem 1

Case 1: θ = 0.1

a\b 1 2 3 4 6 8 10 20 40

1 0.5534 0.3713 0.2766 0.2193 0.1540 0.1181 0.0956 0.0484 0.0238

2 0.7019 0.5320 0.4263 0.3546 0.2643 0.2100 0.1740 0.0929 0.0475

3 0.7740 0.6255 0.5226 0.4483 0.3479 0.2837 0.2392 0.1332 0.0700

4 0.8172 0.6870 0.5909 0.5174 0.4139 0.3443 0.2945 0.1700 0.0914

6 0.8670 0.7634 0.6807 0.6137 0.5117 0.4386 0.3835 0.2346 0.1313

8 0.8951 0.8093 0.7378 0.6773 0.5814 0.5088 0.4522 0.2897 0.1678

10 0.9132 0.8401 0.7772 0.7227 0.6334 0.5633 0.5069 0.3373 0.2013

20 0.9529 0.9108 0.872 0.8035 0.7729 0.7182 0.6706 0.5030 0.3348

40 0.9749 0.9521 0.9303 0.9094 0.8703 0.8520 0.8012 0.6681 0.5010

Case 2: θ = 0.3

a\b 1 2 3 4 6 8 10 20 40

1 0.6135 0.4191 0.3131 0.2477 0.1726 0.1313 0.1054 0.0521 0.0255

2 0.7414 0.5707 0.4594 0.383 0.2851 0.2259 0.1865 0.0983 0.0497

3 0.8023 0.6564 0.5513 0.4737 0.3682 0.3 0.2525 0.1395 0.0727

4 0.8388 0.7123 0.6156 0.5403 0.433 0.3602 0.3078 0.1768 0.0944

6 0.881 0.7814 0.6995 0.632 0.528 0.453 0.3962 0.2481 0.1348

8 0.9051 0.8229 0.7524 0.6922 0.5955 0.5215 0.4637 0.297 0.1716

10 0.9208 0.8508 0.7892 0.7352 0.6456 0.5747 0.5174 0.3444 0.2053

20 0.9561 0.9155 0.8778 0.8427 0.7798 0.7252 0.6775 0.5087 0.3388

40 0.9763 0.9542 0.9328 0.9123 0.8737 0.838 0.8051 0.672 0.5042
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Case 3: θ = 0.5

a\b 1 2 3 4 6 8 10 20 40

1 0.6496 0.4502 0.3378 0.2676 0.1861 0.1412 0.113 0.0551 0.0266

2 0.7649 0.5954 0.4811 0.4021 0.2996 0.2372 0.1955 0.1023 0.0514

3 0.8194 0.6758 0.5702 0.4904 0.3821 0.3112 0.2618 0.1441 0.0746

4 0.852 0.7284 0.6316 0.5555 0.4458 0.3711 0.3171 0.1816 0.0966

6 0.8899 0.7929 0.7117 0.6441 0.5391 0.4627 0.4048 0.2469 0.1373

8 0.9117 0.8317 0.7621 0.7021 0.605 0.5302 0.4716 0.302 0.1742

10 0.9259 0.8578 0.7971 0.7434 0.6537 0.5825 0.5246 0.3493 0.2079

20 0.9582 0.9188 0.8816 0.8469 0.7844 0.7299 0.6822 0.5127 0.3414

40 0.9772 0.9555 0.9345 0.9143 0.8759 0.8405 0.8076 0.6746 0.5063

Case 4: θ = 0.7

a\b 1 2 3 4 6 8 10 20 40

1 0.6751 0.4736 0.3568 0.2834 0.1971 0.1492 0.1192 0.0576 0.0275

2 0.7817 0.6138 0.4975 0.4168 0.3109 0.2461 0.2028 0.1056 0.0527

3 0.8317 0.6905 0.5845 0.5032 0.393 0.3201 0.2694 0.1478 0.0762

4 0.8616 0.7403 0.6438 0.5672 0.4559 0.3798 0.3244 0.1855 0.0984

6 0.8965 0.8015 0.721 0.6533 0.5478 0.4704 0.4117 0.2509 0.1393

8 0.9166 0.8384 0.7696 0.7098 0.6124 0.5371 0.4778 0.306 0.1763

10 0.9298 0.8632 0.8032 0.7498 0.6601 0.5887 0.5304 0.3532 0.2101

20 0.9599 0.9213 0.8846 0.8502 0.788 0.7336 0.6859 0.5158 0.3435

40 1 0.978 0.9566 0.9359 0.9158 0.8777 0.8424 0.8096 0.6766 0.508

Case 5: θ = 0.9

a\b 1 2 3 4 6 8 10 20 40

1 0.6946 0.4921 0.3727 0.2964 0.2062 0.1561 0.1245 0.0598 0.0282

2 0.7946 0.6284 0.5106 0.4289 0.3204 0.2536 0.209 0.1085 0.0538

3 0.8412 0.7022 0.596 0.5137 0.4019 0.3276 0.2757 0.151 0.0776

4 0.8691 0.7499 0.6537 0.5768 0.4642 0.387 0.3306 0.1889 0.0999

6 0.9017 0.8085 0.7286 0.661 0.5551 0.4768 0.4176 0.2544 0.141

8 0.9205 0.8439 0.7757 0.7161 0.6187 0.543 0.4832 0.3095 0.1781

10 0.933 0.8677 0.8083 0.7551 0.6656 0.594 0.5354 0.3566 0.2119

20 0.9614 0.9234 0.8872 0.853 0.7911 0.7368 0.689 0.5185 0.3453

40 0.9786 0.9576 0.937 0.9171 0.8792 0.844 0.8113 0.6784 0.5095

Case 6: θ = 1.0

a\b 1 2 3 4 6 8 10 20 40

1 0.703 0.5002 0.3797 0.3022 0.2104 0.1593 0.1271 0.0607 0.0286

2 0.8002 0.6348 0.5165 0.4343 0.3247 0.2571 0.2119 0.1098 0.0543

3 0.8454 0.7073 0.6012 0.5186 0.406 0.331 0.2787 0.1524 0.0782

4 0.8724 0.7541 0.6581 0.5811 0.468 0.3903 0.3336 0.1904 0.1006

6 0.9041 0.8117 0.7321 0.6644 0.5584 0.4799 0.4204 0.2559 0.1417

8 0.9224 0.8464 0.7785 0.7191 0.6216 0.5459 0.4859 0.311 0.1789

10 0.9346 0.8699 0.8107 0.7577 0.6682 0.5966 0.538 0.3581 0.2128

20 0.962 0.9244 0.8883 0.8543 0.7924 0.7382 0.6904 0.5197 0.3461

40 0.9789 0.958 0.9376 0.9177 0.8799 0.8448 0.8121 0.6792 0.5101
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Appendix C. Whittle index table for Problem 2

Case 1: θ(0) = 0.5, θ(1) = 0.5, C = 1.0

y=1:

a\b 1 2 3 4 6 8 10 20 40

1 0.5506 0.3694 0.2754 0.2186 0.1539 0.1184 0.096 0.0491 0.0247

2 0.7003 0.5306 0.4253 0.354 0.2641 0.2101 0.1742 0.0935 0.0483

3 0.7732 0.6246 0.5219 0.4477 0.3477 0.2837 0.2394 0.1338 0.0708

4 0.8169 0.6864 0.5904 0.5171 0.4138 0.3444 0.2947 0.1705 0.0922

6 0.8672 0.7633 0.6806 0.6136 0.5118 0.4388 0.3838 0.2352 0.1321

8 0.8955 0.8096 0.7379 0.6775 0.5816 0.509 0.4525 0.2903 0.1686

10 0.9138 0.8405 0.7775 0.723 0.6337 0.5636 0.5073 0.3379 0.2021

20 0.9538 0.9116 0.8728 0.8371 0.7736 0.7188 0.6712 0.5037 0.3356

40 0.9759 0.9531 0.9312 0.9103 0.8712 0.8352 0.8021 0.6689 0.5018

y=0:

a\b 1 2 3 4 6 8 10 20 40

1 -0.1184 -0.2235 -0.28 -0.3147 -0.3549 -0.3771 -0.3912 -0.4206 -0.4355

2 -0.0446 -0.1388 -0.1993 -0.2407 -0.2936 -0.3256 -0.347 -0.3952 -0.4221

3 -0.0095 -0.0905 -0.1482 -0.1906 -0.248 -0.2851 -0.3109 -0.3726 -0.4094

4 0.0113 -0.0591 -0.1124 -0.1537 -0.2123 -0.2521 -0.2806 -0.3522 -0.3974

6 0.0352 -0.0203 -0.0656 -0.1028 -0.1599 -0.201 -0.2321 -0.3165 -0.3753

8 0.0486 0.003 -0.0361 -0.0693 -0.1226 -0.1632 -0.1949 -0.2863 -0.3551

10 0.0573 0.0185 -0.0156 -0.0455 -0.0949 -0.1338 -0.1654 -0.2603 -0.3366

20 0.0765 0.0543 0.0334 0.014 -0.0207 -0.0508 -0.0771 -0.1699 -0.2633

40 0.0875 0.0753 0.0636 0.0523 0.031 0.0114 -0.0068 -0.0801 -0.1723

Case 2: θ(0) = 1.0, θ(1) = 0.5, C = 0.5

y=1:

a\b 1 2 3 4 6 8 10 20 40

1 0.5506 0.3694 0.2754 0.2186 0.1539 0.1184 0.096 0.0491 0.0247

2 0.7003 0.5306 0.4253 0.354 0.2641 0.2101 0.1742 0.0935 0.0483

3 0.7732 0.6246 0.5219 0.4477 0.3477 0.2837 0.2394 0.1338 0.0708

4 0.8169 0.6864 0.5904 0.5171 0.4138 0.3444 0.2947 0.1705 0.0922

6 0.8672 0.7633 0.6806 0.6136 0.5118 0.4388 0.3838 0.2352 0.1321

8 0.8955 0.8096 0.7379 0.6775 0.5816 0.509 0.4525 0.2903 0.1686

10 0.9138 0.8405 0.7775 0.723 0.6337 0.5636 0.5073 0.3379 0.2021

20 0.9538 0.9116 0.8728 0.8371 0.7736 0.7188 0.6712 0.5037 0.3356

40 0.9759 0.9531 0.9312 0.9103 0.8712 0.8352 0.8021 0.6689 0.5018

y=0:

a\b 1 2 3 4 6 8 10 20 40

1 0.2757 0.1415 0.0679 0.0223 -0.0305 -0.0599 -0.0784 -0.1171 -0.1367

2 0.3631 0.2453 0.1681 0.115 0.0468 0.0053 -0.0224 -0.0849 -0.1196

3 0.4044 0.3037 0.231 0.177 0.1038 0.0561 0.0229 -0.0564 -0.1036

4 0.4289 0.3417 0.2748 0.2226 0.1481 0.0975 0.061 -0.0307 -0.0885

6 0.457 0.3885 0.3319 0.2852 0.2132 0.1611 0.1216 0.0141 -0.0606

8 0.4728 0.4165 0.3679 0.3263 0.2593 0.208 0.1679 0.0521 -0.0352

10 0.4831 0.4352 0.3928 0.3555 0.2935 0.2445 0.2047 0.0847 -0.0121

20 0.5059 0.4784 0.4526 0.4284 0.385 0.3473 0.3143 0.1976 0.0799

40 0.5191 0.504 0.4895 0.4754 0.4489 0.4243 0.4015 0.3097 0.1937

Case 3: θ(0) = 1.0, θ(1) = 0.5, C = 1.0

y=1:

a\b 1 2 3 4 6 8 10 20 40

1 0.5506 0.3694 0.2754 0.2186 0.1539 0.1184 0.096 0.0491 0.0247

2 0.7003 0.5306 0.4253 0.354 0.2641 0.2101 0.1742 0.0935 0.0483

3 0.7732 0.6246 0.5219 0.4477 0.3477 0.2837 0.2394 0.1338 0.0708

4 0.8169 0.6864 0.5904 0.5171 0.4138 0.3444 0.2947 0.1705 0.0922

6 0.8672 0.7633 0.6806 0.6136 0.5118 0.4388 0.3838 0.2352 0.1321

8 0.8955 0.8096 0.7379 0.6775 0.5816 0.509 0.4525 0.2903 0.1686

10 0.9138 0.8405 0.7775 0.723 0.6337 0.5636 0.5073 0.3379 0.2021

20 0.9538 0.9116 0.8728 0.8371 0.7736 0.7188 0.6712 0.5037 0.3356

40 0.9759 0.9531 0.9312 0.9103 0.8712 0.8352 0.8021 0.6689 0.5018
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Case 3: θ(0) = 1.0, θ(1) = 0.5, C = 1.0 (continued)

y=0:

a\b 1 2 3 4 6 8 10 20 40

1 0.1204 -0.0137 -0.0873 -0.1329 -0.1857 -0.215 -0.2336 -0.2723 -0.2919

2 0.208 0.0901 0.013 -0.0401 -0.1084 -0.1498 -0.1775 -0.2401 -0.2748

3 0.2493 0.1485 0.0758 0.0219 -0.0514 -0.099 -0.1322 -0.2115 -0.2588

4 0.2738 0.1866 0.1196 0.0675 -0.007 -0.0577 -0.0942 -0.1858 -0.2437

6 0.3018 0.2334 0.1768 0.1301 0.0581 0.0059 -0.0336 -0.141 -0.2158

8 0.3176 0.2614 0.2127 0.1711 0.1041 0.0529 0.0128 -0.1031 -0.1904

10 0.3279 0.2801 0.2376 0.2003 0.1383 0.0893 0.0495 -0.0705 -0.1672

20 0.3507 0.3233 0.2974 0.2733 0.2298 0.1921 0.1592 0.0424 -0.0753

40 0.3639 0.3489 0.3343 0.3203 0.2937 0.2691 0.2464 0.1545 0.0386

Case 4: θ(0) = 1.0, θ(1) = 0.5, C = 2.0

y=1:

a\b 1 2 3 4 6 8 10 20 40

1 0.5506 0.3694 0.2754 0.2186 0.1539 0.1184 0.096 0.0491 0.0247

2 0.7003 0.5306 0.4253 0.354 0.2641 0.2101 0.1742 0.0935 0.0483

3 0.7732 0.6246 0.5219 0.4477 0.3477 0.2837 0.2394 0.1338 0.0708

4 0.8169 0.6864 0.5904 0.5171 0.4138 0.3444 0.2947 0.1705 0.0922

6 0.8672 0.7633 0.6806 0.6136 0.5118 0.4388 0.3838 0.2352 0.1321

8 0.8955 0.8096 0.7379 0.6775 0.5816 0.509 0.4525 0.2903 0.1686

10 0.9138 0.8405 0.7775 0.723 0.6337 0.5636 0.5073 0.3379 0.2021

20 0.9538 0.9116 0.8728 0.8371 0.7736 0.7188 0.6712 0.5037 0.3356

40 0.9759 0.9531 0.9312 0.9103 0.8712 0.8352 0.8021 0.6689 0.5018

y=0:

a\b 1 2 3 4 6 8 10 20 40

1 -0.1899 -0.324 -0.3976 -0.4432 -0.496 -0.5253 -0.5439 -0.5826 -0.6022

2 -0.1023 -0.2202 -0.2973 -0.3504 -0.4187 -0.4601 -0.4878 -0.5504 -0.5851

3 -0.061 -0.1618 -0.2345 -0.2884 -0.3617 -0.4093 -0.4425 -0.5218 -0.5691

4 -0.0365 -0.1237 -0.1907 -0.2428 -0.3173 -0.368 -0.4045 -0.4961 -0.554

6 -0.0085 -0.0769 -0.1335 -0.1802 -0.2522 -0.3044 -0.3439 -0.4513 -0.5261

8 0.0073 -0.0489 -0.0976 -0.1392 -0.2062 -0.2574 -0.2975 -0.4134 -0.5007

10 0.0176 -0.0302 -0.0727 -0.11 -0.172 -0.221 -0.2608 -0.3808 -0.4775

20 0.0404 0.013 -0.0129 -0.037 -0.0805 -0.1182 -0.1511 -0.2679 -0.3856

40 0.0536 0.0386 0.024 0.01 -0.0166 -0.0412 -0.0639 -0.1558 -0.2717

Case 5: θ(0) = 1.0, θ(1) = 0.9, C = 1.0

y=1:

a\b 1 2 3 4 6 8 10 20 40

1 0.6458 0.4484 0.3369 0.2668 0.1853 0.1404 0.1123 0.0549 0.0266

2 0.7625 0.593 0.4791 0.4004 0.2983 0.2362 0.1948 0.1021 0.0514

3 0.8177 0.6738 0.5683 0.4888 0.3808 0.3102 0.261 0.1438 0.0746

4 0.8507 0.7267 0.6301 0.5541 0.4447 0.3702 0.3163 0.1813 0.0966

6 0.8891 0.7918 0.7105 0.6429 0.5382 0.4619 0.4041 0.2466 0.1373

8 0.9111 0.8309 0.7612 0.7012 0.6042 0.5295 0.471 0.3017 0.1742

10 0.9255 0.8572 0.7964 0.7426 0.653 0.5819 0.524 0.3491 0.2079

20 0.9582 0.9186 0.8814 0.8467 0.7841 0.7296 0.6818 0.5125 0.3414

40 0.9773 0.9556 0.9345 0.9142 0.8759 0.8404 0.8075 0.6745 0.5064

y=0:

a\b 1 2 3 4 6 8 10 20 40

1 0.438 0.2645 0.1772 0.125 0.0648 0.0314 0.0101 -0.0351 -0.0588

2 0.5704 0.4124 0.3145 0.2485 0.1655 0.1155 0.082 0.0062 -0.0368

3 0.635 0.4977 0.4028 0.3343 0.2419 0.1827 0.1416 0.0432 -0.016

4 0.6739 0.5537 0.4651 0.3976 0.3023 0.2381 0.1922 0.0769 0.0037

6 0.7187 0.6234 0.5472 0.4855 0.3918 0.3244 0.2736 0.1361 0.0404

8 0.7438 0.6651 0.5992 0.5436 0.4554 0.3885 0.3364 0.1866 0.0739

10 0.7598 0.693 0.6351 0.585 0.5028 0.4383 0.3864 0.2301 0.1046

20 0.7946 0.7564 0.721 0.6883 0.6299 0.5796 0.5358 0.3817 0.2269

40 0.8137 0.7931 0.7733 0.7542 0.7184 0.6854 0.6549 0.5326 0.379
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