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Abstract. We study the quickest detection problem of a sudden change in the arrival

rate of a Poisson process from a known value to an unknown and unobservable value at an

unknown and unobservable disorder time. Our objective is to design an alarm time which

is adapted to the history of the arrival process and detects the disorder time as soon as

possible.

In previous solvable versions of the Poisson disorder problem, the arrival rate after the

disorder has been assumed a known constant. In reality, however, we may at most have some

prior information on the likely values of the new arrival rate before the disorder actually

happens, and insufficient estimates of the new rate after the disorder happens. Consequently,

we assume in this paper that the new arrival rate after the disorder is a random variable.

The detection problem is shown to admit a finite-dimensional Markovian sufficient statis-

tic if the new rate has a discrete distribution with finitely-many atoms. Furthermore, the

detection problem is cast as a discounted optimal stopping problem with running cost for a

finite-dimensional piecewise-deterministic Markov process.

This optimal stopping problem is studied in detail in the special case where the new

arrival rate has Bernoulli distribution. This is a non-trivial optimal stopping problem for a

two-dimensional piecewise-deterministic Markov process driven by the same point process.

Using a suitable single-jump operator, we solve it explicitly, describe the analytic properties

of the value function and the stopping region, and present methods for their numerical

calculation. We provide a concrete example where the value function does not satisfy the

smooth-fit principle on a proper subset of the connected, continuously differentiable optimal

stopping boundary, whereas it does on the rest.
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1. Introduction and Synopsis

Suppose that arrivals of certain events constitute a Poisson process N = {Nt : t ≥ 0} with

a known rate µ > 0. At some time θ, the arrival rate suddenly changes from µ to Λ. Both

the disorder time θ and the post-disorder arrival rate Λ of the Poisson process are unknown

and unobservable. Our problem is to find an alarm time τ which depends only on the past

and the present observations of the process N , and detects the disorder time θ as soon as

possible.
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More precisely, we shall assume that θ and Λ are random variables on some probability

space (Ω,H, P), on which the process N is also defined; the variables θ, Λ are independent

of each other and of the process N . An alarm time is a stopping time τ of the history of the

process N . We shall try to choose such a stopping time so as to minimize the Bayes risk

P {τ < θ}+ c E(τ − θ)+,(1.1)

namely, the sum of the frequency P{τ < θ} of the false alarms and the expected cost

c E(τ − θ)+ of the detection delay.

We shall assume that the post-disorder arrival rate Λ has some general prior distribution

ν(·). Similarly, the disorder time θ will be assumed to have an exponential distribution

conditionally on that the disorder has not happened yet, i.e., for some π ∈ [0, 1) and λ > 0

P{θ = 0} = π and P{θ > t | θ > 0} = e−λt, t ≥ 0.(1.2)

The Poisson disorder problem with a known post-disorder rate (namely, Λ equals a known

constant with probability one) was studied first by Galchuk and Rozovskii (1971) and was

solved completely by Peskir and Shiryaev (2002). In the meantime, Davis (1976) noticed

that several forms of Bayes risks including (1.1) admit similar solutions. He called this class

of problems standard Poisson disorder problems, and found a partial solution. Recently,

Bayraktar and Dayanik (2003) solved the Poisson disorder problem when the detection de-

lay is penalized exponentially. Bayraktar, Dayanik and Karatzas (2004b) showed that the

exponential detection delay penalty in fact leads to another variant of standard Poisson

disorder problems if the “standards” suggested by M. Davis are restated under a suitable

reference probability measure. It was also shown that use of a suitable reference proba-

bility measure reduces the dimension of the Markovian sufficient statistic for the detection

problem, and the solution of the standard Poisson disorder problem was described fully.

We believe that unknown and unobservable post-disorder arrival rate Λ captures quite well

real-life applications of change-point detection theory. Before the onset of the new regime,

past experience may help us at most to fit an apriori distribution ν(·) on the likely values

of the new arrival rate of N after the disorder. Even after the disorder happens, we may

not have enough observations to get a reliable statistical estimate of the post-disorder rate.

Indeed, since a good alarm is expected to sound as soon as the disorder happens, we may

have very few observations of N sampled from the new regime since the disorder.

Let us highlight our approach to the problem and our main results. We show that the

most general such detection problem is equivalent, under a reference probability measure,
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to a discounted optimal stopping problem with a running cost for an infinite-dimensional

Markovian sufficient statistic. However, the dimension becomes finite as soon as the prior

probability distribution ν(·) of the post-disorder arrival rate Λ charges only a finite number

of atoms. This class of problems is of great interest since, in many applications, we have

typically an empirical distribution of the post-disorder arrival rate, constructed either from

finite past data or from expert opinions on the most significant likely values.

We then study in detail the case where the new arrival rate after the disorder is expected

either to increase or to decrease by the same amount. The detection problem turns in this

case into an optimal stopping problem for a two-dimensional piecewise-deterministic Markov

process, driven by the same point process. We solve this optimal stopping problem fully

by describing ε-optimal and optimal stopping times and identifing explicitly the non-trivial

shape of the optimal continuation region.

The common approach to an optimal stopping problem for a continuous-time Markov

process is to reformulate it as a free-boundary problem in terms of the infinitesimal gener-

ator of the Markov process. The free-boundary problems sometimes turn out to be quite

hard, even in one dimension; see, for example, Galchuk and Rozovskii (1971), Peskir and

Shiryaev (2002), Bayraktar and Dayanik (2003). Here the infinitesimal operator gets com-

plicated further and becomes a singular partial differential-delay operator. Moreover, it is

a non-trivial task, even in two dimensions, to guess the location, shape, and smoothness of

the free-boundary separating the continuation and stopping regions, as well as the behavior

of the value function along the boundary.

Instead, we follow a direct approach and work with integral operators rather than dif-

ferential operators. As in Gugerli (1986) and Davis (1993), we use a suitable single-jump

operator to strip the jumps off the original two-dimensional piecewise-deterministic Markov

process and turn the original optimal stopping problem into a sequence of optimal stopping

problems for a deterministic process with continuous paths. Using direct arguments, we are

able to infer from the properties of the single-jump operator the location and shape of the

optimal continuation region, as well as the smoothness of the switching boundary and the

value function.

The single-jump operator also provides a straightforward numerical method for calculating

the value function and the continuation region. The deterministic process obtained after

removing the jumps from the original Markov process has two fundamentally different types

of behavior. We tailor the naive numerical method to each case, by exploiting the behavior

of the paths.
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We also raise the question when the value function should be a classical solution of the

relevant free-boundary problem. For a large range of configurations of parameters, both the

value function and the boundary of the continuation region turn out to be continuously dif-

ferentiable, and one may also choose to use finite-difference methods for differential-difference

equations to solve the problem numerically. For a few other cases, we cannot qualify com-

pletely the degree of the smoothness of the value function. Viscosity approaches or some

other techniques of non-smooth analysis are very likely to fill the gap, but we do not pursue

this direction here. We report one concrete example on “partial” failure of the smooth-fit

principle: in certain cases, the value function is continuously differentiable everywhere on

the state space except on a proper subset of the connected and continuously differentiable

optimal stopping boundary.

Synopsis. In Section 2, we present the model and the precise statement of the problem. A

Poisson process N with arrival rate µ and two independent random variables θ and Λ with

given prior probability distributions are introduced on a suitable probability space (Ω,H, P0).

Under a new probability measure P obtained from P0 by an absolutely continuous change

of measure, (i) the process N becomes a Poisson process whose arrival rate changes from

constant µ to the random Λ at time θ, and (ii) the random variables Λ and θ are independent

and have the same distributions as those under P0.

Working under the reference probability measure P0 turns out to be convenient. In Sec-

tion 3.1, the generalized Bayes theorem gives the new form

Rτ (π) = 1− π + c(1− π) E0

[∫ τ

0

e−λt

(
Φ

(0)
t − λ

c

)
dt

]
, τ ∈ S,(3.2)

for the Bayes risk in (1.1), this time expressed under P0 in terms of a suitable process Φ(0)

adapted to the history of N . Unfortunately, this process is not Markovian in general. In

fact, the dynamics of a family
{
Φ(k)

}
k∈N0

of adapted processes including Φ(0) are nested as

in

dΦ
(k)
t = λ

(
m(k) + Φ

(k)
t

)
dt +

1

µ
Φ

(k+1)
t− (dNt − µdt), t > 0, Φ

(k)
0 =

π

1− π
m(k).(3.8)

Hence the Poisson disorder problem is equivalent to the minimization of the Bayes risk in (3.2)

over all stopping times τ of the infinite-dimensional Markovian sufficient statistic
{
Φ(k)

}
k∈N0

.

However, Corollary 3.3 shows that only finitely many of the Φ(k)’s (as many as the number

of atoms of the distribution ν(·)) contain all relevant information if the distribution ν(·) is

concentrated on a finite number of atoms.
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In Section 4, we specialize to the detection problem where the post-disorder arrival rate

Λ is expected either to increase by one unit or to decrease by one unit; namely, µ > 1 and

ν({µ− 1, µ + 1}) = 1. The sufficient statistic for the detection problem becomes the process

{Φ(0), Φ(1)} with the dynamics

dΦ
(0)
t = λ

(
1 + Φ

(0)
t

)
dt +

1

µ
Φ

(1)
t− (dNt − µdt), Φ

(0)
0 =

π

1− π
,(4.2)

dΦ
(1)
t = λ

(
m + Φ

(1)
t

)
dt +

1

µ
Φ

(0)
t− (dNt − µdt), Φ

(1)
0 =

π

1− π
m,(4.3)

where m , E0[Λ− µ] = ν({µ + 1})− ν({µ− 1}). If we rotate the coordinate system by 45°

clockwise, then the dynamics of the sufficient statistic in the new coordinates Φ̃ , {Φ̃(0), Φ̃(1)}

dΦ̃
(0)
t =

[
(λ + 1)Φ̃

(0)
t +

λ(1−m)√
2

]
dt− 1

µ
Φ̃

(0)
t−dNt, Φ̃

(0)
0 =

(1−m)π√
2(1− π)

,

dΦ̃
(1)
t =

[
(λ− 1)Φ̃

(1)
t +

λ(1 + m)√
2

]
dt +

1

µ
Φ̃

(1)
t−dNt, Φ̃

(1)
0 =

(1 + m)π√
2(1− π)

(4.6)

are autonomous. Between consecutive jumps of the Poisson process N , the sample paths of

the process Φ̃ = {Φ̃(0), Φ̃(1)} follow the integral curves t 7→ (x(t, φ0), y(t, φ1)), t ∈ R+ of the

differential equations

d

dt
x(t, φ0) = (λ + 1)x(t, φ0) +

λ(1−m)√
2

, x(0, φ0) = φ0,

d

dt
y(t, φ1) = (λ− 1)y(t, φ1) +

λ(1 + m)√
2

, y(0, φ1) = φ1.

(4.7)

More precisely, if σ0 ≡ 0 and σn, n ∈ N is the nth jump time of the Poisson process N , then

(see also Figures 1 and 2 on page 19)

Φ̃
(0)
t = x

(
t− σn, Φ̃

(0)
σn

)
and Φ̃

(1)
t = y

(
t− σn, Φ̃

(1)
σn

)
, σn ≤ t < σn+1, n ∈ N0,(4.10)

Φ̃(0)
σn

=

(
1− 1

µ

)
Φ̃

(0)
σn− and Φ̃(1)

σn
=

(
1 +

1

µ

)
Φ̃

(1)
σn−, n ∈ N0.

Moreover, the detection problem reduces to the discounted optimal stopping problem

V (φ0, φ1) , inf
τ∈S

Eφ0,φ1

0

[∫ τ

0

e−λtg
(
Φ̃

(0)
t , Φ̃

(1)
t

)
dt

]
with g(φ0, φ1) , φ0 + φ1 −

λ

c

√
2, (φ0, φ1) ∈ R2

+

(4.12)

for the two-dimensional piecewise-deterministic Markov process Φ̃ = {Φ̃(0), Φ̃(1)} in (4.6) or

(4.10).
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To solve (4.12), we introduce in Section 5 the family of optimal stopping problems

Vn(φ0, φ1) , inf
τ∈S

Eφ0,φ1

0

[∫ τ∧σn

0

e−λtg
(
Φ̃

(0)
t , Φ̃

(1)
t

)
dt

]
, (φ0, φ1) ∈ R2

+, n ∈ N.(5.1)

We show that the sequence {Vn(·, ·)}n∈N converges to the value function V (·, ·) uniformly on

R2
+. More precisely,

√
2

c
·
(

µ

λ + µ

)n

≥ Vn(φ0, φ1)− V (φ0, φ1) ≥ 0, n ∈ N, (φ0, φ1) ∈ R2
+.(5.2)

Following Gugerli (1986) and Davis (1993), we define the single-jump operator J on bounded

Borel functions w : R2
+ 7→ R by

Jw(t, φ0, φ1) , Eφ0,φ1

0

[∫ t∧σ1

0

e−λug
(
Φ̃(0)

u , Φ̃(1)
u

)
du + 1{t≥σ1}e

−λσ1w
(
Φ̃(0)

σ1
, Φ̃(1)

σ1

)]
,(5.3)

=

∫ t

0

e−(λ+µ)u
(
g + µ · w ◦ S

)(
x(u, φ0), y(u, φ1)

)
du, t ∈ [0,∞],(5.7)

where S(x, y) ,
(
(1− 1

µ
) · x, (1 + 1

µ
) · y

)
∈ R2

+ for every (x, y) ∈ R2
+, and

Jtw(φ0, φ1) , inf
u∈[t,∞]

Jw(u, (φ0, φ1)), t ∈ [0,∞].(5.4)

The value functions Vn, n ∈ N in (5.1) coincide with the functions vn, n ∈ N defined sequen-

tially by

vn , J0vn−1 ∀n ∈ N, and v0 ≡ 0,(5.6)

and V (·, ·) = v(·, ·) , limn vn(·, ·) on R2
+. Moreover, the form of the single-jump operator

Jw(·, ·, ·) in (5.7) allows us to prove that the functions vn(·, ·) ∈ N and v(·, ·) are increasing

in each argument, uniformly bounded, and concave. This information becomes crucial later

in Section 9 as we study the shape of the continuation regions and the smoothness of the

optimal stopping boundaries.

For every n ∈ N0, the value function Vn+1(·, ·) in (5.1) is attained by the stopping time

Sn+1 defined sequentially by

rn(φ0, φ1) , inf{t > 0 : vn+1(x(t, φ0), y(t, φ1)) = 0}, n ∈ N0, (φ0, φ1) ∈ R2
+,

S1 , r0

(
Φ̃0

)
∧ σ1, and Sn+1 ,

 rn

(
Φ̃0

)
, if σ1 > rn

(
Φ̃0

)
σ1 + Sn ◦ θσ1 , if σ1 ≤ rn

(
Φ̃0

)
 , n ∈ N,

where θs is the shift-operator on Ω: Nt ◦ θs = Ns+t; see Proposition 5.5 and Corollary 5.8. In

other words, the best action before the (n + 1)st Poisson arrival is to stop if the continuous
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parametric curve t 7→
(
x(t, Φ

(0)
0 (ω)), y(t, Φ

(1)
0 (ω))

)
, t ∈ R+ in (4.7) enters the (n + 1)st

“stopping region” {(x, y) ∈ R2
+ : vn+1(x, y) = 0} before the arrival of the first Poisson event.

Otherwise, it is better to wait, and stop if the curve t 7→
(
x(t, Φ

(0)
σ1(ω)(ω)), y(t, Φ

(1)
σ1(ω)(ω))

)
,

t ∈ R+ enters the nth “stopping region” {(x, y) ∈ R2
+ : vn(x, y) = 0} before the arrival of

the next Poisson event, and so on; see also Figure 4(b) on page 39, Section 9.

The explicit optimal stopping rules Sn for Vn(·, ·), n ∈ N and the uniform convergence in

(5.2) give an ε-optimal stopping time for V (·, ·) in (4.12). For every ε > 0,

√
2

c
·
(

µ

λ + µ

)n

< ε =⇒ 0 ≤ Eφ0,φ1

0

[∫ Sn

0

e−λtg
(
Φ̃t

)
dt

]
− V (φ0, φ1) < ε, (φ0, φ1) ∈ R2

+.

In Proposition 5.12 of Section 5, we also prove that the problem with the value function

V (·, ·) in (4.12) admits an optimal stopping time, and the classical stopping times Uε ,

inf{t ≥ 0 : V (Φ̃t) ≥ −ε} are ε-optimal for every ε ≥ 0.

In Section 6, we show that the optimal continuation region {(φ0, φ1) ∈ R2
+ : V (φ0, φ1) < 0}

for the problem V (·, ·) in (4.12) is a bounded subset of R2
+. The boundedness of this region

and the concavity of the value function V (·, ·) will help us describe explicitly the structure

of the continuation region in Section 9.

As a by-product of the results in Section 6, we obtain some simple bounds on the alarm

time. When these are tight, they may serve as good approximate detection rules. The

optimal stopping time U0 , inf{t ≥ 0 : V (Φ̃
(0)
t , Φ̃

(1)
t ) = 0} is bounded by

τC0 , inf

{
t ≥ 0 : Φ̃

(0)
t + Φ̃

(1)
t ≥ λ

c

√
2

}
≤ U0 ≤ τD , inf{t ≥ 0 : Φ̃

(0)
t + Φ̃

(1)
t ≥ ξ∗}(6.2)

for a suitable constant ξ∗. If λ ≥ λ+µ
c

(1− λ), then ξ∗ = λ+µ
c

√
2; otherwise, it is the explicit

solution of (6.10), i.e.,

ξ∗ = − λ(1 + m)√
2(λ− 1)

+

[
φ∗1 +

λ(1 + m)√
2(λ− 1)

][
1 + φ∗0

√
2(λ + 1)

λ(1−m)

]−λ−1
λ+1

>
λ + µ

c

√
2

where

φ∗0 ,
(λ + µ)(1− λ)− λc

c
√

2
and φ∗1 ,

(λ + µ)(1 + λ) + λc

c
√

2
.

For small values of the ratio µ/c of the pre-disorder arrival rate and the detection delay cost

per unit time, the thresholds of the lower and upper bounds in (6.2) on the optimal stopping

time U0 are close. Then the upper bound τD may serve as a simple approximate alarm time.
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Section 8 starts with the description of the general sequential/numerical solution method.

Each function Vn(·, ·) in (5.1) vanishes outside the region D , {(x, y) ∈ R2
+ : x + y ≤ ξ∗},

where ξ∗ is defined as above. On the bounded set D, we can find the functions Vn(·, ·) ≡
vn(·, ·) by repeatedly applying the operator J0 in (5.4). In practice, the uniform convergence

in (5.2) lets us control the number of iterations needed to achieve any given level of accuracy.

The exponential rate of convergence also suggests that this sequential algorithm should be

computationally feasible and accurate.

We tailor the general method mainly to two distinct cases (see below) of the detection

problem. In the meantime, we also shed light on the structure of the solutions of the optimal

stopping problems in (4.12) and (5.1). We show that the stopping regions

Γn , {(φ0, φ1) ∈ R2
+ : vn(φ0, φ1) = 0} = {(φ0, φ1) ∈ R2

+ : γn(φ0) ≤ φ1}, n ∈ N,

Γ , {(φ0, φ1) ∈ R2
+ : v(φ0, φ1) = 0} = {(φ0, φ1) ∈ R2

+ : γ(φ0) ≤ φ1}

are convex epigraphs of some “boundary functions” γn : R+ 7→ R and γ : R+ 7→ R, re-

spectively. These boundary functions are strictly decreasing, continuous, and convex on

their compact supports. The sequence {γn(·)}n∈N is increasing and converges to γ(·); see

Figure 4(a) on page 39.

Case I: A “large” disorder arrival rate λ ≥ (1 + m)(c/2). After some preparations in

Sections 9 and 10, we prove in Section 11 that{
(x, y) ∈ R2

+ : v(x, y) = vn(x, y)
}

increases to R2
+, and

{x ∈ R+ : γ(x) = γn(x)} increases to R+.

Namely, every iteration vn(·, ·) of the successive approximations in (5.6) gives the exact value

function v(·, ·) on a subset of the state space R2
+ which increases to the whole space as the

iterations progress. Based on this fact, Methods B and C on pages 50 and 52, respectively,

gradually calculate the value function v(·, ·) on R2
+ and the optimal stopping boundary γ(·)

on R+; see also Figure 6.

In Section 12.2, we prove that the value functions vn(·, ·), n ∈ N and v(·, ·) are continu-

ously differentiable everywhere, and that the boundary functions γn(·), n ∈ N and γ(·) are

continuously differentiable on their respective supports. The value function v(·, ·)—obtained

as the limit of the successive approximations in (5.6)—satisfies the variational inequalities in

(12.1)-(12.4) associated with the optimal stopping problem (4.12) and is the unique solution

(together with the boundary ∂Γ , {(x, γ(x)) : x ∈ supp(γ)}) of the corresponding free-

boundary problem. Finally, the smooth-fit principle also holds for the function v(·, ·) across
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the boundary ∂Γ. These results ensure that the value function v(·, ·) can be calculated by

using finite-difference methods for partial differential-difference equations.

Case II: A “small” disorder arrival rate 0 < λ < (1 + m)(c/2). In this case we have

to pay more attention to the structure of the boundaries ∂Γn+1 = {(x, γn+1(x)) : x ∈
supp(γn+1)} of the stopping regions Γn+1, n ∈ N0. For every n ∈ N0, the boundary ∂Γn+1 is

divided into the entrance and exit boundaries

∂Γe
n+1 ,

{(
x(rn(φ0, φ1), φ0), γn+1(y(rn(φ0, φ1), φ1)

)
, for some (φ0, φ1) ∈ Cn+1

}
,

∂Γx
n+1 ,

{
(φ0, φ1) ∈ Γn+1 : (x(t, φ0), y(t, φ1)) ∈ Cn+1, t ∈ (0, δ] for some δ > 0

}
,

(10.10)

respectively (in Case I, we always have ∂Γn+1 ≡ ∂Γe
n+1 for every n ∈ N0). We show that

the value function vn+1(·, ·) and the exit boundary ∂Γx
n+1 are completely determined by the

entrance boundary ∂Γe
n+1 (see Lemma 10.7), and the value function vn(·, ·) from the previous

iteration determines the entrance boundary ∂Γe
n+1. Since v0 ≡ 0 is already available, the

general solution method outlined above can be enhanced as in Method D on page 62.

For certain configurations of parameters, we are able to prove that the value functions

vn+1(·, ·), n ∈ N0 are continuously differentiable everywhere on R2
+\∂Γx

n+1 and are not dif-

ferentiable on the exit boundary ∂Γx
n+1, n ∈ N0, see Proposition 12.17 and Section 12.3.

In Section 12.3, we give a concrete example for a case where the value function v(·, ·) of

the optimal stopping problem in (4.12) is continuously differentiable everywhere on R2
+\∂Γx

and is not differentiable on the exit boundary ∂Γx of the optimal stopping region Γ. The

interesting feature of this example is that the smooth-fit principle fails on some proper subset

(namely, the exit boundary ∂Γx) of the connected and continuously differentiable optimal

stopping boundary ∂Γ, while this principle holds on the rest; see Figure 9(d).

This work is divided naturally in two parts. In Part 1, we describe the problem, formu-

late a convenient model, and develop an important approximation. In Part 2, we use the

approximation of Part 1 to develop the solution and study its properties. Both parts are

accompanied by independent appendices which are the homes for long proofs.
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Part 1. ANALYSIS: PROBLEM DESCRIPTION, MODEL, AND

APPROXIMATION

2. Problem description

Let N = {Nt; t ≥ 0} be a homogeneous Poisson process with some rate µ > 0 on a fixed

probability space (Ω,H, P0), which also supports two random variables θ and Λ independent

of each other and of the process N . We shall denote by ν(·) the distribution of the random

variable Λ, assume that

m(k) ,
∫

R
(v − µ)kν(dv), k ∈ N0 are well-defined and finite,(2.1)

and that

P0{θ = 0} = π and P0{θ > t} = (1− π)e−λt, t ≥ 0(2.2)

hold for some constants λ > 0 and π ∈ [0, 1).

Let us denote by F = {Ft}t≥0 the right-continuous enlargement with P0-null sets of the

natural filtration σ(Ns; 0 ≤ s ≤ t) of N . We also define a larger filtration G = {Gt}t≥0 by

setting Gt , Ft ∨ σ{θ, Λ}, t ≥ 0. The G-adapted, right-continuous (hence, G-progressively

measurable) process

h(t) , µ1{t<θ} + Λ1{t≥θ}, t ≥ 0(2.3)

induces the (P0, G)-martingale (see Brémaud (1981, pp. 165-168))

Zt , exp

{∫ t

0

log

(
h(s−)

µ

)
dNs −

∫ t

0

(h(s)− µ)ds

}
, t ≥ 0.(2.4)

This martingale defines a new probability measure P on every (Ω,Gt) by

dP
dP0

∣∣∣∣
Gt

= Zt, t ≥ 0.(2.5)

Since P and P0 coincide on G0 = σ{θ, Λ}, the random variables θ and Λ are independent and

have the same distributions under both P and P0.

Under the new probability measure P the counting process N has G-progressively mea-

surable intensity given by h(·) of (2.3), namely Nt −
∫ t

0
h(s)ds, t ≥ 0 is a (P, G)-martingale.

In other words, the G-adapted process N is a Poisson process whose rate changes at time θ

from µ to Λ.

In the Poisson disorder problem, only the process N is observable, and our objective is

to detect the disorder time θ as quickly as possible. More precisely, we want to find an
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F-stopping time τ that minimizes the Bayes risk

Rτ (π) , P{τ < θ}+ c E(τ − θ)+,(2.6)

where c > 0 is a constant, and the expectation E is taken under the probability measure P.

Hence, we are interested in an alarm time τ which is adapted to the history of the process N ,

and minimizes the tradeoff between the frequency of false alarms P{τ < θ} and the expected

time of delay E(τ − θ)+ between the alarm time and the unobservable disorder time.

In the next section, we shall formulate the quickest detection problem as a problem of

optimal stopping for a suitable Markov process.

3. Sufficient statistics for the adaptive Poisson disorder problem

Let S be the collection of all F-stopping times, and introduce the F-adapted processes

Πt , P{θ ≤ t|Ft}, and Φ
(k)
t ,

E[(Λ− µ)k1{θ≤t}|Ft]

1− Πt

, k ∈ N0, t ≥ 0.(3.1)

Since Λ has the same distribution ν(·) under P and P0, each Φ(k), k ∈ N0 is well-defined by

(2.1). The process Π = {Πt, t ≥ 0} tracks the likelihood that a change in the intensity of

N has already occurred, given past and present observations of the process. Each Φ(k) =

{Φ(k)
t , t ≥ 0}, k ∈ N may be regarded as a (weighted) odds-ratio process.

Our first lemma below shows that the minimum Bayes risk can be found by solving a

discounted optimal stopping problem, with discount rate λ and running cost function f(x) =

x − λ/c for the F-adapted process Φ(0). The calculations are considerably easier when the

process Φ(0) has the Markov property. Unfortunately, this is not true in general. However,

the explicit dynamics of Φ(0) in Lemma 3.2 reveal that the infinite-dimensional sequence

{Φ(k)}k∈N0 of the processes in (3.1) is always a sufficient Markovian statistic for the quickest

detection problem. The same result also suggests sufficient conditions for the existence of a

finite-dimensional sufficient Markovian statistic, a case amenable to concrete analysis.

3.1. Lemma. The Bayes risk in (2.6) equals

Rτ (π) = 1− π + c(1− π) E0

[∫ τ

0

e−λt

(
Φ

(0)
t − λ

c

)
dt

]
, τ ∈ S,(3.2)

where the expectation E0 is taken under the (reference) probability measure P0.

For several proofs below, the following observations will be useful. Every Zt in (2.4) can

be written as

Zt = 1{t<θ} +
Lt

Lθ

1{t≥θ}(3.3)
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in terms of the likelihood ratio process

Lt ,

(
Λ

µ

)Nt

e−(Λ−µ)t, t ≥ 0.(3.4)

Then the generalized Bayes theorem (see, e.g., Liptser and Shiryaev (2001, Section 7.9)) and

(3.3) imply

1− Πt =
E0[Zt1{θ>t}|Ft]

E0[Zt|Ft]
=

P0{θ > t|Ft}
E0[Zt|Ft]

=
(1− π)e−λt

E0[Zt|Ft]
,(3.5)

since θ is independent of the process N under P0 and has the distribution (2.2).

Proof of Lemma 3.1. By (3.1), the generalized Bayes theorem and (3.5), we have

Φ
(0)
t =

E[1{θ≤t}|Ft]

1− Πt

=
E0[Zt1{θ≤t}|Ft]

(1− Πt)E0[Zt|Ft]
=

E0[Zt1{θ≤t}|Ft]

(1− π)e−λt
, t ≥ 0,

which gives

(3.6) E[(τ − θ)+] = E
[∫ ∞

0

1{θ≤t<τ}dt

]
=

∫ ∞

0

E0[Zt1{τ>t}1θ≤t]dt

=

∫ ∞

0

E0

[
1{τ>t}E0[Zt1{θ≤t}|Ft]

]
dt = (1− π) · E0

[∫ τ

0

e−λtΦ
(0)
t dt

]
, τ ∈ S.

Suppose that τ ∈ S takes countably many distinct values {tn, n ∈ N} for some tn ∈
R+ ∪ {+∞}. Then

(3.7) P{τ < θ} =
∑

n

P{tn < θ, τ = tn} =
∑

n

E0[Ztn1{tn<θ}1{τ=tn}]

=
∑

n

E0[1{θ>tn}1{τ=tn}] =
∑

n

(1− π)e−λtn · E0[1{τ=tn}]

= (1− π) · E0

∑
n

[(
1−

∫ tn

0

λe−λtdt

)
1{τ=tn}

]
= (1− π)− (1− π)λ · E0

[∫ τ

0

e−λtdt

]
.

An arbitrary stopping time τ ∈ S is the almost-sure limit of a decreasing sequence {τn}n≥1 ⊂
S of stopping times which take countably many values. For every τn, n ∈ N, (3.7) holds.

Since t 7→ 1{t<θ} and t 7→
∫ t

0
e−λsds are right-continuous and bounded, passage to limit as

n → ∞ and the bounded convergence theorem verifies (3.7) for every τ ∈ S. The sum of

(3.6) and (3.7) gives (3.2). �

3.2. Lemma. Let m(k), k ∈ N0 be defined as in (2.1) Then every Φ(k), k ∈ N0 in (3.1)

satisfies the equation

dΦ
(k)
t = λ

(
m(k) + Φ

(k)
t

)
dt +

1

µ
Φ

(k+1)
t− (dNt − µdt), t > 0, Φ

(k)
0 =

π

1− π
m(k).(3.8)
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Proof. For every k ∈ N0, let us introduce the function

F (k)(t, x) ,
∫ (

v

µ

)x

(v − µ)ke−(v−µ)tν(dv), t ∈ R+, x ∈ R.(3.9)

The generalized Bayes theorem, (3.5), and the independence of the random variables θ, Λ

and the process N under P0 imply

Φ
(k)
t =

E0

[
(Λ− µ)kZt1{θ≤t}|Ft

]
(1− Πt)E0[Zt|Ft]

=
E0

[
(Λ− µ)k

(
Lt1{θ=0} + Lt

Lθ
1{0<θ≤t}

) ∣∣Ft

]
(1− π)e−λt

=
πeλt

1− π
F (k)(t, Nt) + λ

∫ t

0

eλ(t−s)F (k)(t− s, Nt −Ns)ds = U
(k)
t + V

(k)
t

(3.10)

for every k ∈ N0 and t ∈ R+, where

U
(k)
t ,

πeλt

1− π
F (k)(t, Nt) and V

(k)
t , λ

∫ t

0

eλ(t−s)F (k)(t− s, Nt −Ns)ds.(3.11)

Every F (k)(t, x), k ∈ N0 in (3.9) is continuously differentiable, and

∂

∂t
F (k)(t, x) = −F (k+1)(t, x), t > 0, x ∈ R, k ∈ N0.(3.12)

The change of variable formula for jump processes gives

F (k)(t, Nt) = F (k)(0, 0) +

∫ t

0

∂F (k)

∂t
(s, Ns)ds +

∫ t

0

∂F (k)

∂x
(s, Ns−)dNs

+
∑

0<s≤t

[
F (k)(s, Ns)− F (k)(s, Ns−)− ∂F (k)

∂x
(s, Ns−)∆Ns

]

= m(k) −
∫ t

0

F (k+1)(s, Ns)ds +
∑

0<s≤t

[
F (k)(s, Ns)− F (k)(s, Ns−)

]
,

(3.13)

where ∆Ns , Ns −Ns− ∈ {0, 1} for every s > 0, and the last equality follows from (3.12),

F (k)(0, 0) = m(k), k ∈ N0, and

∫ t

0

∂F (k)

∂x
(s, Ns−)dNs =

∑
0<s≤t

∂F (k)

∂x
(s, Ns−)∆Ns.

However, F (k)(s, Ns)− F (k)(s, Ns−) is equal to∫ (
v

µ

)Ns−+∆Ns

(v − µ)ke−(v−µ)sν(dv)−
∫ (

v

µ

)Ns−

(v − µ)ke−(v−µ)sν(dv)

=

∫ (
v

µ

)Ns−
[(

v

µ

)∆Ns

− 1

]
(v − µ)ke−(v−µ)tν(dv)

=
∆Ns

µ

∫ (
v

µ

)Ns−

(v − µ)k+1e−(v−µ)tν(dv) =
1

µ
F (k+1)(s, Ns−) ∆Ns,
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since [(v/µ)∆Ns − 1] = (∆Ns/µ)(v − µ). The last displayed equation and (3.13) imply

F (k)(t, Nt) = m(k) −
∫ t

0

F (k+1)(s, Ns)ds +
∑

0<s≤t

1

µ
F (k+1)(s, Ns−) ∆Ns

= m(k) +

∫ t

0

1

µ
F (k+1)(s, Ns−)(dNs − µds), t ∈ R+, k ∈ N0.

(3.14)

This identity will help us derive the dynamics of U (k) and V (k) in (3.11). Note that

d

(
1− π

π
U

(k)
t

)
= d

(
eλtF (k)(t, Nt)

)
= eλtF (k)(t, Nt)λdt + eλtdF (k)(t, Nt)

= λ
1− π

π
U

(k)
t dt +

eλt

µ
F (k+1)(t, Nt−)(dNt − µdt).

Therefore,

dU
(k)
t = λU

(k)
t +

1

µ
U

(k+1)
t (dNt − µdt), t > 0, U

(k)
0 =

π

1− π
m(k).(3.15)

The derivation of the dynamics of V (k) is trickier. For every fixed s ∈ [0, t), let us define

N
(s)
u , Ns+u −Ns, 0 ≤ u ≤ t− s. This is also a Poisson process under P0. As in (3.14),

F (k)
(
t− s, N

(s)
t−s

)
= m(k) +

∫ t−s

0

1

µ
F (k+1)

(
u, N

(s)
u−

) (
dN (s)

u − µdu
)
.

Changing the variable of integration and substituting N
(s)
• = Ns+• − Ns into this equality

gives

F (k)(t− s, Nt −Ns) = m(k) +
1

µ

∫ t

s

F (k+1)(v − s, Nv− −Ns)(dNv − µdv).

Let us plug this identity into V
(k)
t in (3.11), multiply both sides by e−λt, and change the

order of integration. Then

e−λtV
(k)
t =

∫ t

0

λe−λs

(
m(k) +

1

µ

∫ t

0

F (k+1)(v − s, Nv− −Ns)(dNv − µdv)

)
ds

= m(k)

∫ t

0

λe−λsds +
λ

µ

∫ t

0

(∫ v

0

e−λsF (k+1)(v − s, Nv −Ns)ds

)
(dNv − µdv)

= m(k)

∫ t

0

λe−λsds +
1

µ

∫ t

0

e−λvV (k+1)
v (dNv − µdv).

Differentiating both sides and rearranging terms, we obtain

dV
(k)
t = λ

(
m(k) + V

(k)
t

)
dt +

1

µ
V

(k+1)
t (dNt − µdt), t > 0, V

(k)
0 = 0.(3.16)

Adding (3.15) and (3.16) as in (3.10) gives the dynamics (3.8) of the process Φ(k). �
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Lemma 3.2 shows that the process Φ(0) does not have the Markov property in general.

This is because, as (3.8) shows, Φ(0) depends on Φ(1), then Φ(1) depends on Φ(2), and so

on ad infinitum. However, a finite-dimensional sufficient Markovian statistic emerges if the

system of stochastic differential equations in (3.8) is closeable, namely, if the process Φ(k) can

be expressed in terms of the processes Φ(0), . . . , Φ(k−1), for some k ∈ N0. Our next corollary

shows that this is true if Λ takes finitely many distinct values.

3.3. Corollary. Suppose that ν({λ1, · · · , λk}) = 1 for some positive numbers λ1, . . . , λk.

Consider the polynomial

p(v) ,
k∏

i=1

(v − λi + µ) ≡ vk +
k−1∑
i=0

ci v
i, v ∈ R

for suitable real numbers c0, . . . , ck−1. Then {Φ(0), Φ(1), · · · , Φ(k−1)} is a k-dimensional suffi-

cient Markov statistic, with Φ(k) = −
∑k−1

i=0 ci Φ
(i).

Proof. Under the hypothesis, the random variable p(Λ− µ) = (Λ− µ)k +
∑k−1

i=0 ci(Λ− µ)i is

equal to zero almost surely. Therefore, (3.1) implies

Φ
(k)
t +

k−1∑
i=0

ci Φ
(i)
t =

E
[
p(Λ− µ)1{θ≤t}|Ft

]
1− Πt

= 0, P-a.s., for every t ≥ 0.

The process on the lefthand side has right-continuous sample paths, by (3.8). Therefore,

Φ
(k)
t +

∑k−1
i=0 ci Φ

(i)
t = 0 for all t ∈ R+ almost surely, i.e., the process Φ(k) is a linear combi-

nation of the processes Φ(0), . . . , Φ(k−1) outside a null set. �

In applications, one may construct an a prior distribution for the random variable Λ

by using empirical distributions obtained from past data, if available, and/or from expert

opinions in the field. Therefore, it is reasonable to expect that a prior distribution for Λ will

typically be discrete with finite support. In such a case, we can set up the detection problem

in the form of an optimal stopping problem for a finite-dimensional Markov process, thanks

to Corollary 3.3. In the remainder of the paper, we shall study the case where the arrival

rate of the observations after the disorder has a Bernoulli prior distribution.

4. Poisson disorder problem with a Bernoulli post-disorder arrival rate

We shall assume henceforth µ > 1 and that the random variable Λ has Bernoulli distribu-

tion

ν({µ− 1, µ + 1}) = 1.(4.1)
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Namely, the rate of the Poisson process N is expected to increase or decrease by one unit after

the disorder. Corollary 3.3 implies that Φ(2) = Φ(0), and the sufficient statistic (Φ(0), Φ(1)) is

a Markov process. According to Lemma 3.2, the pair satisfies

dΦ
(0)
t = λ

(
1 + Φ

(0)
t

)
dt +

1

µ
Φ

(1)
t− (dNt − µdt), Φ

(0)
0 =

π

1− π
,(4.2)

dΦ
(1)
t = λ

(
m + Φ

(1)
t

)
dt +

1

µ
Φ

(0)
t− (dNt − µdt), Φ

(1)
0 =

π

1− π
m,(4.3)

where, as in (2.1), we set

m ≡ m(1) = E0[Λ− µ] = P{Λ = µ + 1} − P{Λ = µ− 1}.(4.4)

The dynamics of the processes Φ(0) and Φ(1) in (4.2) and (4.3) are interdependent. However,

if we define a new process

Φ̃ ≡

[
Φ̃(0)

Φ̃(1)

]
,

1√
2

[
Φ(0) − Φ(1)

Φ(0) + Φ(1)

]
,(4.5)

then each of the new processes Φ̃(0) and Φ̃(1) is autonomous:

dΦ̃
(0)
t =

[
(λ + 1)Φ̃

(0)
t +

λ(1−m)√
2

]
dt− 1

µ
Φ̃

(0)
t−dNt, Φ̃

(0)
0 =

(1−m)π√
2(1− π)

,

dΦ̃
(1)
t =

[
(λ− 1)Φ̃

(1)
t +

λ(1 + m)√
2

]
dt +

1

µ
Φ̃

(1)
t−dNt, Φ̃

(1)
0 =

(1 + m)π√
2(1− π)

.

(4.6)

The new coordinates Φ̃(0) and Φ̃(1) are in fact the conditional odds-ratio processes as in

Φ̃
(0)
t =

√
2 · P{Λ = µ− 1, θ ≤ t|Ft}

P{θ > t|Ft}
and Φ̃

(1)
t =

√
2 · P{Λ = µ + 1, θ ≤ t|Ft}

P{θ > t|Ft}
.

Therefore, both Φ̃(0) and Φ̃(1) are nonnegative processes.

Note that m ∈ [−1, 1] in (4.4). The cases m = ±1 degenerate to Poisson disorder

problems with known post-disorder rates, and were studied by Bayraktar, Dayanik, and

Karatzas (2004b). Therefore, we will assume that m ∈ (−1, 1) in the remainder.

4.1. Remark. For every φ0 ∈ R and φ1 ∈ R, let us denote by x(t, φ0), t ∈ R and y(t, φ1),

t ∈ R the solutions of the differential equations

d

dt
x(t, φ0) = (λ + 1)x(t, φ0) +

λ(1−m)√
2

, x(0, φ0) = φ0,

d

dt
y(t, φ1) = (λ− 1)y(t, φ1) +

λ(1 + m)√
2

, y(0, φ1) = φ1,

(4.7)
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respectively. These solutions are given by

x(t, φ0) = − λ(1−m)√
2(λ + 1)

+ e(λ+1)t

[
φ0 +

λ(1−m)√
2(λ + 1)

]
, t ∈ R,

y(t, φ1) =


− λ(1 + m)√

2(λ− 1)
+ e(λ−1)t

[
φ1 +

λ(1 + m)√
2(λ− 1)

]
, λ 6= 1

φ1 +
1 + m√

2
t, λ = 1

 , t ∈ R.

(4.8)

Both x(·, φ0) and y(·, φ1) have the semi-group property, i.e., for every t ∈ R and s ∈ R

x(t + s, φ0) = x(s, x(t, φ0)) and y(t + s, φ1) = y(s, y(t, φ1)).(4.9)

Note from (4.6) and (4.7) that

Φ̃
(0)
t = x

(
t− σn, Φ̃

(0)
σn

)
and Φ̃

(1)
t = y

(
t− σn, Φ̃

(1)
σn

)
, σn ≤ t < σn+1, n ∈ N0.(4.10)

4.1. An optimal stopping problem for the quickest detection of the Poisson dis-

order. In terms of the new sufficient statistics Φ̃(1) and Φ̃(0) in (4.5, 4.6), the Bayes risk of

(2.6, 3.2) can be rewritten as

Rτ (π) = 1− π +
c(1− π)√

2
· E0

[∫ τ

0

e−λt

(
Φ̃

(0)
t + Φ̃

(1)
t − λ

c

√
2

)
dt

]
, τ ∈ S.

Therefore, the minimum Bayes risk U(π) , infτ∈S Rτ (π), π ∈ [0, 1) is given by

U(π) = 1− π +
c(1− π)√

2
· V
(

(1−m)π√
2(1− π)

,
(1 + m)π√
2(1− π)

)
, π ∈ [0, 1),(4.11)

where m is as in (4.4), the function V (·, ·) is the value function of the optimal stopping

problem

V (φ0, φ1) , inf
τ∈S

Eφ0,φ1

0

[∫ τ

0

e−λtg
(
Φ̃

(0)
t , Φ̃

(1)
t

)
dt

]
,

g(φ0, φ1) , φ0 + φ1 −
λ

c

√
2, (φ0, φ1) ∈ R2

+,

(4.12)

and Eφ0,φ1

0 is the conditional P0-expectation given that Φ̃
(0)
0 = φ0 and Φ̃

(1)
0 = φ1. Moreover,

an optimal stopping time for (4.12) is a minimum Bayes alarm time.

It is clear from (4.12) that it is never optimal to stop before the process Φ̃ leaves the

region

C0 ,

{
(φ0, φ1) ∈ R2

+ : φ0 + φ1 <
λ

c

√
2

}
.(4.13)
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(a) Φ̃(1) with 0 < λ < 1

φd0

t

0

t

Φ̃(1)0

t

Φ̃(1)
t (ω)

Φ̃(0)

(c) Φ̃(0) with λ > 0

Φ̃(1)

Φ̃(0)
t (ω)

Φ̃(1)
t (ω)

(b) Φ̃(1) with λ ≥ 1

Figure 1. The sample-paths of the processes Φ̃(1) and Φ̃(0).

In the next subsection we shall discuss the pathwise behavior of the process Φ̃; this will give

insight into the solution of the optimal stopping problem in (4.12).

4.2. The sample-paths of the sufficient-statistic process Φ̃ = (Φ̃(0), Φ̃(1)). The process

Φ̃(0) jumps downwards and increases between jumps; see (4.6) and Figure 1(c). On the other

hand, the process Φ̃(1) jumps upwards, and its behavior between jumps depends on the sign

of 1 − λ. If λ ≥ 1, then the process Φ̃(1) increases between jumps; see Figure 1(b). If

0 < λ < 1, then Φ̃(1) reverts to the (positive) “mean-level”

φd ,
λ(1 + m)

(1− λ)
√

2
(4.14)

between jumps; it never visits φd unless it starts there; and in this latter case, it stays at φd

until the first jump and never comes back to φd later (i.e., φd > 0 is an entrance boundary

for Φ̃(1)); see Figure 1(a). Finally, note that φd and 1− λ 6= 0 have the same signs.

As for the solution of the optimal stopping problem in (4.12), it is worth waiting if the

process Φ̃ is in the region C0 of (4.13), or is likely to return to C0 shortly. The sample-paths

of the process Φ̃ are deterministic between jumps, and tend towards, or away from, the region
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C0

Φ̃(1)

Φ̃t(ω)

α

αα = 90◦

α

Φ̃(0)0

Φ̃(1)

Φ̃(0)0 0

Φ̃t(ω)

φd

λ
c

√
2

λ
c

√
2

λ
c

√
2

λ
c

√
2

(a) Case I: λ ≥ 1 or 0 < (λ/c)
√

2 ≤ φd (b) Case II: 0 < φd < (λ/c)
√

2

C0

Figure 2. The sample-paths of Φ̃

C0. These two cases are described separately below. In both cases, however, the process

Φ̃ jumps in the same direction relative to its position before the jump. A jump at (φ0, φ1)

is an instantaneous displacement (1/µ)[−φ0 φ1]
T in Φ̃. Therefore, the jump direction is

away from (respectively, towards) the region C0 if φ0 < φ1 (respectively, φ0 > φ1). Along

a quarter of a circle in Figure 2(a), the directions of jumps at an equal distance from the

origin are illustrated by the arrows. Note also that, along any fixed half-ray in R2
+, the jump

direction (namely, the angle α in Figure 2(a)) does not change, but the size of the jump

does.

4.3. Case I: A “large” disorder arrival rate. Suppose that λ ≥ 1 or 0 < (λ/c)
√

2 ≤ φd.

Equivalently, λ ≥ [1− (1 + m)(c/2)]+ is “large”. Between jumps, the process Φ̃ gets farther

away from the region C0. It may return to C0 by jumps only, and only if the jump originates

in the region L , {(φ0, φ1) : φ0 > φ1}; see Figure 2(a). But, if Φ̃(1) reaches at or above

(λ/c)
√

2, then Φ̃ will never return to C0.

4.4. Case II: A “small” disorder arrival rate. Now suppose that 0 < φd < (λ/c)
√

2.

Equivalently, 0 < λ < 1− (1+m)(c/2) is “small”. If the process Φ̃ finds itself in a very close

neighborhood of the upper-left corner of the triangular region C0, then it will drift into C0
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before the next jump with positive probability. Otherwise, the behavior of the sample-paths

of Φ̃ relative to C0 is very similar to that in Case I; see Figure 2(b).

5. A family of related optimal stopping problems

Let us introduce the family of optimal stopping problems

Vn(φ0, φ1) , inf
τ∈S

Eφ0,φ1

0

[∫ τ∧σn

0

e−λtg
(
Φ̃

(0)
t , Φ̃

(1)
t

)
dt

]
, (φ0, φ1) ∈ R2

+, n ∈ N,(5.1)

obtained from (4.12) by stopping the process Φ̃ at the nth jump time σn of the process N .

Since g(·, ·) in (4.12) is bounded from below by the constant −(λ/c)
√

2, the expectation in

(5.1) is well-defined for every stopping time τ ∈ S. In fact, −
√

2/c ≤ Vn ≤ 0 for every n ∈ N.

Since the sequence (σn)n≥1 of jump times of the process N is increasing almost surely, the

sequence (Vn)n≥1 is decreasing. Therefore, limn→∞ Vn exists everywhere. It is also obvious

that Vn ≥ V , n ∈ N.

5.1. Proposition. As n → ∞, the sequence Vn(φ0, φ1) converges to V (φ0, φ1) uniformly in

(φ0, φ1) ∈ R2
+. In fact, for every n ∈ N and (φ0, φ1) ∈ R2

+, we have

√
2

c
·
(

µ

λ + µ

)n

≥ Vn(φ0, φ1)− V (φ0, φ1) ≥ 0.(5.2)

Proof. Let us fix (φ0, φ1) ∈ R2
+. For every τ ∈ S and n ∈ N, we have

Eφ0,φ1

0

[∫ τ

0

e−λsg(Φ̃s)ds

]
= Eφ0,φ1

0

[∫ τ∧σn

0

e−λsg(Φ̃s)ds

]
+ Eφ0,φ1

0

[
1{τ≥σn}

∫ τ

σn

e−λsg(Φ̃s)ds

]
≥ Eφ0,φ1

0

[∫ τ∧σn

0

e−λsg(Φ̃s)ds

]
− λ

c

√
2 · Eφ0,φ1

0

[
1{τ≥σn}

∫ τ

σn

e−λsds

]
≥ Eφ0,φ1

0

[∫ τ∧σn

0

e−λsg(Φ̃s)ds

]
−
√

2

c
· Eφ0,φ1

0

[
e−λσn

]
≥ Vn(φ0, φ1)−

√
2

c
·
(

µ

λ + µ

)n

We have used the bound g(φ0, φ1) ≥ −(λ/c)
√

2 from (4.12), as well as the fact that N is

a Poisson process with rate µ under P0, and σn is the n-th jump time of N . Taking the

infimum over τ ∈ S gives the first inequality in (5.2). �

We shall try to calculate now the functions Vn(·) of (5.1), following a method of Gugerli

(1986) and Davis (1993). Let us start by defining on the collection of bounded Borel functions
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w : R2
+ 7→ R the operators

Jw(t, φ0, φ1) , Eφ0,φ1

0

[∫ t∧σ1

0

e−λug
(
Φ̃(0)

u , Φ̃(1)
u

)
du + 1{t≥σ1}e

−λσ1w
(
Φ̃(0)

σ1
, Φ̃(1)

σ1

)]
,(5.3)

Jtw(φ0, φ1) , inf
u∈[t,∞]

Jw(u, φ0, φ1) for every t ∈ [0,∞].(5.4)

The special structure of the stopping times of jump processes (see Lemma 7.1 below) implies

J0w(φ0, φ1) = inf
τ∈S

Eφ0,φ1

0

[∫ τ∧σ1

0

e−λtg
(
Φ̃

(0)
t , Φ̃

(1)
t

)
dt + 1{τ≥σ1}e

−λσ1w
(
Φ̃(0)

σ1
, Φ̃(1)

σ1

)]
.(5.5)

By relying on the strong Markov property of the process N at its first jump time σ1, one

expects that the value function V of (4.12) satisfies the equation V = J0V . Below, we show

that this is indeed the case. In fact, if we define vn : R2
+ 7→ R, n ∈ N0 sequentially by

v0 ≡ 0, and vn , J0vn−1 ∀n ∈ N,(5.6)

then every vn is bounded and identical to Vn of (5.1), limn→∞ vn exists and equals the value

function V in (4.12).

Under P0, the first jump time σ1 of the process N has exponential distribution with rate

µ. Using the Fubini theorem and (4.10), we can write (5.3) as

Jw(t, φ0, φ1) =

∫ t

0

e−(λ+µ)u
(
g + µ · w ◦ S

)(
x(u, φ0), y(u, φ1)

)
du, t ∈ [0,∞],(5.7)

where x(·, φ0) and y(·, φ1) are the solutions (4.8) of the ordinary differential equations in

(4.7), and S : R2
+ 7→ R2

+ is the linear mapping

S(φ0, φ1) ,

((
1− 1

µ

)
φ0,

(
1 +

1

µ

)
φ1

)
.(5.8)

5.2. Remark. Using µ > 1 and the explicit forms of x(u, φ0) and y(u, φ1) in (4.8), it is easy

to check that the integrand in (5.7) is absolutely integrable on R+. Therefore,

lim
t→∞

Jw(t, φ0, φ1) = Jw(∞, φ0, φ1) < ∞,

and the mapping t 7→ Jw(t, φ0, φ1) : [0,∞] 7→ R is continuous. The infimum Jtw(φ0, φ1) in

(5.4) is attained for every t ∈ [0,∞].

5.3. Lemma. For every bounded Borel function w : R2
+ 7→ R, the mapping J0w is bounded.

If we define ||w|| , sup(φ0,φ1)∈R2
+
|w(φ0, φ1)| < ∞, then

−

(
λ

λ + µ
·
√

2

c
+

µ

λ + µ
· ||w||

)
≤ J0w(φ0, φ1) ≤ 0, (φ0, φ1) ∈ R2

+.(5.9)
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If the function w(φ0, φ1) is concave, then so is J0w(φ0, φ1). If w1 ≤ w2 are real-valued and

bounded Borel functions defined on R2
+, then J0w1 ≤ J0w2.

5.4. Corollary. Every vn, n ∈ N0 in (5.6) is bounded and concave, and −
√

2/c ≤ . . . ≤ vn ≤
vn−1 ≤ v1 ≤ v0 ≡ 0. The limit

v(φ0, φ1) , lim
n→∞

vn(φ0, φ1), (φ0, φ1) ∈ R2
+(5.10)

exists, and is also bounded and concave.

Both vn : R2
+ 7→ R, n ∈ N and v : R2

+ 7→ R are continuous, increasing in each of their

arguments, and their left and right partial derivatives are bounded on every compact subset

of R2
+.

5.5. Proposition. For every n ∈ N, the functions vn of (5.6) and Vn of (5.1) coincide. For

every ε ≥ 0, let

rε
n(φ0, φ1) , inf

{
s ∈ (0,∞] : Jvn

(
s, φ0, φ1

)
≤ J0vn(φ0, φ1) + ε

}
, n ∈ N0, (φ0, φ1) ∈ R2

+,

Sε
1 , rε

0

(
Φ̃0

)
∧ σ1, and Sε

n+1 ,

 rε/2
n

(
Φ̃0

)
, if σ1 > rε/2

n

(
Φ̃0

)
σ1 + Sε/2

n ◦ θσ1 , if σ1 ≤ rε/2
n

(
Φ̃0

)
 , n ∈ N,

where θs is the shift-operator on Ω: Nt ◦ θs = Ns+t. Then

Eφ0,φ1

0

[∫ Sε
n

0

e−λtg
(
Φ̃t

)
dt

]
≤ vn(φ0, φ1) + ε, ∀n ∈ N, ∀ ε ≥ 0.(5.11)

5.6. Proposition. We have v(φ0, φ1) = V (φ0, φ1) for every (φ0, φ1) ∈ R2
+. Moreover, V is

the largest nonpositive solution U of the equation U = J0U .

5.7. Lemma. Let w : R2
+ 7→ R be a bounded function. For every t ∈ R+ and (φ0, φ1) ∈ R2

+,

Jtw(φ0, φ1) = Jw(t, φ0, φ1) + e−(λ+µ)t J0w
(
x(t, φ0), y(t, φ1))

)
.(5.12)

5.8. Corollary. Let

rn(φ0, φ1) = inf
{
s ∈ (0,∞] : Jvn

(
s, (φ0, φ1)

)
= J0vn(φ0, φ1)

}
(5.13)

be the same as rε
n(φ0, φ1) in Proposition 5.5 with ε = 0. Then

rn(φ0, φ1) = inf
{
t > 0 : vn+1

(
x(t, φ0), y(t, φ1)

)
= 0
}

(inf ∅ ≡ ∞).(5.14)

Proof. Let us fix (φ0, φ1) ∈ R2
+, and denote rn(φ0, φ1) by rn. By Remark 5.2, we have

Jvn(rn, φ0, φ1) = J0vn(φ0, φ1) = Jrnvn(φ0, φ1).
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Suppose first that rn < ∞. Since J0vn = vn+1, taking t = rn and w = vn in (5.7) gives

Jvn(rn, φ0, φ1) = Jrnvn(φ0, φ1) = Jvn(rn, φ0, φ1) + e−(λ+µ)rnvn+1(x(rn, φ0), y(rn, φ1)).

Therefore, vn+1(x(rn, φ0), y(rn, φ1)) = 0.

If 0 < t < rn, then Jvn(t, φ0, φ1) > J0vn(φ0, φ1) = Jrnvn(φ0, φ1) = Jtvn(φ0, φ1) since

u 7→ Juvn(φ0, φ1) is nondecreasing. Taking t ∈ (0, rn) and w = vn in (5.7) imply

J0vn(φ0, φ1) = Jtvn(φ0, φ1) = Jvn(t, φ0, φ1) + e−(λ+µ)tvn+1(x(t, φ0), y(t, φ1)).

Therefore, vn+1(x(t, φ0), y(t, φ1)) < 0 for every t ∈ (0, rn), and (5.14) follows.

Suppose now that rn = ∞. Then we have vn+1(x(t, φ0), y(t, φ1)) < 0 for every t ∈ (0,∞)

by the same argument in the last paragraph above. Hence, {t > 0 : vn+1(x(t, φ0), y(t, φ1)) =

0} = ∅, and (5.14) still holds. �

5.9. Remark. For every t ∈ [0, rn(φ0, φ1)], we have Jtvn(φ0, φ1) = J0vn(φ0, φ1) = vn+1(φ0, φ1).

Then substituting w(·, ·) = vn(·, ·) in (5.12) gives the dynamic programming equation for the

family {vk(·, ·)}k∈N0 : for every (φ0, φ1) ∈ R2
+ and n ∈ N0

vn+1(φ0, φ1) = Jvn(t, φ0, φ1) + e−(λ+µ)tvn+1(x(t, φ0), y(t, φ1)), t ∈ [0, rn(φ0, φ1)].(5.15)

5.10. Remark (Dynamic Programming Equation for V (·, ·)). Since V (·, ·) is bounded, and

V = J0V by Proposition 5.6, Lemma 5.7 gives

JtV (φ0, φ1) = JV (t, φ0, φ1) + e−(λ+µ)t V
(
x(t, φ0), y(t, φ1))

)
, t ∈ R+(5.16)

for every (φ0, φ1) ∈ R2
+; and if we define

r(φ0, φ1) , inf{t > 0 : JV (t, φ0, φ1) = J0V (φ0, φ1)}, (φ0, φ1) ∈ R2
+,(5.17)

then arguments similar to those in the proof of Corollary 5.8, and (5.16), give

r(φ0, φ1) = inf{t > 0 : V (x(t, φ0), y(t, φ1)) = 0}, (φ0, φ1) ∈ R2
+,(5.18)

as well as the Dynamic Programming equation

V (φ0, φ1) = JV (t, φ0, φ1) + e−(λ+µ)tV (x(t, φ0), y(t, φ1)), t ∈ [0, r(φ0, φ1)](5.19)

for the function V (·, ·) of (4.12). Because t 7→ Jw(t, (φ0, φ1)) and t 7→ Jtw(φ0, φ1) are

continuous for every bounded w : R2
+ 7→ R (see, e.g., (5.7)), the identity (5.16) implies

that t 7→ V (x(t, φ0), y(t, φ1)) is continuous. Therefore, every realization of t 7→ V (Φ̃t) is

right-continuous and has left-limits.



ADAPTIVE POISSON DISORDER PROBLEM 25

Let us define the F-stopping times

Uε , inf{t ≥ 0 : V (Φ̃t) ≥ −ε}, ε ≥ 0.(5.20)

By Remark 5.10, we have

V
(
Φ̃Uε

)
≥ −ε on the event {Uε < ∞} .(5.21)

5.11. Proposition. Let Mt , e−λtV (Φ̃t) +
∫ t

0
e−λsg(Φ̃s)ds, t ≥ 0. For every n ∈ N, ε ≥ 0,

and (φ0, φ1) ∈ R2
+, we have Eφ0,φ1

0 [M0] = Eφ0,φ1

0 [MUε∧σn ], i.e.,

V (φ0, φ1) = Eφ0,φ1

0

[
e−λ(Uε∧σn)V (Φ̃Uε∧σn) +

∫ Uε∧σn

0

e−λsg(Φ̃s)ds

]
.(5.22)

5.12. Proposition. For every ε ≥ 0, the stopping time Uε in (5.20) is ε-optimal for the

problem (4.12), i.e.,

Eφ0,φ1

0

[∫ Uε

0

e−λsg(Φ̃s)ds

]
≤ V (φ0, φ1) + ε, for every (φ0, φ1) ∈ R2

+.

Proposition 5.5 above shows how we can calculate the Vn’s sequentially; it also identifies

explicitly ε-optimal times for every optimal stopping problem in (5.1). Together with Propo-

sition 5.1, it suggests a way to calculate ε-optimal alarm times: Let ε1 > 0 and ε2 ≥ 0 be

two arbitrary numbers such that ε1 + ε2 = ε > 0. Let us choose n ∈ N such that

√
2

c
·
(

µ

λ + µ

)n

< ε1.(5.23)

Then we have Vn(φ0, φ1) − ε1 ≤ V (φ0, φ1) ≤ Vn(φ0, φ1) for every (φ0, φ1) ∈ R2
+, and the

stopping time Sε2
n of Proposition 5.5 is an ε-optimal stopping time for our original optimal

stopping problem (4.12) in the sense that

V (φ0, φ1) ≤ Eφ0,φ1

0

[∫ S
ε2
n

0

e−λtg
(
Φ̃t

)
dt

]
< V (φ0, φ1) + ε, (φ0, φ1) ∈ R2

+.

Since n ∈ N satisfies (5.23), and Sε2
n (ω) ≤ σn(ω) for all ω ∈ Ω, setting the alarm at the nth

jump of the process N (if this has not been triggered by Sε2
n (ω) earlier) is not in error more

than ε.

In this section, we showed that the (more classical) stopping times Uε of (5.20) are also

ε-optimal for (4.12); especially the stopping time U0 is optimal, see Proposition 5.12.
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6. A bound on the alarm time

We shall show that the optimal continuation region C = {(φ0, φ1) ∈ R2
+ : V (φ0, φ1) < 0}

is contained in some set

D = {(φ0, φ1) ∈ R2
+ : φ0 + φ1 < ξ∗} for a suitable ξ∗ ∈

[
λ + µ

c

√
2,∞

)
.(6.1)

Therefore, the region C has compact closure; this will be very useful in proving in the next

section that C has a strictly decreasing convex boundary.

Recall from Section 4.1 that it is not optimal to stop before the process Φ̃ leaves the region

C0 in (4.13). Thus the optimal stopping time U0 of Proposition 5.12 is bounded by

τC0 , inf

{
t ≥ 0 : Φ̃

(0)
t + Φ̃

(1)
t ≥ λ

c

√
2

}
≤ U0 ≤ τD , inf{t ≥ 0 : Φ̃

(0)
t + Φ̃

(1)
t ≥ ξ∗}(6.2)

the exit times τC0 and τD of the process Φ̃ from the regions C0 and D, respectively. The

constant threshold ξ∗ in (6.1) is essentially determined by the number (λ + µ)
√

2/c (see

(6.5), (6.9) and (6.11)), and our calculations below suggest that they are close. Therefore,

the bounds in (6.2) may prove useful in practice. The difference [(λ + µ)/c]
√

2− (λ/c)
√

2 =

(µ/c)
√

2 between the thresholds that determine the latest and the earliest alarm times is also

meaningful. It increases as µ/c increases: waiting longer is encouraged if the new information

arrives at a higher rate than we pay for detection delay per unit time when the disorder has

already happened.

Finally, we prove in Lemma 6.1 that τD in (6.2) has finite expectation. Therefore,

Eφ0,φ1

0 [U0] ≤ Eφ0,φ1

0 [τD] < ∞ for every (φ0, φ1) ∈ R2
+.

Let τ ∈ S be any F-stopping time. By Lemma 7.1, there is a constant t ≥ 0 such that

τ ∧ σ1 = t ∧ σ1 almost surely. Therefore

(6.3) Eφ0,φ1

0

[∫ τ

0

e−λsg
(
Φ̃s

)
ds

]
= Eφ0,φ1

0

[∫ τ∧σ1

0

e−λsg
(
Φ̃s

)
ds

]
+ Eφ0,φ1

0

[
1{τ≥σ1}

∫ τ

σ1

e−λsg
(
Φ̃s

)
ds

]
≥ Eφ0,φ1

0

[∫ t

0

1{s≤σ1}e
−λsg

(
x(s, φ0), y(s, φ1)

)
ds

]
−
√

2

c
· Eφ0,φ1

0

[
1{t≥σ1}e

−λσ1
]

=

∫ t

0

e−(λ+µ)s
[
g
(
x(s, φ0), y(s, φ1)

)
− µ

c

√
2
]
ds.

The inequality follows from g(φ0, φ1) ≥ g(0, 0) = −(λ/c)
√

2, see (4.12). The functions

x(·, φ0) and y(·, φ1) are the solutions of (4.7) (see Remark 4.1), and σ1 has exponential
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λ+µ
c

√
2λ

c

√
2

λ
c

√
2 (x(t, φ0), y(t, φ1))

(φ0, φ1)

λ
c

√
2

λ
c

√
2
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c

√
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c

√
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c
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√
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√
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distribution with rate µ under P0. Clearly, if

0 < g
(
x(s, φ0), y(s, φ1)

)
− µ

c

√
2 = x(s, φ0) + y(s, φ1)−

λ + µ

c

√
2, 0 < s < ∞,(6.4)

then (6.3) implies that Eφ0,φ1

0

[∫ τ

0
e−λsg

(
Φ̃s

)
ds
]

> 0 for every F-stopping time τ 6= 0 almost

surely (since the filtration F is right-continuous, the probability of {τ ≥ 0} ∈ F0 equals zero

or one). Thus, “stopping immediately” is optimal at every (φ0, φ1) where (6.4) holds.

If λ ≥ 1, then s 7→ x(s, φ0) and s 7→ y(s, φ1) are increasing for every (φ0, φ1) ∈ R2
+, see

(4.7) and Figure 3(a). Therefore, x(s, φ0) + y(s, φ1) > x(0, φ0) + y(0, φ1) = φ0 + φ1 for every

0 < s < ∞. Hence, (6.4) holds, and therefore it is optimal to stop immediately outside the

region

D1 ,

{
(φ0, φ1) ∈ R2

+ : φ0 + φ1 <
λ + µ

c

√
2

}
if λ ≥ 1.(6.5)

Suppose now that 0 < λ < 1; equivalently, φd of (4.14) is positive. Then s 7→ x(s, φ0)

is increasing for every φ0 ∈ R+. For φ1 = φd, the derivative dy(s, φd)/ds in (4.7) vanishes

for every 0 < s < ∞. The mapping s 7→ y(s, φ1) is increasing if φ1 ∈ [0, φd), decreasing if

φ1 ∈ (φd,∞), and φ(s, φd) = φd for every 0 ≤ s < ∞; see (4.7) and Figures 3(b,c). The

derivative

d

dt

[
x(t, φ0) + y(t, φ1)

]
= (λ + 1)x(t, φ0) + (λ− 1)y(t, φ1) + λ

√
2(6.6)
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of the righthand side of (6.4) (see also (4.7)) vanishes if the curve s 7→ (x(s, φ0), y(s, φ1))

meets at s = t the line

` : (λ + 1)x + (λ− 1)y + λ
√

2 = 0, or y =
1 + λ

1− λ
x +

λ

1− λ

√
2.(6.7)

Since m ∈ (−1, 1), the “mean-level” φd in (4.14) and the y-intercept of the line ` in (6.7) are

related as in

φd =
λ

1− λ
· 1 + m√

2
<

λ

1− λ

√
2.

Because ` is increasing, this relationship implies that the line ` in contained in R+× (φd,∞)

(see Figures 3(b,c)). However, every curve t 7→ (x(t, φ0), y(t, φ1)) starting at some (φ0, φ1) in

R+ × (φd,∞) is “decreasing”, and the derivative in (6.6) is increasing. Therefore, any curve

t 7→ (x(t, φ0), y(t, φ1)), (φ0, φ1) ∈ R2
+ may meet ` at most once, and

if t 7→ (x(t, φ0), y(t, φ1)) meets the line ` at t` = t`(φ0, φ1), then t 7→ x(t, φ0) +

y(t, φ1) is decreasing (resp., increasing) on [0, t`] (resp., on [t`,∞)). Otherwise,

t 7→ x(t, φ0) + y(t, φ1) is increasing on [0,∞).

 .(6.8)

� Consider now the first of two possible cases: the line ` does not meet D1 of (6.5); i.e.,

λ/(1−λ) ≥ (λ+µ)/c, as in Figure 3(b). Then φ0 +φ1 ≥ (λ+µ)
√

2/c for every (φ0, φ1) ∈ `.

Therefore, (6.8) implies that (6.4) holds, i.e., it is optimal to stop immediately, outside

D1 =

{
(φ0, φ1) ∈ R2

+ : φ0 + φ1 <
λ + µ

c

√
2

}
if

λ

1− λ
≥ λ + µ

c
.(6.9)

� In the second case, the line ` of (6.7) meets the region D1, i.e., 0 < λ/(1− λ) < (λ + µ)/c,

see Figure 3(c). Let us denote by (φ∗0, φ
∗
1) the point at the intersection of the line ` and the

boundary x + y − (λ + µ)
√

2/c = 0 of the region D1. By running the time “backwards”, we

can find ξ∗ (and t∗) such that

(0, ξ∗) =
(
x(−t∗, φ∗0), y(−t∗, φ∗1)

)
.(6.10)

Indeed, using (4.8), we can obtain first t∗ ≥ 0 by solving 0 = x(−t∗, φ∗0), and then ξ∗ ,

y(−t∗, φ∗1) . By the semi-group property (4.9), we have

x(t∗, 0) = x
(
t∗, x(−t∗, φ∗0)

)
= x(t∗ + (−t∗), φ∗0) = x(0, φ∗0) = φ∗0,

y(t∗, ξ∗) = y
(
t∗, y(−t∗, φ∗1)

)
= y(t∗ + (−t∗), φ∗1) = y(0, φ∗1) = φ∗1.



ADAPTIVE POISSON DISORDER PROBLEM 29

Hence, the curve t 7→
(
x(t, 0), y(t, ξ∗)

)
, t ≥ 0 meets ` at (φ∗0, φ

∗
1), and t` in (6.8) equals t∗,

see Figure 3(c). Therefore, (6.8) implies that

x(t, 0) + y(t, ξ∗) ≥ x(t∗, 0) + y(t∗, ξ∗) = φ∗0 + φ∗1 =
λ + µ

c

√
2, 0 ≤ t < ∞.

In particular, ξ∗ = 0 + ξ∗ = x(0, 0) + y(0, ξ∗) ≥ (λ + µ)
√

2/c. We are now ready to show

that it is optimal to stop immediately outside the region

D2 ,
{
(φ0, φ1) ∈ R2

+ : φ0 + φ1 < ξ∗
}

if 0 <
λ

1− λ
<

λ + µ

c
,(6.11)

where ξ∗ is as in (6.10). The curve t 7→
(
x(t, 0), y(t, ξ∗)

)
divides R2

+ into two connected

components each containing the region D1 of (6.5) and

M ,
(
R2

+\D2

)
∩
{

(x, y) ∈ R2
+ : (λ + 1)x + (λ− 1)y + λ

√
2 < 0

}
,

respectively (see (6.7)). Every curve t 7→
(
x(t, φ0), y(t, φ1)

)
, t ≥ 0 starting at (φ0, φ1) in M

will stay in the same component as M . Therefore, the curve intersects the line ` away from

D1, and (6.8) implies that (6.4) is satisfied for every (φ0, φ1) ∈ M .

For (φ0, φ1) ∈ (R2
+\D2) ∩

{
(x, y) ∈ R2

+ : (λ + 1)x + (λ− 1)y + λ
√

2 ≥ 0
}
, the curve t 7→(

x(t, φ0), y(t, φ1)
)
, t ≥ 0 does not meet `; therefore, t 7→ x(t, φ0) + y(t, φ1) increases by (6.8)

and

x(t, φ0) + y(t, φ1) > x(0, φ0) + y(0, φ1) = φ0 + φ1 ≥ ξ∗ ≥ λ + µ

c

√
2, 0 < s < ∞.

Thus, the sufficient condition (6.4) for the optimality of immediate stopping holds for every

(φ0, φ1) ∈ R2
+\D2.

6.1. Lemma. Let τD be the exit time of the process Φ̃ from the region D in (6.1). Then

Eφ0,φ1

0 [τD] is finite for every (φ0, φ1) ∈ R2
+.

Proof. Let f(φ0, φ1) , φ0 + φ1, (φ0, φ1) ∈ R2
+. Using the explicit form of the infinitesimal

generator Ã of the process Φ̃ in (7.4), we obtain

(6.12) Ãf(φ0, φ1) = (λ + 1)φ0 +
λ(1−m)√

2
+ (λ− 1)φ1 +

λ(1 + m)√
2

+ µ

[(
1− 1

µ

)
φ0 +

(
1 +

1

µ

)
φ1 − (φ0 + φ1)

]
= λ(φ0 + φ1 +

√
2) ≥ λ

√
2
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for every (φ0, φ1) ∈ R2
+. Since f(·, ·) is bounded on D of (6.1) and τD ∧ t, t ≥ 0 is a bounded

F-stopping time, (7.3) holds for τ = τD ∧ t. Then we have

(6.13) ξ∗
(

1 +
1

µ

)
≥ Eφ0,φ1

0 f
(
Φ̃τD∧t

)
= f(φ0, φ1) + Eφ0,φ1

0

[∫ τD∧t

0

Ãf
(
Φ̃t

)
dt

]
≥ λ

√
2 Eφ0,φ1

0 [τD ∧ t], t ≥ 0.

The process Φ̃ may leave the region D in (6.1) continuously or by a jump. Since f(S(φ0, φ1)) =

(1 + 1/µ)φ0 + (1− 1/µ)φ1 ≤ (1 + 1/µ)(φ0 + φ1) = (1 + 1/µ)f(φ0, φ1) ≤ (1 + 1/µ)ξ∗ for every

(φ0, φ1) ∈ D, and this upper bound is larger than ξ∗, the first inequality in (6.13) follows.

The second inequality is due to (6.12). Finally, the monotone convergence theorem and

(6.13) imply that Eφ0,φ1

0 [τD] is finite. �

7. Appendix: proofs of selected results in Part 1

The P0-infinitesimal generator Ã of the process Φ̃ in (4.5). Let us denote by Ã the infin-

itesimal generator under P0 of the process Φ̃ =
[
Φ̃(0) Φ̃(1)

]T
in (4.5). For every function

f ∈ C1,1(R+ × R+), we have

(7.1) f(Φ̃t) = f(Φ̃0) +
∑

0<s≤t

[
f(Φ̃s)− f(Φ̃s−)

]
+

∫ t

0

{
Dφ0f(Φ̃s)

[
(λ + 1)Φ̃(0)

s +
λ(1−m)√

2

]
+ Dφ1f(Φ̃s)

[
(λ− 1)Φ̃(1)

s +
λ(1 + m)√

2

]}
ds

and∑
0<s≤t

[
f(Φ̃s)− f(Φ̃s−)

]
=

∫ t

0

[
f

((
1− 1

µ

)
· Φ̃(0)

s−,

(
1 +

1

µ

)
· Φ̃(1)

s−

)
− f

(
Φ̃

(0)
s−, Φ̃

(1)
s−

)]
dNs.

Note that {Nt − µt; t ≥ 0} is a (P0, F)-martingale. Then for every F-stopping time τ such

that

Eφ0,φ1

0

∣∣∣f(Φ̃τ

)∣∣∣ < ∞ and

Eφ0,φ1

0

[∫ τ

0

∣∣∣∣f ((1− 1

µ

)
· Φ̃(0)

s−,

(
1 +

1

µ

)
· Φ̃(1)

s−

)
− f

(
Φ̃

(0)
s−, Φ̃

(1)
s−

)∣∣∣∣ ds

]
< ∞,

(7.2)

we have

E0f(Φ̃τ ) = f(Φ̃0) + E0

∫ τ

0

Ãf(Φ̃s)ds, t ≥ 0,(7.3)
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and

Ãf(φ0, φ1) = Dφ0f(φ0, φ1)

[
(λ + 1)φ0 +

λ(1−m)√
2

]
+ Dφ1f(φ0, φ1)

[
(λ− 1)φ1 +

λ(1 + m)√
2

]
+ µ

[
f

((
1− 1

µ

)
φ0,

(
1 +

1

µ

)
φ1

)
− f(φ0, φ1)

]
, (φ0, φ1) ∈ R+ × R+.(7.4)

Proof of Lemma 5.3. Let w : R2
+ 7→ R be a bounded Borel function. Since g(·, ·) ≥

g(0, 0) = −λ
√

2/c in (4.12) is bounded from below, the function J0w is well-defined. By

(5.7),

Jw(t, φ0, φ1) ≥ −
(

λ

c

√
2 + µ||w||

)∫ ∞

0

e−(λ+µ)udu = −
(

λ

c

√
2 + µ||w||

)
1

λ + µ

for every t ∈ [0,∞]. Since we also have J0w(φ0, φ1) ≤ Jw(0, φ0, φ1) = 0, we obtain (5.9).

Suppose now that w is also concave. For every u ∈ R, the functions φ0 7→ x(u, φ0)

and φ1 7→ y(u, φ1) in (4.8) are linear. The mappings (φ0, φ1) 7→ S(φ0, φ1) in (5.8) and

(φ0, φ1) 7→ g(φ0, φ1) in (4.12) are also linear. Therefore, the integrand in (5.7), namely

(φ0, φ1) 7→ e−(λ+µ)u
(
g + µ · w ◦ S

)(
x(u, φ0), y(u, φ1)

)
is concave for every u ∈ [0,∞).

Thus, the mappings (φ0, φ1) 7→ Jw(t, (φ0, φ1)), t ∈ [0,∞] in (5.7) are concave. Then

J0w(φ0, φ1) = inft∈[0,∞] Jw(t, φ0, φ1) is a lower envelope of concave mappings, and there-

fore, is a concave function of (φ0, φ1) ∈ R2
+. Finally, it is clear from (5.7) that w1 ≤ w2

implies that J0w1 ≤ J0w2. �

Proof of Corollary 5.4. The function v0 ≡ 0 has all of the properties. The proof of the

lemma now follows from an induction and the properties of concave functions. �

For the proof of Proposition 5.5, we shall need the following result on the characterization

of F-stopping times, see Brémaud (1981, Theorem T33, p. 308), Davis (1993, Lemma A2.3,

p. 261).

7.1. Lemma. For every F-stopping time τ and every n ∈ N0, there is an Fσn-measurable

random variable Rn : Ω 7→ [0,∞] such that τ ∧ σn+1 = (σn + Rn) ∧ σn+1 holds P0-a.s. on

{τ ≥ σn}.

Proof of Proposition 5.5. First, we shall establish the inequality

Eφ0,φ1

0

∫ τ∧σn

0

e−λtg
(
Φ̃t

)
dt ≥ vn(φ0, φ1), τ ∈ S, (φ0, φ1) ∈ R2

+(7.5)
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for every n ∈ N0, by proving inductively on k = 1, . . . , n + 1 that

(7.6) Eφ0,φ1

0

∫ τ∧σn

0

e−λtg
(
Φ̃t

)
dt

≥ Eφ0,φ1

0

[∫ τ∧σn−k+1

0

e−λtg
(
Φ̃t

)
dt + 1{τ≥σn−k+1}e

−λσn−k+1vk−1

(
Φ̃σn−k+1

)]
=: RHSk−1.

Observe that (7.5) follows from (7.6) when we set k = n + 1.

If k = 1, then the inequality (7.6) is satisfied as an equality since v0 ≡ 0. Suppose that

(7.6) holds for some 1 ≤ k < n+1. We shall prove that it must also hold when k is replaced

with k + 1. Let us denote the righthand side of (7.6) by RHSk−1, and rewrite it as

(7.7) RHSk−1 = RHS
(1)
k−1 + RHS

(2)
k−1 , Eφ0,φ1

0

[∫ τ∧σn−k

0

e−λtg
(
Φ̃t

)
dt

]
+ Eφ0,φ1

0

[
1{τ≥σn−k}

(∫ τ∧σn−k+1

σn−k

e−λtg
(
Φ̃t

)
dt + 1{τ≥σn−k+1}e

−λσn−k+1vk−1

(
Φ̃σn−k+1

))]

where we used
∫ τ∧σn−k+1

0
=
∫ τ∧σn−k

0
+
∫ τ∧σn−k+1

τ∧σn−k
=
∫ τ∧σn−k

0
+1{τ≥σn−k}

∫ τ∧σn−k+1

τ∧σn−k
, as well as

1{τ≥σn−k}1{τ≥σn−k+1} = 1{τ≥σn−k+1}. By Lemma 7.1, there is an Fσn−k
-measurable random

variable Rn−k such that

τ ∧ σn−k+1 = (σn−k + Rn−k) ∧ σn−k+1 holds P0-almost surely on {τ ≥ σn−k}.

Therefore, the second expectation, denoted by RSH
(2)
k−1, in (7.7) becomes

Eφ0,φ1

0

{
1{τ≥σn−k}

[∫ (σn−k+Rn−k)∧σn−k+1

σn−k

e−λtg
(
Φ̃t

)
dt + 1{σn−k+Rn−k≥σn−k+1}·

e−λσn−k+1vk−1

(
Φ̃σn−k+1

)]}
= Eφ0,φ1

0

{
1{τ≥σn−k}e

−λσn−kfn−k(Rn−k, Φ̃σn−k
)
}

by the strong Markov property of N , where

fk−1(r, φ0, φ1) , Eφ0,φ1

0

[∫ r∧σ1

0

e−λtg
(
Φ̃t

)
dt + 1{r≥σ1}e

−λσ1vk−1

(
Φ̃σ1

)]
= Jvk−1(r, (φ0, φ1)) ≥ J0vk−1(φ0, φ1) = vk(φ0, φ1).

The (in)equalities follow from (5.3), (5.4) and (5.6), respectively. Thus

RHS
(2)
k−1 ≥ Eφ0,φ1

0

[
1{τ≥σn−k}e

−λσn−kvk

(
Φ̃σn−k

)]
.
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From (7.6) and (7.7), we finally obtain

Eφ0,φ1

0

∫ τ∧σn

0

e−λtg
(
Φ̃t

)
dt ≥ RHSk−1 = Eφ0,φ1

0

[∫ τ∧σn−k

0

e−λtg
(
Φ̃t

)
dt

]
+ RHS

(2)
k−1

≥ Eφ0,φ1

0

[∫ τ∧σn−k

0

e−λtg
(
Φ̃t

)
dt + 1{τ≥σn−k}e

−λσn−kvk

(
Φ̃σn−k

)]
= RHSk.

This completes the proof of (7.6) by induction on k, and (7.5) follows by setting k = n + 1

in (7.6). When we take the infimum of both sides in (7.5), we obtain Vn ≥ vn, n ∈ N.

The reverse inequality Vn ≤ vn, n ∈ N follows immediately from (5.11) since every F-

stopping time Sε
n is less than or equal to σn, P0-a.s. by construction. Therefore, we only

need to establish (5.11). We will prove it by induction on n ∈ N. For n = 1, the lefthand

side of (5.11) becomes

Eφ0,φ1

0

∫ Sε
1

0

e−λtg
(
Φ̃t

)
dt = Eφ0,φ1

0

∫ rε
0(φ0,φ1)∧σ1

0

e−λtg
(
Φ̃t

)
dt = Jv0(r

ε
0(φ0, φ1), φ0, φ1).

Since Jv0(r
ε
0(φ0, φ1), φ0, φ1) ≤ J0v0(φ0, φ1) + ε by Remark 5.2, (5.11) holds for n = 1.

Suppose that (5.11) holds for every ε > 0 for some n ∈ N. We will prove that it also holds

when n is replaced with n + 1. Since Sε
n+1 ∧ σ1 = r

ε/2
n

(
Φ̃0

)
∧ σ1, P0-a.s., we have

Eφ0,φ1

0

[∫ Sε
n+1

0

e−λtg
(
Φ̃t

)
dt

]
= Eφ0,φ1

0

[∫ Sε
n+1∧σ1

0

e−λtg
(
Φ̃t

)
dt + 1{Sε

n+1≥σ1}

∫ Sε
n+1

σ1

e−λtg
(
Φ̃t

)
dt

]

= Eφ0,φ1

0

[∫ r
ε/2
n (φ0,φ1)∧σ1

0

e−λtg
(
Φ̃t

)
dt

]
+ Eφ0,φ1

0

[
1{rε/2

n (φ0,φ1)≥σ1}
e−λσ1fn

(
Φ̃σ1

)]
by the strong Markov property of N , where

fn(φ0, φ1) , Eφ0,φ1

0

[∫ S
ε/2
n

0

e−λtg
(
Φ̃t

)
dt

]
≤ vn(φ0, φ1) + ε/2

by the induction hypothesis. Therefore,

(7.8) Eφ0,φ1

0

[∫ Sε
n+1

0

e−λtg
(
Φ̃t

)
dt

]
≤ Eφ0,φ1

0

[∫ r
ε/2
n (φ0,φ1)∧σ1

0

e−λtg
(
Φ̃t

)
dt+

1{rε/2
n (φ0,φ1)≥σ1}

e−λσ1vn

(
Φ̃σ1

)]
+ ε/2 = Jvn(rε/2

n (φ0, φ1), (φ0, φ1)) + ε/2.

Since Jvn(r
ε/2
n (φ0, φ1), (φ0, φ1)) ≤ vn+1(φ0, φ1)+ε/2 by Remark 5.2, this inequality and (7.8)

prove (5.11) when n is replaced with n + 1. �
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Proof of Proposition 5.6. Corollary 5.4 and Propositions 5.5 and 5.1 imply that v(φ0, φ1) =

limn→∞ vn(φ0, φ1) = limn→∞ Vn(φ0, φ1) = V (φ0, φ1) for every (φ0, φ1) ∈ R2
+. Next, let us

show that V = J0V . Since (vn)n≥1 is a decreasing sequence, for every (φ0, φ1) ∈ R2
+

V (φ0, φ1) = lim
n→∞

vn(φ0, φ1) = inf
n≥1

vn(φ0, φ1) = inf
n≥1

J0vn−1(φ0, φ1).(7.9)

Since (Jvn)n≥1 is a decreasing sequence, and {vn}n∈N are uniformly bounded, the dominated

convergence theorem and (7.9) imply that V (φ0, φ1) = infn≥1 J0vn−1(φ0, φ1) = J0v(φ0, φ1) =

J0V (φ0, φ1). Finally, since U ≤ 0, we have U ≤ vn for every n by induction, and U ≤
limn→∞ vn = V . �

Proof of Lemma 5.7. Let us fix a constant u ≥ t and (φ0, φ1) ∈ R2
+. Then

(7.10) Jw(u, φ0, φ1) = Eφ0,φ1

0

[∫ u∧σ1

0

e−λsg(Φ̃s)ds + 1{u≥σ1}e
−λσ1w(Φ̃σ1)

]
= Eφ0,φ1

0

[∫ t∧σ1

0

e−λsg(Φ̃s)ds + 1{u≥σ1}e
−λσ1w(Φ̃σ1)

]
+ Eφ0,φ1

[
1{σ1>t}

∫ u∧σ1

t

e−λsg(Φ̃s)ds

]
.

On the event {σ1 > t}, we have u∧σ1 = [t+(u− t)]∧ [t+(σ1 ◦ θt)] = t+ [(u− t)∧ (σ1 ◦ θt)].

Therefore, the strong Markov property of N applied to the last integral above, gives

(7.11) Eφ0,φ1

0

[
1{σ1>t}

∫ u∧σ1

t

e−λsg(Φ̃s)ds

]
= Eφ0,φ1

0

[
1{σ1>t}

∫ u∧σ1−t

0

e−λ(s+t)g(Φ̃s+t)ds

]
= Eφ0,φ1

0

[
1{σ1>t}e

−λtEeΦt
0

[∫ (u−t)∧σ1

0

e−λsg(Φ̃s)ds

]]
= Eφ0,φ1

0

[
1{σ1>t}e

−λt
(
Jw(u− t, Φ̃t)− EeΦt

0

[
1{u−t≥σ1}e

−λσ1w(Φ̃σ1)
])]

= e−(λ+µ)t Jw
(
u− t, (x(t, φ0), y(t, φ0))

)
− Eφ0,φ1

0

[
1{σ1>t}1{u≥σ1}e

−λσ1w(Φ̃σ1)
]
.

The third equality follows from the definition of Jw in (5.3) and the last from (4.10) and

the strong Markov property. Substituting (7.11) into (7.10) and simplifying the rest give

Jw(u, φ0, φ1) = Jw(t, (φ0, φ1)) + e−(λ+µ)t Jw
(
u− t, (x(t, φ0), y(t, φ0))

)
.

Finally, taking the infimum of both sides over u ∈ [t, +∞] gives (5.12). �
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Proof of Proposition 5.11. First, let us show (5.22) for n = 1. Fix ε ≥ 0 and (φ0, φ1) ∈
R2

+. By Lemma 7.1, there exists a constant u ∈ [0,∞] such that Uε ∧ σ1 = u ∧ σ1. Then

(7.12) Eφ0,φ1

0 MUε∧σ1 = Eφ0,φ1

0

[
e−λ(u∧σ1)V (Φ̃u∧σ1) +

∫ u∧σ1

0

e−λsg(Φ̃s)ds

]
= Eφ0,φ1

0

[∫ u∧σ1

0

e−λsg(Φ̃s)ds + 1{u≥σ1}e
−λσ1V (Φ̃σ1)

]
+ Eφ0,φ1

0

[
1{u<σ1}e

−λuV (Φ̃u)
]

= JV (u, (φ0, φ1)) + e−(λ+µ)uV
(
x(u, φ0), y(u, φ1)

)
= JuV (φ0, φ1),

where the third equality follows from (5.3) and (4.10), and the fourth from (5.16).

Fix any t ∈ [0, u). By (5.16) and (4.10) once again, we have

JV (t, φ0, φ1) = JtV (φ0, φ1)− e−(λ+µ)tV (x(t, φ0), y(t, φ1))

≥ J0V (φ0, φ1)− e−(λ+µ)tV (x(t, φ0), y(t, φ1)) = J0V (φ0, φ1)− Eφ0,φ1

0

[
1{σ1>t}e

−λtV (Φ̃t)
]
.

On the event {σ1 > t}, we have Uε > t (otherwise, Uε ≤ t < σ1 would imply Uε = u ≤ t,

which contradicts with our initial choice of t < u). Thus, V (Φ̃t) < −ε on {σ1 > t}. Hence,

JV (t, φ0, φ1) > J0V (φ0, φ1) + ε Eφ0,φ1

0

[
1{σ1>t}e

−λt
]

= J0V (φ0, φ1) + ε e−(λ+µ)u ≥ J0V (φ0, φ1)

for every t ∈ [0, u). Therefore, J0V (φ0, φ1) = JuV (φ0, φ1), and (7.12) implies

Eφ0,φ1

0 [MUε∧σ1 ] = JuV (φ0, φ1) = J0V (φ0, φ1) = V (φ0, φ1) = Eφ0,φ1

0 [M0].

This completes the proof of (5.22) for n = 1.

Now suppose that (5.22) holds for some n ∈ N, and let us show the same equality for

n + 1. Note that

Eφ0,φ1

0 [MUε∧σn+1 ] = Eφ0,φ1

0 [1{Uε<σ1}MUε ] + Eφ0,φ1

0

[
1{Uε≥σ1}

∫ σ1

0

e−λsg(Φ̃s)ds

]
+ Eφ0,φ1

0

[
1{Uε≥σ1}

{∫ Uε∧σn+1

σ1

e−λsg(Φ̃s)ds + e−λ(Uε∧σn+1)V (Φ̃Uε∧σn+1)

}]
.

Since Uε ∧ σn+1 = σ1 + [(Uε ∧ σn) ◦ θσ1 ] on the event {Uε ≥ σ1}, the strong Markov property

of Φ̃ at the stopping time σ1 will complete the proof. �

Proof of Proposition 5.12. Note that the sequence of random variables∫ Uε∧σn

0

e−λsg(Φ̃s)ds + e−λ(Uε∧σn)V (Φ̃Uε∧σn) ≥ −2

∫ ∞

0

e−λs λ

c

√
2 ds = −2

√
2

c
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is bounded from below, see (4.12). By (5.22) and Fatou’s Lemma, we have

V (φ0, φ1) ≥ Eφ0,φ1

0

[
lim

n→∞

(∫ Uε∧σn

0

e−λsg(Φ̃s)ds + e−λ(Uε∧σn)V (Φ̃Uε∧σn)

)]
≥ Eφ0,φ1

0

[∫ Uε

0

e−λsg(Φ̃s)ds

]
− ε Eφ0,φ1

0

[
1{Uε<∞}e

−λUε
]
≥ Eφ0,φ1

0

[∫ Uε

0

e−λsg(Φ̃s)ds

]
− ε

for every (φ0, φ1) ∈ R2
+. The second inequality follows from (5.21). �
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Part 2. SYNTHESIS: SOLUTION AND NUMERICAL METHODS

8. The solution

In Proposition 5.1, we showed that the value function V (φ0, φ1) of our original optimal

stopping problem in (4.12) is approximated uniformly in (φ0, φ1) ∈ R2
+ by the decreasing

sequence {Vn(φ0, φ1)}n∈N of the value functions of the optimal stopping problems in (5.1).

The value functions Vn(·, ·) = vn(·, ·), n ∈ N can be calculated sequentially by setting v0 ≡ 0,

and

vn+1(φ0, φ1) = J0vn(φ0, φ1) = inf
t∈[0,∞]

Jvn(t, φ0, φ1), (φ0, φ1) ∈ R2
+,(8.1)

where the operator J is defined in (5.3); see Proposition 5.5.

Finding the infimum in (8.1) is not as formidable as it may look. By Proposition 5.5,

the infimum in (8.1) is always attained (i.e., the case ε = 0 in (5.11)). By Corollary 5.8,

it is attained at the exit time rn(φ0, φ1) of the deterministic and continuous curve t 7→
(x(t, φ0), y(t, φ1)) in (4.7) from the set{

(φ0, φ1) ∈ R2
+ : vn+1(φ0, φ1) < 0

}
⊆
{
(φ0, φ1) ∈ R2

+ : v(φ0, φ1) < 0
}
⊆ D,

where D is the triangular region in (6.1), and the last inclusion is proven in Section 6.

Therefore, the search for the infimum in (8.1) can be confined for every n ∈ N to

Jvn(t, φ0, φ1) =

∫ t

0

e−(λ+µ)u[g + µ · vn ◦ S](x(u, φ0), y(u, φ1))du, t ∈ [0, r(φ0, φ1)](8.2)

over the interval t ∈ [0, r(φ0, φ1)], where

r(φ0, φ1) , inf{t ≥ 0 : x(t, φ0) + y(t, φ1) ≥ ξ∗}, (φ0, φ1) ∈ R2
+

is the (bounded) exit time of the curve t 7→ (x(t, φ0), y(t, φ1)) out of the region D in (6.1).

Finally, the error in approximating V (·, ·) of (4.12) by {vn(·, ·)}n∈N in (8.1) can be con-

trolled. For every ε > 0,
√

2

c

(
µ

λ + µ

)n

< ε =⇒ −ε ≤ V (φ0, φ1)− vn(φ0, φ1) ≤ 0, ∀ (φ0, φ1) ∈ R2
+,(8.3)

by Propositions 5.1 and 5.5. The exponential rate of the uniform convergence of {vn(·, ·)}n∈N

to V (·, ·) on R2
+ in (8.3) may also reduce the computational burden by allowing relatively

small number of iterations in (8.1).

In the remainder, we draw attention to certain special cases where the value function

V (·, ·) can be calculated gradually at each iteration in (8.1); see Proposition 9.3. In the
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meantime, we will give a precise geometric description of the stopping regions

Γn , {(φ0, φ1) ∈ R2
+ : vn(φ0, φ1) = 0}, Cn , R2

+\Γn, n ∈ N,(8.4)

Γ , {(φ0, φ1) ∈ R2
+ : v(φ0, φ1) = 0}, C , R2

+\Γ,(8.5)

and describe the optimal stopping strategies.

9. The structure of the stopping regions

By Proposition 5.12, the set Γ is the optimal stopping region for the problem (4.12).

Namely, stopping at the first hitting time U0 = inf{t ∈ R+ : Φ̃t ∈ Γ} of the process

Φ̃ = (Φ̃(0), Φ̃(1)) to the set Γ is optimal for (4.12).

Similarly, we shall call each set Γn, n ∈ N a stopping region for the family of optimal

stopping problems in (5.1). However, unlike the case above, we need the first n stopping

regions, Γ1, . . . ,Γn, in order to describe an optimal stopping time for the problem in (5.1).

Using Corollary 5.8, the optimal stopping time Sn ≡ S0
n in Proposition 5.5 for Vn of (5.1)

may be described as follows: Stop if the process Φ̃ hits Γn before N jumps. If N jumps before

Φ̃ reaches Γn, then wait, and stop if Φ̃ hits Γn−1 before the next jump of N , and so on. If

the rule is not met before (n− 1)st jump of N , then stop at the earliest of the hitting time of

Γ1 and the next jump time of N . See Figure 4(b) for three realizations of the stopping time

S2.

We shall call each Cn , R2
+\Γn, n ∈ N a continuation region for the family of optimal

stopping problems in (5.1), and C , R2
+\Γ the optimal continuation region for (4.12). The

stopping regions are related by

R2
+\D ⊂ Γ ⊂ · · · ⊂ Γn ⊂ Γn−1 ⊂ · · · ⊂ Γ1 ⊂ R2

+\C0, and Γ =
∞⋂

n=1

Γn,(9.1)

since the sequence of nonpositive functions {vn}n∈N is decreasing, and v = limn→∞ ↓ vn

by Lemma 5.4. The sets D and C0 are defined in (6.1) and (4.13), respectively. Since vn,

n ∈ N and v are concave and continuous mappings from R2
+ into (−∞, 0] by Lemma 5.4,

the stopping regions Γn, n ∈ N and Γ are convex and closed. Let us define the functions

γn : R+ 7→ R+, n ∈ N and γ : R+ 7→ R+ by (see, also, Figure 4(a))

γn(x) , inf{y ∈ R+ : (x, y) ∈ Γn}, x ∈ R+,

γ(x) , inf{y ∈ R+ : (x, y) ∈ Γ}, x ∈ R+,
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γn(0)

γ(0)

ξ∗ξξnξn−10

ξ∗

C0

λ
c

√
2

γn−1(·)

γn(·)

γ(·)

λ
c

√
2

Γ

Γn

Γn−1

γn−1(0)

0

Φ̃(ω1)

Φ̃(ω2)

Γ1 Γ2 Γ

Φ̃(ω3)

Φ̃S2(ω)(ω)

Φ̃U0(ω)(ω)

(a) (b)

R2
+\D

Figure 4. (a) The stopping regions (each arrow at the boundary of a region points toward

the interior of that region), and (b) three sample paths and the optimal stopping times S2

and U0 for the optimal stopping problems V2 in (5.1) and V in (4.12), respectively.

and the numbers

ξn , inf{x ∈ R+ : γn(x) = 0}, n ∈ N and ξ , inf{x ∈ R+ : γ(x) = 0}.

Then the stopping regions Γn, n ∈ N and Γ are the convex and closed epigraphs of the

functions γn(·), n ∈ N and γ(·), respectively. Therefore, γn(·), n ∈ N and γ(·) are convex

and continuous mappings from R+ into R+.

By the set-inclusions in (9.1), we have (λ/c)
√

2 ≤ ξn−1 ≤ ξn ≤ ξ ≤ ξ∗ for the same

ξ∗ ∈ R+ in the description (6.1) of the set D. Since vn, n ∈ N and v vanish on R+\D =

{(φ0, φ1) ∈ R2
+ : φ0 +φ1 ≥ ξ∗} by (9.1), the functions γn(·), n ∈ N and γ(·) vanish on [ξ∗,∞).

However, ξn and ξ are the smallest zeros of the continuous functions γn(·), n ∈ N and γ(·),
respectively. Since both functions are also nonnegative and convex, the function γn(·), n ∈ N
(resp. γ(·)) equals zero on [ξn,∞) (resp. on [ξ,∞)) and is strictly decreasing on [0, ξn] (resp.

on [0, ξ]). For future reference, we now summarize our results.

9.1. Proposition. There are decreasing, convex and continuous mappings γn : R+ 7→ R+,

n ∈ N and γ : R+ 7→ R+ such that

Γn = {(φ0, φ1) ∈ R2
+ : φ1 ≥ γn(φ0)}, n ∈ N and Γ = {(φ0, φ1) ∈ R2

+ : φ1 ≥ γ(φ0)}.
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The sequence {γn(φ0)}n∈N is increasing and γ(φ0) = lim ↑ γn(φ0) for every φ0 ∈ R+. There

are some numbers

λ

c

√
2 ≤ ξ1 ≤ · · · ≤ ξn−1 ≤ ξn ≤ · · · ≤ ξ < ξ∗ < ∞(9.2)

such that γn(·), n ∈ N (resp., γ(·)) is strictly decreasing on [0, ξn], n ∈ N (resp., [0, ξ]), and

equals zero on [ξn,∞), n ∈ N (resp., [ξ,∞)). Moreover,

λ

c

√
2 ≤ γ1(0) ≤ · · · ≤ γn−1(0) ≤ γn(0) ≤ · · · ≤ γ(0) < ξ∗ < ∞.(9.3)

The number ξ∗ is the same as in the definition of the set D in (6.1).

9.2. Notation. Let S : R2
+ 7→ R2

+ be the same linear map as in (5.8).

(N1) For any subset R ⊆ R2
+,

S−(n+1)(R) , S−1(S−n(R)), n ∈ N, S−1(R) , {(x, y) ∈ R2
+ : S(x, y) ∈ R},

Sn+1(R) , S(Sn(R)), n ∈ N, S(R) , {S(x, y) ∈ R2
+ : (x, y) ∈ R},

and S0(R) = S(S−1(R)) = S−1(S(R)) = R.

(N2) For every singleton {(x, y)} ⊆ R2
+, we write

Sm({x, y}) = Sm(x, y) =

((
1− 1

µ

)m

x,

(
1 +

1

µ

)m

y

)
, m ∈ Z.

(N3) For any function g : R+ 7→ R+, we define the function Sn[g] : R+ 7→ R+, n ∈ Z by

Sn[g](x) , inf{y ∈ R+ : (x, y) ∈ Sn(epi(g))}, x ∈ R+.

That is, Sn[g] is the function whose epigraph is the set Sn(epi(g)). Note that we use

Sn(·) and Sn[·] to distinguish the sets and the functions.

(N4) For every subset R of R2
+, we denote by cl(R) its closure in R2

+ and by int(R) its

interior. We shall denote the support of a function g : R+ 7→ R+ by

supp(g) = cl({x ∈ R+ : g(x) > 0}).

The process Φ̃ jumps into the region Γ (resp., S−n(Γ), n ∈ N) if the process N jumps

while Φ̃ is in the region S−1(Γ) (resp., S−(n+1)(Γ), n ∈ N). Clearly, if the process Φ̃ can

never leave the region S−1(Γ) before a jump, then the value functions V (·, ·) and V1(·, ·) in

(5.1) must coincide on the region S−1(Γ).

9.3. Proposition. Suppose that

∀n ∈ N : (φ0, φ1) ∈ S−n(Γ) =⇒ (x(t, φ0), y(t, φ1)) ∈ S−n(Γ), t ∈ [0,∞)(9.4)
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( µ
µ+1)nγ(0)

ξn( µ
µ−1)nξ

Γn

S−n

Cn

Γ ξ∗

ξ∗

( µ
µ+1)nγn(0)

B

= γ1(0)

S−n[γn](·)

γn(0)

C

S−n

ξn ( µ
µ−1)nξn

(b)

S−n[γ](·)

(a)

γ(0)

0 ξ 0 ξ

(xn, γ(xn))

S−n(xn, γ(xn))

γ(·) = γn(·) on [0, xn]

γ(·)
xn

γn(·)

(xn, γn(xn))

xn

γn(·) γ(·)

V (·, ·) = vn(·, ·) on R+ × [B,∞)

S−n(Γ) ∩ Γ = S−n(Γ) ∩ Γn

S−n(Γ) ∩ C = S−n(Γ) ∩ Cn

Figure 5. Here we assume that (9.4) holds. In (a), the dashed curve is the non-zero part

of the boundary function S−n[γ](·) of the region S−n(Γ), see (9.6). The region S−n(Γ) is

obtained by “shifting” Γ to “down and right.” At x = xn, the functions γ(·) and S−n[γn](·)
meet for the first time, see (9.9). By Proposition 9.3, the value functions V (·, ·) and Vn(·, ·)
are equal on S−n(Γ). Therefore, the boundry functions γ(·) and γn(·) coincide on [0, xn] (the

thick continuous curve). The image under S−n of the common part stretches beyond [0, xn]

(the thick dashed curve). Hence, the triangular region on [0, xn] belongs to both S−n(Γ)∩C

and S−n(Γn)∩Cn. In (b), we describe how to calculate V (·, ·) on R+× [B,∞) for any B > 0

by the three-step method on page 43. Here, the number n is the smallest satisfying (9.9).

holds. Then for every n ∈ N, we have


V (φ0, φ1) = Vn(φ0, φ1) = Vn+1(φ0, φ1) = · · · for every (φ0, φ1) ∈ S−n(Γ)

S−n(Γ) ∩ Γ = S−n(Γ) ∩ Γn = S−n(Γ) ∩ Γn+1 = · · ·

S−n(Γ) ∩C = S−n(Γ) ∩Cn = S−n(Γ) ∩Cn+1 = · · ·

 .(9.5)

Since Γ and Γn are convex and closed, and S(·, ·) is a linear mapping, the sets S−n(Γ)

and S−n(Γn), n ∈ N are convex and closed. The sets Γ and Γn, n ∈ N are the epigraphs of

the continuous functions γ(·) and γn(·), n ∈ N in Proposition 9.3, respectively. Therefore,

S−n(Γ) = {(x, y) ∈ R2
+ : y ≥ S−n[γ](x)} and

S−n(Γn) = {(x, y) ∈ R2
+ : y ≥ S−n[γn](x)}

(9.6)
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are the epigraphs of the functions S−n[γ](·) and S−n[γn](·) for every n ∈ N0. These functions

are decreasing, continuous and convex. In fact,

S−n[γ](x) =

(
µ

µ + 1

)n

γ

((
µ− 1

µ

)n

x

)
, x ∈ R+, n ∈ Z,(9.7)

and the function S−n[γn](·) is obtained by replacing γ with γn in (9.7). The support of the

functions S−n[γ](·) and S−n[γn](·) are

supp(S−n[γ]) =

[
0,

(
µ

µ− 1

)n

ξ

]
and supp(S−n[γn]) =

[
0,

(
µ

µ− 1

)n

ξn

]
(9.8)

respectively, for every n ∈ Z. By Proposition 9.1, the functions S−n[γ](·) and S−n[γn](·) are

strictly decreasing on their supports; see Figure 5.

Since S−n[γ](0) = (µ/(µ + 1))nγ(0) < γ(0) and S−n[γ](ξ) > 0 = γ(ξ) for every n ∈ N, the

functions S−n[γ](·) and γ(·) intersect, and

xn(γ) , min{x ∈ R+ : S−n[γ](x) = γ(x)} ∈ (0,∞), n ∈ N.(9.9)

9.4. Corollary. Suppose that (9.4) holds. Then xn ≡ xn(γ) = xn(γk), k ≥ n ∈ N, and

S−n(Γ) ∩C ∩ ([0, xn]× R+) = S−n(Γk) ∩Ck ∩ ([0, xn]× R+) , k ≥ n, n ∈ N.(9.10)

Particularly, we have γ(x) = γn(x) for every x ∈ [0, xn], and

V (x, y) = Vn(x, y) for every (x, y) ∈ S−n(Γn) ∩Cn ∩ ([0, xn]× R+), n ∈ N.(9.11)

Proof. Let us fix any k ≥ n ∈ N. Since the value functions V (·, ·) and Vk(·, ·) are equal on

the region S−n(Γ) by Proposition 9.3, the boundaries of the regions Γ and Γk coincide in

the region S−n(Γ). Particularly, we have

γ(x) = γk(x) for every x ∈ [0, xn(γ)](9.12)

since S−n[γ](x) < γ(x) for every x ∈ [0, xn(γ)). Therefore,

S−n[γ](x) = S−n[γk](x) for every x ∈
[
0,

(
µ

µ− 1

)n

xn(γ)

]
⊃ [0, xn(γ)],(9.13)

Now, (9.12) and (9.13) imply that xn(γ) = xn(γk) , and (9.6) implies that (see also Figure 5

for the case k = n)

S−n(Γ) ∩C ∩ ([0, xn(γ)]× R+) = S−n(Γk) ∩Ck ∩ ([0, xn(γ)]× R+) .

The equality (9.11) follows immediately from Proposition 9.3. �
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The identity in (9.11) suggests that, in a finite number of iterations of (8.1), we can find the

restrictions of the value function V (·, ·) and the continuation region C to the set R+× [B,∞)

for any B > 0, when the condition (9.4) holds:

Step A.1: Calculate the value function v1(0, y) for every y ∈ [0, ξ∗], and determine

γ(0) = γ1(0) = inf{y ∈ R+ : v1(x, y) = 0} ∈ (0, ξ∗); see (9.3), Corollary 9.4 and

Figure 5.

Step A.2: Given any B > 0, find the smallest n ∈ N such that

B >

(
µ

µ + 1

)n

γ1(0) =

(
µ

µ + 1

)n

γn(0) = S−n[γn](0).(9.14)

Because every S−m[γm](·), m ∈ N is decreasing, this implies R+× [B,∞) ⊂ S−n(Γn);

see (9.6). We also have n ≤ min{m ∈ N : B > (µ/(µ + 1))mξ∗} since γ1(0) ∈ (0, ξ∗).

Step A.3: Calculate vn(φ0, φ1) for every (φ0, φ1) ∈ R+\D by (8.1), where D is as in

(6.1). By (9.1), D ⊆ Γn and vn ≡ 0 on D.

Then the value functions V (·, ·) and vn(·, ·) are equal on R+×[B,∞) and (R+×[B,∞))∩C =

(R+ × [B,∞)) ∩Cn. See also Figure 5(b).

The next lemma implies that we can calculate the exact value function V (·, ·) under

condition (9.4) on the set R+ × (0,∞) along an increasing sequence of sets R+ × [Bn,∞),

and on R+ × {0} by the continuity of the function V (·, ·) on R2
+.

9.5. Lemma. Suppose that (9.4) holds. Let ξ∗ be the same number as in the definition of

the region D in (6.1). Then limn→∞ S−n(Γ) = R+ × (0,∞), and

R+ ×
[(

µ

1 + µ

)n

· ξ∗, +∞
)
⊆ S−n(Γ), n ∈ N.(9.15)

Proof. Recall from (9.1) that R+ × [ξ∗,∞) ⊂ R2
+\D ⊂ Γ. The rectangle on the lefthand

side in (9.15) is the same set as S−n
(
R+ × [ξ∗,∞)

)
⊂ S−n(Γ). But, (9.15) implies that

R+ × (0,∞) ⊆ limn→∞ S−n(Γ).

On the other hand, for every x ∈ R+, there exists number N(x) such that Sn(x, 0) =

((1 − 1/µ)nx, 0) /∈ Γ, n ≥ N(x). Then (x, 0) /∈ S−n(Γ) for every n ≥ N(x). This implies

that limn→∞ S−n(Γ) ⊆ R+ × (0,∞). �

9.6. Remark. Every set S−n(Γ), n ∈ N is separated from its complement by the strictly

decreasing, convex and continuous function S−n[γ](x), x ∈ [0, (µ/(µ − 1))nξ]. Therefore,

the condition (9.4) will be satisfied, for example, if the mappings t 7→ x(t, φ0), t ∈ R+ and

t 7→ y(t, φ1), t ∈ R+ are increasing for every (φ0, φ1) ∈ R2
+. We have seen on page 20 that

this is always the case when λ is “large”.



44 ERHAN BAYRAKTAR, SAVAS DAYANIK, AND IOANNIS KARATZAS

Thus, if λ is “large”, then there is a sequence of sets R+ × [Bn,∞), n ∈ N, increasing to

R+ × (0,∞) in the limit, such that V (·, ·) = vn(·, ·) on R+ × [Bn,∞) for every n ∈ N. See

also page 49 below.

10. The boundaries of the stopping regions

We shall show that the optimization in (8.1) can be avoided in principle, and v1, v2, . . .

can be calculated by integration.

Note that we obtain Jvn(t, φ0, φ1) in (8.1) by integrating the function [g + µ · vn ◦ S](·, ·)
along the curve u 7→ (x(u, φ0), y(u, φ1)) on u ∈ [0, t]; see (5.3). Therefore, the infimum in

(8.1) is determined by the the excursions of u 7→ (x(u, φ0), y(u, φ1)), u ∈ R+ into the regions

where the sign of the continuous mapping [g + µ · vn ◦ S](·, ·) is negative and positive.

10.1. Lemma. For every n ∈ N, we have

An , {(x, y) ∈ R2
+ : [g + µ · vn ◦ S](x, y) < 0} ⊆ Cn+1.(10.1)

Proof. Let (φ0, φ1) ∈ An. Since the function u 7→ [g + µ · vn ◦ S](x(u, φ0), y(u, φ1)) is

continuous, there exists some t = t(φ0, φ1) > 0 such that

Jvn(t, φ0, φ1) =

∫ t

0

e−(λ+µ)u[g + µ · vn ◦ S](x(u, φ0), y(u, φ1))du < 0.

Therefore, vn+1(φ0, φ1) = J0vn(φ0, φ1) ≤ Jvn(t, φ0, φ1) < 0, and (φ0, φ1) ∈ Cn+1. �

For certain cases, the regions An and Cn+1 coincide, that is, the continuation region Cn+1

for vn+1(·, ·) can be found immediately when the value function vn(·, ·) is available. Then

vn+1 ≡ 0 on Γn+1 = R2
+\Cn+1, and we calculate vn+1(·, ·) on Cn+1 by the integration

(10.2) vn+1(φ0, φ1) = Jvn(t, φ0, φ1)
∣∣∣
t=rn(φ0,φ1)

=

∫ rn(φ0,φ1)

0

e−(λ+µ)u[g + µ · vn ◦ S](x(u, φ0), y(u, φ1))du, (φ0, φ1) ∈ Cn+1,

of the function [g+µ·vn◦S](·, ·) over the curve (x(·, φ0), y(·, φ1)) until the exit time rn(φ0, φ1),

see (5.14), of the continuous (and deterministic) curve u 7→ (x(u, φ0), y(u, φ1)), u ∈ R+ from

the continuation region Cn+1.

The region An in (10.1) has properties very similar to those of the continuation region

Cn+1, compare Lemma 10.2 and Proposition 9.1. For example, both sets are separated from

their complements by a strictly decreasing, convex and continuous function which stays flat

on the x-axis for all large x values.
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For every n ∈ N, let us define the function an : R+ 7→ R+ by

an(x) , inf{y ∈ R+ : (x, y) ∈ R2
+\An} = inf{y ∈ R+ : [g + µ · vn ◦ S](x, y) ≥ 0}.(10.3)

The function an(·) is finite since, given any x ∈ R+, we have [g + µ · vn ◦ S](x, y) > 0 for

every large y ∈ R+. Recall that the function vn(·, ·) equals zero outside the bounded region

Cn. The linear mapping S : R2
+ 7→ R2

+ in (5.8) is increasing in both x and y. The affine

mapping g : R2
+ 7→ R in (4.12) is also increasing and grows unboundedly in both x and y.

Similarly, given any large x ∈ R+, [g + µ · vn ◦ S](x, y) ≥ 0 for every y ∈ R+. Therefore,

an(x) = 0 for every x ∈ [M,∞) for some M ∈ R+, and the smallest number M

αn , inf{x ≥ 0 : an(x) = 0} is finite.(10.4)

The set R2
+\An = {(x, y) ∈ R2

+ : [g + µ · vn ◦ S](x, y) ≥ 0} is convex and closed since

vn(·, ·) is concave and continuous, S(·, ·) is linear, and g(·, ·) is affine. Because R2
+\An is the

epigraph of an(·), this implies that an(·) is a convex and continuous mapping from R+ into

R+.

The function an(·) does not vanish identically on R+; in particular, an(0) > 0 since the

continuous function [g + µ · vn ◦ S](x, y) is strictly negative at (x, y) = (0, 0):

[g + µ · vn ◦ S](0, 0) = g(0, 0) + µ · vn(0, 0) ≤ g(0, 0) = −λ

c

√
2 < 0.

Because an(·) is continuous, this implies that the number αn in (10.4) is strictly positive.

Since an(·) is convex and vanishes for every large x ∈ R+, it is strictly decreasing on [0, αn),

and equals zero on [αn,∞).

10.2. Lemma. For every n ∈ N, there are a number αn ∈ (0,∞) and a strictly decreasing,

convex and continuous mapping an : [0, αn] 7→ R+ such that an(αn) = 0, and

{(x, an(x)); x ∈ [0, αn]} =
{
(x, y) ∈ R2

+; [g + µ · vn ◦ S](x, y) = 0
}

.(10.5)

Moreover, the continuous mapping (x, y) 7→ [g + µ · vn ◦ S](x, y), n ∈ N is strictly increasing

in each argument, and for every n ∈ N

{(x, y) ∈ [0, αn)× R+; y < an(x)} =
{
(x, y) ∈ R2

+; [g + µ · vn ◦ S](x, y) < 0
}
≡ An.(10.6)

Next, we shall relate the regions An in (10.1) and Cn+1, and their boundaries an(·) and

γn+1(·), respectively, for every n ∈ N.
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Using the characterization of the stopping regions Γn, n ∈ N in Proposition 9.1 in terms

of the switching curves γn(·), the exit time rn(·, ·) in Corollary 5.8 can be expressed as

rn(φ0, φ1) = inf
{
t > 0 : y(t, φ1) = γn+1

(
x(t, φ0)

)}
, (φ0, φ1) ∈ R2

+,(10.7)

since the functions x(·, φ0) and y(·, φ1) in (4.8) are continuous. Because every γn+1(·), n ∈ N
is bounded, the function rn(·, ·) is finite. Thus

0 < rn(φ0, φ1) < ∞ for every (φ0, φ1) ∈ Cn+1.

Therefore, the (smallest) minimizer rn(φ0, φ1) of the function t 7→ Jvn(t, φ0, φ1), see (5.13),

is an interior point of (0,∞] for every (φ0, φ1) ∈ Cn+1, and the derivative ∂Jvn(t, φ0, φ1)/∂t

vanishes at t = rn(φ0, φ1). Using (5.3) and (10.7) gives

0 =
[
g + µ · vn ◦ S

](
x(t, φ0), y(t, φ1)

)∣∣∣
t=rn(φ0,φ1)

=
[
g + µ · vn ◦ S

](
x(t, φ0), γn+1

(
x(t, φ0)

))∣∣∣
t=rn(φ0,φ1)

, (φ0, φ1) ∈ Cn+1.
(10.8)

Let us denote the boundary of Γn+1 by

∂Γn+1 , {(x, γn+1(x)) : x ∈ [0, ξn+1]},(10.9)

and define the entrance and exit boundaries of Γn+1 by

∂Γe
n+1 ,

{(
x(rn(φ0, φ1), φ0), γn+1(y(rn(φ0, φ1), φ1)

))
, for some (φ0, φ1) ∈ Cn+1

}
,

∂Γx
n+1 ,

{
(φ0, φ1) ∈ Γn+1 : (x(t, φ0), y(t, φ1)) ∈ Cn+1, t ∈ (0, δ] for some δ > 0

}
,

(10.10)

respectively. The paths t 7→ (x(t, φ0), y(t, φ1)) starting at some (φ0, φ1) ∈ Cn+1 enters

the region Γn+1 (for the first time) at the entrance boundary ∂Γe
n+1. Similarly, for every

(φ0, φ1) ∈ ∂Γx
n+1, the path t 7→

(
x(t, φ0), y(t, φ1))

)
exits Γn+1 immediately.

10.3. Remark. By Lemma 10.5 below, the entrance boundary ∂Γe
n+1 is a subset of the

boundary ∂An of the region An in (10.1). Clearly, the curve t 7→ (x(t, φ0), y(t, φ1)) starting

at any (φ0, φ1) ∈ ∂Γe
n+1 ⊆ ∂An cannot return immediately into the region An (otherwise

Jvn(t, φ0, φ1) < 0 for some t > 0 and (φ0, φ1) ∈ Cn+1). In the theory of Markov processes,

every element of ∂Γe
n+1 (resp., ∂Γx

n+1) is a regular boundary point of the domain An (resp.,

the interior of Γn+1) with respect to the process Φ̃.

10.4. Remark. Observe that for every (φ0, φ1) ∈ ∂Γx
n+1, the quantity rn(φ0, φ1) in (5.14) is

the return time of the curve t 7→ (x(t, φ0), y(t, φ1)) to the stopping region Γn+1 and is also
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strictly positive. Therefore, the first order necessary optimality condition in (10.8) also hold

on the exit boundary ∂Γx
n+1. Thus,

0 =
[
g + µ · vn ◦ S

](
x(t, φ0), γn+1

(
x(t, φ0)

))∣∣∣
t=rn(φ0,φ1)

, (φ0, φ1) ∈ Cn+1 ∪ ∂Γx
n+1.

(10.11)

10.1. The entrance boundary ∂Γe
n+1. Since all of the functions in (10.11) are continuous,

(10.11) and the definition of the entrance boundary ∂Γe
n+1 in (10.10) imply

[g + µ · vn ◦ S] (x, y) = 0, (x, y) ∈ ∂Γe
n+1.(10.12)

The next lemma immediately follows from (10.12), Lemma 10.2 and the continuity of the

function [g + µ · vn ◦ S](·, ·).

10.5. Lemma. For every n ∈ N, let αn ∈ R+ and an : R+ 7→ R+ be the same as in

Lemma 10.2. Then cl(∂Γe
n+1) ⊆ {(x, an(x)) : x ∈ [0, αn]}, n ∈ N.

10.6. Corollary. For any n ∈ N, if the equality ∂Γn+1 = cl(∂Γe
n+1) holds, then

∂Γn+1 = {(x, an(x)) : x ∈ [0, αn]}.(10.13)

In other words, ξn+1 = αn, and γn+1(x) = an(x) for every x ∈ [0, ξn+1] ≡ [0, αn], and

Cn+1 = {(x, y) : [g + µ · vn ◦ S](x, y) < 0}.(10.14)

Proof. By Lemma 10.5, {(x, γn+1(x)) : x ∈ [0, ξn+1]} = ∂Γn+1 ⊆ {(x, an(x)) : x ∈ [0, αn]}.
Since both γn+1(·) and an(·) are strictly decreasing, continuous functions which equal zero

at the righthand point of their domains, they must be identical. Finally,

Cn+1 = R2
+\Γn+1 = {(x, y) ∈ [0, ξn+1)× R+ : y < γn+1(x)}

= {(x, y) ∈ [0, αn)× R+ : y < an(x)} = {(x, y) ∈ R2
+ : [g + µ · vn ◦ S](x, y) < 0},

where the last equality follows from (10.6). �

If the disorder arrival rate λ is large, then every point on the stopping boundary ∂Γn+1 of

the stopping region Γn+1 belongs to the entrance boundary ∂Γe
n+1, see Section 11. There-

fore, the stopping boundary ∂Γn+1 for the value function vn+1(·, ·) is determined as in Corol-

lary 10.6, as soon as the value function vn(·, ·) is calculated. Using this observation, the main

solution method described at the beginning of Section 8 can be tailored into a more efficient

algorithm, see Section 11 and Figure 6.
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The exit boundary ∂Γx
n+1 may not always be nonempty. If it is nonempty, it is also deter-

mined by the entrance boundary ∂Γe
n+1, and the general solution method can be similarly

enhanced in this case, see Section 12.

10.2. The exit boundary ∂Γx
n+1. Using the semigroup property in (4.9) of the functions

x(·, ·) and y(·, ·), and a change of variable, we obtain

Jvn(t, φ0, φ1) = −e−(λ+µ)tJvn(−t, x(t, φ0), y(t, φ1)), t ∈ R+, (φ0, φ1) ∈ R2
+.(10.15)

Substituting in (5.12) w(·, ·) = vn(·, ·) and the identity above give

(10.16) Jtvn(φ0, φ1) = e−(λ+µ)t [vn+1(x(t, φ0), y(t, φ1))− Jvn(−t, x(t, φ0), y(t, φ1))] ,

t ∈ R+, (φ0, φ1) ∈ R2
+.

Since Jrn(φ0,φ1)vn(φ0, φ1) = vn+1(φ0, φ1), and vn+1(x(rn(φ0, φ1), φ0), y(rn(φ0, φ1), φ1)) = 0,

evaluating the equality in (10.16) at t = rn(φ0, φ1) gives

vn+1(φ0, φ1) =
[
−e−(λ+µ)tJvn(−t, x(t, φ0), y(t, φ1))

] ∣∣∣
t=rn(φ0,φ1)

, (φ0, φ1) ∈ R2
+.(10.17)

Recall from Section 10.1 that (x(rn(φ0, φ1), φ0), y(rn(φ0, φ1), φ1)) ∈ ∂Γe
n+1 for every (φ0, φ1) ∈

Cn+1 ∪ ∂Γx
n+1. Therefore, (10.17) implies that we can both calculate the value function

vn+1(·, ·) and find the continuation region Cn+1 by backtracking the curves t 7→ (x(−t, φ0),

y(−t, φ1)) from every point (φ0, φ1) ∈ ∂Γe
n+1 on the entrance boundary. Let us define

{
r̂(φ0, φ1) , inf{t ≥ 0 : (x(−t, φ0), y(−t, φ1)) 6∈ R2

+}

r̂n(φ0, φ1) , inf{t ∈ (0, r̂(φ0, φ1)] : −Jvn(−t, φ0, φ1) ≥ 0}

}
, (φ0, φ1) ∈ R2

+, n ∈ N0,

(10.18)

where the infimum of an empty set is infinity. Since the mapping t 7→ Jvn(t, φ0, φ1) is

continuous, we have Jvn(−r̂n(φ0, φ1), φ0, φ1) = 0 if 0 < r̂n(φ0, φ1) < ∞.

10.7. Lemma. The entrance boundary ∂Γe
n+1 determines the exit boundary ∂Γx

n+1, the con-

tinuation region Cn+1, and the value function vn+1(·, ·) on Cn+1:

∂Γx
n+1 =

{
(x(−t, φ0), y(−t, φ1))

∣∣∣
t=brn(φ0,φ1)

: (φ0, φ1) ∈ ∂Γe
n+1 and r̂n(φ0, φ1) ≤ r̂(φ0, φ1)

}
,

Cn+1 =
{
(x(−t, φ0), y(−t, φ1)) : (φ0, φ1) ∈ ∂Γe

n+1 and t ∈ (0, r̂n(φ0, φ1) ∧ r̂(φ0, φ1)]
}
\∂Γx

n+1,

and for every (φ0, φ1) ∈ ∂Γe
n+1

vn+1(x(−t, φ0), y(−t, φ1)) = −e−(λ+µ)tJvn(−t, φ0, φ1), t ∈ (0, r̂n(φ0, φ1) ∧ r̂(φ0, φ1)].
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11. Case I revisited: efficient methods for “large” post-disorder arrival

rates

This is Case I on page 20 where λ ≥ [1− (1 + m)(c/2)]+ is “large”, and the sample-paths

of both components of the process Φ̃ = [Φ̃(0), Φ̃(1)]T increase between the jumps; see also

Figure 2(a). By the relation (4.10), the deterministic functions t 7→ x(t, φ0), t ∈ R+ and

t 7→ y(t, φ1), t ∈ R+ are strictly increasing for every (φ0, φ1) ∈ R2
+.

By Remark 9.6, the identity in (9.11) between the value functions V (·, ·) and Vn(·, ·) on

the set S−n(Γn) ∩ Cn ∩ ([0, xn]× R+) holds for every n ∈ N. Thus, we can find the value

function V (·, ·) by calculating Vn(·, ·), n ∈ N using steps 1-3 on page 43. This method can

be improved further. We shall show that the optimization in each iteration of (8.1) can be

avoided, and the value function V (·, ·) may be calculated in one pass over the continuation

region C; see Figure 6.

Since the boundary ∂Γn+1 of the stopping region Γn+1 is a (strictly) decreasing continuous

curve, every point in the set ∂Γn+1∩int(R2
+) is accessible from some point in the continuation

region Cn+1. Therefore, we have ∂Γn+1 = cl(∂Γe
n+1) for every n ∈ N0. By Corollary 10.6,

the set An in (10.1) and the continuation region Cn+1 (and their boundaries) coincide for

every n ∈ N0.

If the value function vn(·, ·) ≡ Vn(·, ·) for some n ∈ N0 is already calculated, then the

boundary of the continuation region Cn+1 becomes immediately available as in (10.13). In

fact, (10.5) and (10.14) imply

S(Cn+1) =

{
(x, y) ∈ R2

+ : vn(x, y) <

[
− 1

µ
· g ◦ S−1

]
(x, y)

}
,(11.1)

S(∂Γn+1) =

{
(x, y) ∈ R2

+ : vn(x, y) =

[
− 1

µ
· g ◦ S−1

]
(x, y)

}
.(11.2)

The set on the righthand side in (11.2) is a strictly decreasing, convex and continuous curve

in R2
+, and it is the same as

S(∂Γn+1) = S(the boundary of the set epi(γn+1) ∩ ([0, ξn+1]× R+))

= the boundary of the set epi(S[γn+1]) ∩
([

0,
µ− 1

µ
ξn+1

]
× R+

)
=

{
(x, S[γn+1](x)); x ∈

[
0,

µ− 1

µ
ξn+1

]}
.

(11.3)
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If we know vn(·, ·), then we can determine the set in (11.2) of all points (x, y) ∈ R2
+ satisfying

vn(x, y) =

[
− 1

µ
· g ◦ S−1

]
(x, y) ≡ − x

µ− 1
− y

µ + 1
+

λ

cµ

√
2,(11.4)

and obtain the boundary function γn+1(·) after the transformation of this set by S−1. Then

we can calculate the (smallest) minimizer rn(·, ·) of (8.1) by the relation (10.7), and the

value function vn+1(·, ·) by (10.2). We can continue in this manner to find the value func-

tions vn+2(·, ·), vn+3(·, ·), · · · . This method saves us from an explicit search for the solution

rn(φ0, φ1) of the minimization problem in (8.1) for every (φ0, φ1) ∈ Cn+1:

Step B.0: Initialize n = 0, v0(·, ·) ≡ 0.

Step B.1: Find the region

Bn ,

{
(x, y) ∈ R2

+ : vn(x, y) < − x

µ− 1
− y

µ + 1
+

λ

cµ

√
2

}
, n ∈ N.(11.5)

Step B.2: Determine the continuation region Cn+1 = S−1(Bn) by the transformation

of Bn under S−1.

Step B.3: Calculate the value function vn+1(·, ·) on Cn+1 by using (10.2) and (10.7).

Step B.4: Set n to n + 1 and go to Step B.1.

In fact, we can do much better than this. After n ∈ N iterations, we find both vn(·, ·) and

V (·, ·), vn+1(·, ·), vn+2(·, ·), · · · on the subset

Qn , S−n(Γn) ∩Cn ∩ ([0, xn]× R+)(11.6)

=
{
(x, y) ∈ [0, xn]× R+ : S−n[γn](x) ≤ y < γn(x)

}
, n ∈ N(11.7)

of Cn+1 by Corollary 9.4; see also Figure 5. Therefore, we need to determine only the set

Rn+1 , Qn+1\Qn, n ∈ N (R1 ≡ Q1)(11.8)

in Step B.2, and calculate the value function vn+1(·, ·) only on this set in Step B.3. By

Lemma 9.5, this modified method calculates V (·, ·) (and all Vn(·, ·), n ∈ N simultaneously)

on any given set R+ × (0, B), B > 0 in finite number of iterations. We shall describe this

modified method on page 52 after establishing a few facts below. Several steps of the method

are also illustrated in Figure 6.

Since v0 ≡ 0, setting n = 0 in (11.4) gives a straight line; substituting (x, y) = (x, S[γ1](x))

and comparing this with S(∂Γ1) in (11.3) give

S[γ1](x) = −µ + 1

µ− 1
x +

µ + 1

µ
· λ

c

√
2, x ∈ supp(S[γ1]) =

[
0,

µ− 1

µ
· λ

c

√
2

]
,(11.9)
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(x1, γ1(x1))

S−2[γ2](·)C1

Γ1 = R2
+\C1

[
− 1

µg ◦ S−1
]
(·, ·) = v1(·, ·)

S−1

0 x1 ξ1 ( µ
µ−1 )ξ1

ξ2 ( µ
µ−1 )2ξ2

γ2(·)γ1(·)

S−1[γ1](·)

( µ
µ+1 )γ1(0)

γ1(0)

( µ
µ+1 )2γ2(0)

(i) S[γ2](·) is obtained by solving

R2

(ii)

(iii)

γ1(·) = γ(·) on [0, x1]

(x1, γ1(x1))

C1

x10

S−1[γ1](·)

ξ1 ( µ
µ−1 )ξ1

γ1(·)

( µ
µ+1 )γ1(0)

γ1(0)

Γ1 = R2
+\C1

v1(·, ·) = V (·, ·) on R1

C.1C.2

C2

[
− 1

µg ◦ S−1
]
(·, ·) = v2(·, ·)

0 ξ2

γ2(·) γ3(·) S−3[γ3](·)

( µ
µ−1 )3ξ3

ξ3 ( µ
µ−1 )2ξ2

(x2, γ2(x2))

x2

S−2[γ2](·)

S−1

(x1, γ1(x1))

( µ
µ+1 )γ1(0)

γ1(0)

( µ
µ+1 )2γ2(0)

( µ
µ+1 )3γ3(0)

Γ2 = R2
+\C2

S[γ2](·)

R1

R3

(ii)

(iii)

(i) S[γ3](·) is obtained by solving
γ1(0)

(x1, γ1(x1))

C2

x10

( µ
µ+1 )γ1(0)

S−2[γ2](·)

(x2, γ2(x2))

ξ2x2

γ2(·) = γ(·) on [0, x2]

γ2(·)

( µ
µ−1 )2ξ2

( µ
µ+1 )2γ2(0)

Γ2 = R2
+\C2

v2(·, ·) = V (·, ·) on R1 ∪R2

C.1C.2

(b) n = 1 in Step C.1.

(a) n = 0 in Step C.1

Figure 6. Case I: λ is “large.” The illustration of Method C, see page 52: Steps C.1 and

C.2 when (a) n = 0, and for (b) n = 1 in Step C.1.
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and ξ1 = (λ/c)
√

2. Using (9.7), we find

γ1(x) = S−1[S[γ1]](x) = −x +
λ

c

√
2, x ∈ [0, ξ1] =

[
0,

λ

c

√
2

]
.(11.10)

The function S−1[γ1](·) is affine, and intersects with γ1(·) at x1 ≡ x1(γ1) = (λ/c)(
√

2/2), see

(9.9). By Corollary 9.4 and Remark 9.6, the boundary of the stopping region on [0, x1] is

γ(x) = γ1(x) = −x +
λ

c

√
2, x ∈ [0, x1] ≡

[
0,

λ
√

2

c
· 1

2

]
;(11.11)

see the inset in Figure 6(a). Hence, the boundaries of the optimal stopping region Γ and

the stopping regions Γn, n ∈ N stick on the upper half of the hypotenuse of the rectangular

triangle {(x, y) ∈ R2
+ : g(x, y) ≤ 0} ≡ cl(C0).

11.1. Proposition. Fix any n ∈ N. The functions in Sn ,
(
S−k[γk]

)n
k=1

do not intersect

inside the continuation region Cn = {(x, y) ∈ R2
+ : y < γn(x)}. The function S[γn+1](·)

intersects with each function in Sn ∪ {γn} pairwise exactly once.

The same conclusions hold when every γk, k = 1, . . . , n in the proposition is replaced with

γ; this can be verified using the elementary properties of convex functions and the affine

structure of the boundary function γ(·) in (11.11); see Bayraktar, Dayanik and Karatzas

(2004a) for the details. Then the proof of Proposition 11.1 follows easily from Corollary 9.4.

We are now ready to give a better version of method B on page 50 to calculate each v(·, ·)
and the boundary function γ(·). Recall that S−n[γn](·) and xn(γn) are defined by (9.7) and

(9.9). The steps C.1 and C.2 below are illustrated in Figure 6 for n = 0 and n = 1.

Step C.0: Initialize n = 0, x0 = 0, v0(·, ·) ≡ 0 and the region R1 as in (11.8).

Step C.1: Calculate the value function V (φ0, φ1) = vn+1(φ0, φ1) for every (φ0, φ1) ∈
Rn+1 using (10.2) and (10.7).

Step C.2: Set n to n + 1.

(i) Determine the set{
(x, y) ∈ Rn : vn(x, y) = − x

µ− 1
− y

µ + 1
+

λ

cµ

√
2

}
(11.12)

of points in Rn which satisfy (11.4). This is the intersection of the set in (11.3)

and Rn. Namely, it is the section of the strictly decreasing, convex and contin-

uous curve x 7→ S[γn+1](x) contained in Rn.

(ii) Find the subset of Rn enclosed between the vertical y-axis and the curve in

(11.12). This is the intersection Rn ∩Bn of the sets Rn and Bn in (11.5).
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(iii) Find the set Rn+1 = S−1(Rn ∩ Bn) in (11.8) by applying the transformation

S−1(·, ·) to the set found in (ii).

The region Rn+1 is enclosed between the y-axis from left, the S−1-transformation

of the curve in (11.12) from right. This right boundary of Rn+1 extends the

boundary γ(·) ≡ γn+1(·) from the previous iteration into the region S−(n+1)(Γ) ≡
S−(n+1)(Γn+1).

(iv) Go to Step C.1.

12. The smoothness of the value functions and the stopping boundaries

The general method described at the beginning of this section evaluates the integrals

Jvn(·, φ0, φ1) in (8.2) of the function [g + µ · vn ◦ S](·, ·) along the curves (x(·, φ0), y(·, φ1))

in R2
+ in order to calculate the value function vn+1(φ0, φ1) as in (8.1). For an accurate

implementation of this method, it may be useful to know how smooth the integrand, or

essentially the value function vn(·, ·) is.

The smoothness of the value function V (·, ·) may also allow us to formulate the original

optimal stopping problem in (4.12) as a free-boundary problem. Then, in principle, we can

calculate the value function V (·, ·) directly, by solving a partial differential equation, as the

next proposition suggests.

12.1. Proposition. Suppose that there is a bounded and continuous function w : R2
+ 7→

(−∞, 0] which is continuously differentiable on R2
+\∂Γ, and whose first-order derivatives are

locally bounded near the boundary ∂Γ = {(x, γ(x)) : x ∈ [0, ξ]}. Moreover,

(Ã − λ)w(x, y) + g(x, y) = 0, (x, y) ∈ C,(12.1)

w(x, y) = 0, (x, y) ∈ Γ,(12.2)

(Ã − λ)w(x, y) + g(x, y) > 0, (x, y) ∈ Γ\∂Γ,(12.3)

w(x, y) < 0, (x, y) ∈ C,(12.4)

where Ã is the infinitesimal generator in (7.4) of the process Φ̃ acting on the continuously

differentiable functions.

Suppose also that the sample-paths of the process Φ̃ = (Φ̃(0), Φ̃(1)) spend zero time on the

boundary ∂Γ almost surely, i.e.,

Eφ0,φ1

0

[∫ ∞

0

1∂Γ(Φ̃t)dt

]
= 0, (φ0, φ1) ∈ R2

+.(12.5)

If the convex function γ(·) is also Lipschitz continuous on [0, ξ], then w(·, ·) = V (·, ·) on R2
+.
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Proof. Similar to the proof of Theorem 10.4.1 in Øksendal(1998, p. 215). �

Under certain conditions, we are able to show that the bounded, concave and continuous

value functions vn(·, ·), n ∈ N and V (·, ·) are continuously differentiable on R2
+\∂Γx

n+1 and

R2
+\∂Γx, respectively, and are not differentiable on the exit boundaries ∂Γx

n and ∂Γx in

(10.10), respectively. The exit boundaries ∂Γx
n, n ∈ N and ∂Γx, and the entrance boundaries

∂Γe
n and ∂Γe are connected subsets of R2

+, and

∂Γn = ∂Γx
n ∪ cl(∂Γe

n), n ∈ N and ∂Γ = ∂Γx ∪ cl(∂Γe).(12.6)

Moreover, the boundary functions γn(·) and γ(·) are continuously differentiable on their

support.

The hypotheses of Proposition 12.1 are satisfied with w(·, ·) , v(·, ·) in (5.10). Thus,

the function v(·, ·) ≡ V (·, ·) may be obtained by solving the variational inequalities (12.1)-

(12.4). This may be a challenging problem since, as we already pointed out above, the

smooth-fit principle is guaranteed not to hold on some part of the free-boundary. We shall

not investigate the variational problem here, but give a concrete example with this interesting

boundary behavior, and describe our solution method for it.

The main result is Proposition 12.17 below, and it is proven by induction. Here, we shall

study the basis of the induction by breaking it down in several lemmas. The proof of the

induction hypothesis is very similar, and later we will point out only the major differences.

Let us introduce the continuous mapping Gn : R3
+ 7→ R defined by

Gn(t, φ0, φ1) ,
[
g + µ · vn ◦ S

]
(x(t, φ0), y(t, φ1)), (t, φ0, φ1) ∈ R3

+, n ∈ N0,(12.7)

Note that (10.2) gives

vn+1(φ0, φ1) =

∫ rn(φ0,φ1)

0

e−(λ+µ)t Gn(t, φ0, φ1) dt, (φ0, φ1) ∈ Cn+1, n ∈ N0.(12.8)

Using (10.11), (10.12) and Lemmas 10.2 and 10.5, we obtain

(12.9) (x(t, φ0), y(t, φ1))
∣∣∣
t=rn(φ0,φ1)

∈ ∂Γe
n+1 ⊆ {(x, an(x)) : x ∈ [0, αn]}

≡
{
(x, y) ∈ R2

+ : [g + µ · vn ◦ S](x, y) = 0
}

, (φ0, φ1) ∈ Cn+1 ∪ ∂Γx
n+1.

Therefore, for every n ∈ N

0 = Gn(t, φ0, φ1)
∣∣∣
t=rn(φ0,φ1)

, (φ0, φ1) ∈ Cn+1 ∪ ∂Γx
n+1.(12.10)
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Under certain local smoothness and nondegeneracy conditions on the function Gn(·, ·, ·),
the implicit function theorems guarantee that the equation Gn(t, φ0, φ1) = 0 implicitly deter-

mines t = tn(φ0, φ1) in an open neighborhood of every point (rn(φ0, φ1), φ0, φ1) in R+×Cn+1,

as a smooth function of the variables (φ0, φ1). Since the continuation region Cn+1 has com-

pact closure, a finite subcovering of these open neighborhoods exists. Patching the solutions

tn(·, ·) in the finite subcovering gives the global solution, which is smooth and must coincide

with the function rn(·, ·) on Cn+1.

In the remainder, we shall use the following version of the implicit function theorem; see,

e.g., Protter and Morray (1991, Chapter 14), and also Conjecture 12.18 below.

12.2. Theorem (Implicit Function Theorem). Let A ⊆ Rm be an open set, F : A 7→ R be a

continuously differentiable function, and (t, x) ∈ R× Rm−1 be a point in A such that

F (t, x) = 0, and
∂

∂t
F (t, x)

∣∣∣
(t,x)=(t,x)

6= 0.

Then there exist an open set B ⊆ Rm−1 containing the point x, and a unique continuously

differentiable function f : B 7→ R such that t = f(x) and F (f(x), x) = 0 for all x ∈ B.

Since v0(·, ·) ≡ 0, we have

G0(t, φ0, φ1) = x(t, φ0) + y(t, φ1)−
λ

c

√
2, (t, φ0, φ1) ∈ R+ ×C1.(12.11)

The function G0(·, ·, ·) is continuously differentiable on R+ ×C1. By (6.8) in Section 6, its

partial derivative

DtG0(t, φ0, φ1) =
d

dt
[x(t, φ0) + y(t, φ1)](12.12)

with respect to t-variable may vanish at most once; if this happens, this derivative is strictly

negative before and strictly positive after the derivative vanishes; otherwise, it is strictly

positive everywhere (see, also, Figure 3). Namely, the function t 7→ G0(t, φ0, φ1) has at most

one local minimum for every (φ0, φ1) ∈ R2
+.

12.3. Lemma. Fix any (φ0, φ1) ∈ R2
+. The function t 7→ G0(t, φ0, φ1) from R+ into R has

at most one local minimum. It is strictly increasing if there is no local minimum. If there

is a local minimum, then the function G0(·, φ0, φ1) is strictly decreasing before the minimum

and strictly increasing after the minimum.

12.4. Lemma. The smallest minimizer r0(φ0, φ1) in (5.13) is continuously differentiable at

every (φ0, φ1) ∈ C1.
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Proof. The result will follow from Theorem 12.2 applied to the function G0(·, ·, ·) on R×C1

at the point (t, x) = (r0(φ0, φ1), φ0, φ1) ∈ R×C1. We only need to establish that

DtG0(t, φ0, φ1)
∣∣∣
t=r0(φ0,φ1)

6= 0, (φ0, φ1) ∈ C1.

Let us fix (φ0, φ1) ∈ C1 and assume that DtG0(r0(φ0, φ1), φ0, φ1) = 0. Then the function

t 7→ G0(t, φ0, φ1) is strictly decreasing on t ∈ [0, r0(φ0, φ1)] by Lemma 12.3, and

G0(t, φ0, φ1) > G0(r0(φ0, φ1), φ0, φ1) = 0, t ∈ [0, r0(φ0, φ1)).

Therefore, (12.8) implies that v1(φ0, φ1) > 0. This contradicts with our choice of (φ0, φ1) in

the continuation region C1, as well as, the bound v1(·, ·) ≤ 0. �

12.5. Corollary. The value function v1(φ0, φ1) is continuously differentiable at every (φ0, φ1) ∈
C1. For every (φ0, φ1) ∈ C1,

Dφ0v1(φ0, φ1) =

∫ r0(φ0,φ1)

0

e−(λ+µ)tDφ0G0(t, φ0, φ1) dt =
1− e−(µ−1)r0(φ0,φ1)

µ− 1
,

Dφ1v1(φ0, φ1) =

∫ r0(φ0,φ1)

0

e−(λ+µ)tDφ1G0(t, φ0, φ1) dt =
1− e−(µ+1)r0(φ0,φ1)

µ + 1
.

(12.13)

Proof. By (12.8) and Lemma 12.4, the value function v1(·, ·) is continuously differentiable.

Using (12.9) after applying the chain-rule to (12.8) with n = 0 gives the integrals in (12.13).

These integrals can be calculated explicitly by using (4.7) or (4.8). �

12.6. Corollary. The the entrance boundary ∂Γe
1 in (10.10) is connected. More precisely,

∂Γe
1 = {(x, γ1(x)) : x ∈ (ξe

1, ξ1)} for some 0 ≤ ξe
1 < ξ1,(12.14)

where ξ1 is the same as in [0, ξ1] = supp(γ1), the support of the boundary function γ1(·), see

Proposition 9.1.

12.7. Corollary. The restriction of the boundary function γ1(·) to the interval (ξe
1, ξ1) is

continuously differentiable. In fact,

γ1(x) = a0(x), x ∈ [ξe
1, ξ1], and [0, ξ1] ≡ supp(γ1) = supp(a0) ≡ [0, α0],

where

a0(x) =


− x +

λ

c

√
2, x ∈

[
0,

λ

c

√
2

)
0, elsewhere

(12.15)

is the continuously differentiable boundary function of the region A0 = {(x, y) ∈ R2
+ : [g +µ ·

v0 ◦ S](x, y) < 0} in (10.6).
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Proof. The function a0(·) in (12.15) is continuously differentiable on its support supp(a0) =

[0, α0], and the result follows from Lemma 10.5 and Corollary 12.6. �

The entrance boundary ∂Γe
1 always exists. However, the exit boundary ∂Γx

1 may not exist

all the time. Next we shall identify the geometry of the exit boundary ∂Γx
1 when it exists.

12.8. Lemma. For every (φ0, φ1) ∈ ∂Γx
1, we have [g + µ · v0 ◦ S](φ0, φ1) > 0. Therefore,

cl(∂Γe
1) ∩ ∂Γx

1 = ∅.

Proof. Suppose that (φ0, φ1) ∈ ∂Γx
1 . Let us assume that [g + µ · v0 ◦ S](φ0, φ1) ≤ 0. Then

G0(0, φ0, φ1) = [g + µ · v0 ◦ S](φ0, φ1) ≤ 0 = G0(r0(φ0, φ1), φ0, φ1), and Lemma 12.3 implies

G0(t, φ0, φ1) = [g + µ · v0 ◦ S](x(t, φ0), y(t, φ1)) < 0, t ∈ (0, r0(φ0, φ1)).

This inequality and (12.8) for n = 0 give

v1(φ0, φ1) =

∫ r0(φ0,φ1)

0

e−(λ+µ)tG0(t, φ0, φ1)dt < 0,

which contradicts with v1(φ0, φ1) = 0. This proves that [g + µ · v0 ◦ S](φ0, φ1) > 0 for every

(φ0, φ1) ∈ ∂Γx
1 . Since the mapping (x, y) 7→ [g + µ · v0 ◦ S](x, y) is continuous, we have

[g + µ · v0 ◦ S](φ0, φ1) = 0 for every (φ0, φ1) ∈ cl(∂Γe
1) by Lemmas 10.2 and 10.5. Therefore,

cl(∂Γe
1) ∩ ∂Γx

1 = ∅. �

The next corollary is helpful in determining the point (ξe
1, γ1(ξ

e
1)) ≡ (ξe

1, a0(ξ
e
1)). The

region An was introduced in Section 10.

12.9. Corollary. The parametric curve

C1 , R2
+ ∩ {(x(t, ξe

1), y(t, a0(ξ
e
1))) : t ∈ R}(12.16)

is the smallest among all the parametric curves R2
+ ∩ {(x(t, φ0), y(t, φ1)) : t ∈ R}, (φ0, φ1) ∈

R2
+ that majorize the boundary function a0(·) of the region A0 = {(x, y) : [g+µ·v0◦S](x, y) <

0} = {(x, y) ∈ R2
+ : y < a0(x)}.

The curve C1 and the boundary ∂A0 = {(x, a0(x)) : x ∈ [0, α0]} touch exactly at (ξe
1, a0(ξ

e
1)) ≡

(ξe
1, γ1(ξ

e
1)) and nowhere else.

Proof. By Corollary 12.7 and Lemma 12.8, we have (ξe
1, a0(ξ

e
1)) = (ξe

1, γ1(ξ
e
1)) ∈ cl(∂Γ1)\∂Γe

1.

Therefore (ξe
1, a0(ξ

e
1)) 6∈ ∂Γe

1 ∪ ∂Γx
1 . Hence there exists some δ > 0 such that

(x(t, ξe
1), y(t, a0(ξ

e
1))) ∈ Γ1 ⊆ R2

+\A0, t ∈ (−δ, +δ).(12.17)
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Recall from (10.18) that r̂(ξe
1, a0(ξ

e
1)) is the exit time of the curve (x(−t, ξe), y(−t, a0(ξ

e
1))),

t ∈ R+ from R2
+. Then the function

t 7→ G0(t, ξ
e
1, a0(ξ

e
1)) ≡ [g + µ · v0 ◦ S](x(t, ξe

1), y(t, a0(ξ
e
1))), t ∈ [−r̂(ξe

1, a0(ξ
e
1)),∞)

has a zero at t = 0, and is nonnegative for every t ∈ (−δ, δ) by (12.17). Hence it has a local

minimum at (ξe
1, a0(ξ

e
1)). By Lemma 12.3, the function G0(t, ξ

e
1, a0(ξ

e
1)) is strictly positive

for every t 6= 0. Therefore, y(t, a0(ξ
e
1)) > a0(x(t, ξe

1)) for every t 6= 0. �

12.10. Remark. Since C1 ⊂ R2
+\A0, we have Jv0(t, φ0, φ1) > 0 for every t > 0 and (φ0, φ1) ∈

C1. This implies v1(φ0, φ1) = 0 for every (φ0, φ1) ∈ C1. Therefore, C1 ⊂ Γ1.

The curve C1 divides R2
+ into two components. Since the continuation region C1 is con-

nected and contains A0, the region C1 is contained in the (lower) component which lays

between the curve C1 and x-axis. Thus the boundary ∂Γ1 is completely below the curve C1,

and they touch at the point (ξe
1, a0(ξ

e
1)) ≡ (ξe

1, γ1(ξ
e
1)). See Figure 8(a).

Next corollary shows that no points on the boundary {(x, a0(x)) : x ∈ [0, ξe
1)} over the

interval [0, ξe
1) of the region A0 = {(x, y) ∈ R2

+ : [g +µ ·v0 ◦S](x, y) < 0} is a boundary point

for the stopping region Γ1.

12.11. Corollary. For every x ∈ [0, ξe
1), we have γ1(x) > a0(x) and [g+µ·v0◦S](x, γ1(x)) > 0.

Proof. If [0, ξe
1) = ∅, then there is nothing to prove. Otherwise, fix any φ0 ∈ [0, ξe

1). As-

sume that (φ0, a0(φ0)) ∈ ∂Γ1. By Corollary 12.6 and Lemma 12.8, we have (φ0, a0(φ0)) /∈
∂Γe

1∪∂Γx
1 . The same arguments as in the proof of Corollary 12.9 with (φ0, a0(φ0)) instead of

(ξe
1, a0(ξ

e
1)) gives that the parametric curve {(x(−t, φ0), y(−t, a0(φ0))) : t ∈ [−r̂(φ0, a0(φ0)),∞)}

is the smallest majorant of the boundary function a0(·), and both curves touch at the point

(φ0, a0(φ0)). But this implies φ0 = ξe
1, a contradiction with our choice of φ0. �

12.12. Corollary. If φ0 ∈ [0, ξe
1), then (φ0, γ1(φ0)) ∈ ∂Γx

1 has an open neighborhood, on the

intersection with the continuation region C1 of which the function r0(·, ·) is bounded and

bounded away from zero.

On the other hand, the function r0(·, ·) is continuous on the entrance boundary ∂Γe
1: for

every (φ0, φ1) ∈ ∂Γe
1 and every sequence {(φ(n)

0 , φ
(n)
1 )}n∈N ⊆ C1 converging to the boundary

point (φ0, φ1), we have limn→∞ r0(φ
(n)
0 , φ

(n)
1 ) = 0.

12.13. Lemma. If ξe
1 = 0, then ∂Γ1 = cl(∂Γe

1). If ξe
1 > 0, then the exit boundary ∂Γx

1 is not

empty, and ∂Γ1 = ∂Γx
1 ∪ cl(∂Γe

1).
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φd

γ1(·)a0(·)

ξx
1ξe

1

C1

λ
c

√
2

γ1(0)

Γ1

0

B1

ξ1 = λ
c

√
2

The exit boundary ∂Γx
1

of the stopping region Γ1 :
r̂0(x, a0(x)) < r̂(x, a0(x))
for every x ∈ [ξe

1, ξ
x
1 )

φd

γ1(·)a0(·)

ξx
1ξe

1

C1

ξ1 = λ
c

√
2

λ
c

√
2

γ1(0)

A0

Γ1

0

(a) (b)

Figure 7. (a) The exit boundary ∂Γx
1 of the stopping region Γ1 is found by backtracing the

parametric curves t 7→ (x(t, φ0), y(t, φ1)) from every point (φ0, φ1) on the entrance boundary

∂Γe
1 = {(x, a0(x)) : x ∈ (ξe

1, ξ1)}. In (b), the region B1 defined in the proof of Lemma 12.14

is sketched.

If ∂Γ1 6= cl(∂Γe
1), then ξe

1 > 0, and the exit boundary ∂Γx
1 is not empty by Lemma 12.13.

The characterization of the exit boundary in Lemma 10.7 can be expressed better. It can

be easily shown that there exists some ξx
1 ∈ (ξe

1, ξ1) such that

Γx
1 =

{(
x(−t, φ0), y(−t, a0(φ0))

)∣∣∣
t=br0(φ0,a0(φ0))

: φ0 ∈ (ξe
1, ξ

x
1 ]

}
.

More precisely,

ξx
1 = inf{φ0 ∈ [ξe

1, ξ1] : r̂0(φ0, γ1(x)) ≤ r̂(φ0, γ1(x))}.(12.18)

For every φ0 ∈ (ξe
1, ξ

x
1 ], we have r̂0(φ0, γ1(φ0)) ≤ r̂(φ0, γ1(φ0). See (10.18) and Figure 7(a).

Our next result shows that, the exit boundary ∂Γx
1 = {(φ0, γ1(φ0)) : φ0 ∈ [0, ξe

1)} is on a

continuously differentiable curve, if it is not empty.

12.14. Lemma. The restriction of the boundary function γ1(·) to the interval [0, ξe
1) is con-

tinuously differentiable.

If the value function v1(·, ·) were continuously differentiable on the exit boundary ∂Γx
1 ,

then the result would follow from an application of the implicit function theorem to the

identity v1(φ0, φ1) = 0 near the point (φ0, φ1) = (φ0, γ1(φ0)).
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Unfortunately, v1(·, ·) is not differentiable on ∂Γx
1 ; see Lemma 12.16. Therefore, we shall

first extend the restriction to the set C1∪∂Γx
1 of the value function v1(·, ·) to a new function

ṽ1(·, ·) on an open set B1 ⊃ C1 ∪ ∂Γx
1 such that ṽ1(·, ·) is continuously differentiable on B1.

We shall then use the identity ṽ1(φ0, γ1(φ1)) = 0 as described above.

12.15. Lemma. The boundary function γ1(·) is continuously differentiable on the interior of

its support [0, ξ1].

The next result shows that the value function is not differentiable on the exit boundary

∂Γx
1 . In fact, as the proof reveals, the left and right partial derivatives are different along

the exit boundary. Therefore, the smooth-fit principle does not apply to the value function

v1(·, ·) along (some part of) the boundary if the exit boundary ∂Γx
1 is not empty.

12.16. Lemma. The value function v1(·, ·) is continuously differentiable on the entrance

boundary ∂Γe
1, but is not differentiable on the exit boundary ∂Γx

1.

The techniques used above in the analysis of the value function v1(·, ·) and the bound-

ary function γ1(·) can be extended inductively to every function vn(·, ·) and the boundary

function γn(·) if the followings are true for every n ∈ N:

A1(n): For every (φ0, φ1) ∈ R2
+, the function t 7→ Gn(t, φ0, φ1) in (12.7) from R+ into R

has at most one local minimum. It is strictly increasing if there is no local minimum.

If there is a local minimum, then the function Gn(·, φ0, φ1) is strictly decreasing before

the minimum and strictly increasing after the minimum.

A2(n): The function (x, y) 7→ [g +µ · vn ◦S](x, y) is (continuously) differentiable on the

entrance boundary ∂Γe
n+1 of the stopping region Γn+1 = {(x, y) : vn+1(x, y) = 0}.

12.17. Proposition. If A1(k) and A2(k) above are true for every 0 ≤ k ≤ n, then the

followings hold.
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(1) The value function vn+1(·, ·) is continuously differentiable on R2
+\Γx

n+1 everywhere

except the exit boundary ∂Γx
n+1. For every (φ0, φ1) ∈ Cn+1

Dφ0vn+1(φ0, φ1) =

∫ rn(φ0,φ1)

0

e−(λ+µ)tDφ0Gn(t, φ0, φ1)du

=

∫ rn(φ0,φ1)

0

e−(λ+µ)t [1 + (µ− 1)Dφ0vn ◦ S] (x(u, φ0), y(u, φ1))du,

Dφ1vn+1(φ0, φ1) =

∫ rn(φ0,φ1)

0

e−(λ+µ)tDφ1Gn(t, φ0, φ1)du

=

∫ rn(φ0,φ1)

0

e−(λ+µ)t [1 + (µ + 1)Dφ1vn ◦ S] (x(u, φ0), y(u, φ1))du.

(2) The entrance boundary ∂Γe
n+1 is connected. More precisely,

∂Γe
n+1 = {(x, an(x)) : x ∈ (ξe

n+1, ξn+1)} for some ξe
n+1 ∈ [0, ξn+1).

The boundary function an(·) of the region An = {(x, y) ∈ R2
+ : [g + µ · vn ◦ S](x, y) <

0} is continuously differentiable on (ξe
n+1, ξn+1). Therefore, the boundary function

γn+1(·) ≡ an(·) on (ξe
n+1, ξn+1) is continuously differentiable.

(3) The parametric curve

Cn+1 , R2
+ ∩ {(x(t, ξe

n+1), y(t, an(ξe
n+1))) : t ∈ R}

is the smallest among all the parametric curves R2
+ ∩ {(x(t, φ0), y(t, φ1)) : t ∈ R},

(φ0, φ1) ∈ R2
+ that majorize the boundary function an(·) of the region An = {(x, y) :

[g + µ · vn ◦ S](x, y) < 0} = {(x, y) ∈ R2
+ : y < an(x)}.

The curve Cn+1 and the boundary ∂An = {(x, an(x)) : x ∈ [0, αn]} touch exactly at

(ξe
n+1, an(ξe

n+1)) ≡ (ξe
n+1, γn+1(ξ

e
n+1)) and nowhere else.

(4) If ξe
n+1 = 0, then ∂Γn+1 = cl(∂Γe

n+1). If ξe
n+1 > 0, then the exit boundary ∂Γx

n+1 is

not empty, and ∂Γn+1 = ∂Γx
n+1 ∪ cl(∂Γe

n+1).

(5) The boundary function γn+1(·) is continuously differentiable on the interior of its

support [0, ξn+1].

The proof of the proposition is by induction on n ∈ N0. The suppositions A1(0) and A2(0)

are always correct; see Lemma 12.3, and note that [g +µ · v0 ◦S](·, ·) ≡ g(·, ·) is continuously

differentiable everywhere. All of the claims above are proved for the basis of the induction

n = 0 before the statement of the proposition. For n ≥ 1, the proofs are the same with

obvious changes, with the exception of the differentiability of an(·) in (2).
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For n = 0, the differentiability of a0(x) = −x + (λ/c)
√

2, x ∈ (0, ξ1) was obvious. For

n ≥ 1, the function an(·) is not available explicitly. But

[g + µ · vn ◦ S](x, an(x)) = 0, x ∈ [0, ξn+1].

By A2(n), the function [g+µ·vn◦S](·, ·) is continuously differentiable on ∂Γe
n+1 = {(x, an(x)) :

x ∈ (ξe
n+1, ξn+1)}. Since y 7→ [g + µ · vn ◦ S](x, y) is strictly increasing for every x ∈ R+, we

have

∂

∂y
[g + µ · vn ◦ S](x, y)

∣∣∣
(x,y)=(x,an(x))

> 0, x ∈ (ξe
n+1, ξn+1).

Thus, the function an(·) is continuously differentiable on (ξe
n+1, ξn+1) by the implicit function

theorem.

12.1. The interplay between the exit and entrance boundaries. Unfortunately, we

were unable to identify fully all the cases where the hypotheses A1(n) and A2(n) on page

60 are satisfied for every n ∈ N (see, though, Section 12.2 for the important case of “large”

disorder arrival rate λ and Section 12.3 for another interesting example, where they are

satisfied). However, they are the sufficient conditions for Proposition 12.17 to hold, and

Proposition 12.17 shows the crucial interplay between the exit and entrance boundaries. We

would like to illustrate this interplay briefly; it may be very useful in designing efficient

detection algorithms for general Poisson disorder problems. Later, we shall point out how

the gap may be closed as an interesting research problem.

In Section 10.2, we showed that both the value functions and the exit boundaries are deter-

mined by the entrance boundaries, see Lemma 10.7. More explicitly, if the entrance boundary

∂Γe
n+1 is obtained somehow, then one can calculate the value function vn+1(·, ·) and the exit

boundary ∂Γx
n+1 by running backwards in time the parametric curves t 7→ (x(t, φ0), y(t, φ1))

from every point (φ0, φ1) on the entrance boundary ∂Γe
n+1 and by evaluating the explicit

expressions of Lemma 10.7 along the way. On the other hand, the entrance boundary ∂Γe
n+1

can be found when the value function vn(·, ·) is already calculated. Since v0 ≡ 0 is read-

ily available, the following iterative algorithm will give us every vn(·, ·), n ∈ N0 and the

boundary functions γn(·), see also Figure 8:

Step D.0: Initialize n = 0, v0(·, ·) ≡ 0 on R2
+. Let a0(·) be the boundary function of

the region A0 = {(φ0, φ1) ∈ R2
+ : [g + µ · v0 ◦ S](φ0, φ1) < 0}; see (12.15).
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ξe
1 ξ1

Exit boundary ∂Γx
1

Entrance
boundary ∂Γe

1:
γ1(·) = a0(·)
on [ξe

1, ξ1]

of the stopping region Γ1:

Γ1

γ1(·) > a0(·) on [0, ξe
1)

satisfying the equation[
1
µ · g ◦ S−1

]
(·, ·) = v1(·, ·)

a0(·)

γ1(·)

S[a1]: The locus of points
Γ1

A0A0

C1: tangent to a0(·) at ξe
1

Exit boundary ∂Γx
n+1

of the stopping region Γn+1:

Γn+1

γn+1(·) > an(·) on [0, ξe
n+1)

Γn+1

An

ξn+1ξe
n+1

Cn+1: tangent to an(·) at ξe
n+1

Entrance
boundary ∂Γe

n+1:
γn+1(·) = an(·)
on [ξe

n+1, ξn+1]

S[an+1]: The locus of points

γn+1(·)

an(·)

An

satisfying the equation[
1
µ · g ◦ S−1

]
(·, ·) = vn+1(·, ·)

(a)

(c)

(b)

(d)

Figure 8. For all values of the disorder arrival rate (large or small), both the value functions

vn+1(·, ·), n ∈ N0 and the exit boundaries ∂Γx
n+1, n ∈ N0 are determined by the entrance

boundaries ∂Γe
n+1, n ∈ N0; see Lemma 10.7. Figures (a) and (b) illustrate Steps D.1 and

D.2 of Method D page 62 for n = 0, and Figures (c) and (d) for a general n. In (a),

the region A0 = {(x, y) ∈ R2
+ : [g + µ · v0 ◦ S] < 0} is readily available since v0 ≡ 0.

There is always a unique number ξe
1 contained in the support [0, ξ1] of the boundary function

a0(·) of the region A0 such that the parametric curve C1 : (x(t, ξe
1), y(t, a0(ξ

e
1))), t ∈ R does

not intersect A0. The entrance boundary ∂Γe
1 of the stopping region Γ1 coincides with the

boundary {(x, a0(x)) : x ∈ (ξe
1, ξ1)} of the region A0 above the interval (ξe

1, ξ1). If ξe
1 > 0,

then the exit boundary ∂Γx
1 = Γ1\ cl(Γe

1) is not empty and can be found by backtracing

the parametric curves (x(−t, φ0), y(−t, φ1)), t ∈ R+ from every entrance boundary point

(φ0, φ1) ∈ ∂Γe
1 until the first time r̂n(φ0, φ1) that Jv0(−t, φ0, φ1) becomes zero, see Step D.1

for the details. After the value function v1(·, ·) is calculated in Step D.1, the region A1 and

its boundary function a1(·) is found by a transformation under S−1 of the locus in (b) of the

points satisfying [(1/µ) · g ◦ S−1](·, ·) = v1(·, ·). By reiterating Steps D.1 and D.2 as in (c)

and (d) for every n ∈ N, we obtain all of the value functions vn, n ∈ N.
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Step D.1: There is unique number φ0 = ξe
n+1 in the bounded support φ0 ∈ [0, ξn+1] of

the function an(·) such that, for every small δ > 0

an(x(t, φ0)) ≤ y(t, an(φ0)), t ∈ [0, δ) if φ0 = 0, and t ∈ (−δ, δ) if φ0 > 0.

Equivalently, the parametric curve Cn+1 , R2
+ ∩ {(x(t, ξe

n+1), y(t, an(ξe
n+1))) : t ∈ R}

in (3) of Proposition 12.17 majorizes the boundary {(x, an(x)) : x ∈ supp(an)} of

the region An = {(x, y) ∈ R2
+ : [g + µ · vn ◦ S](x, y) < 0} everywhere. The entrance

boundary of the stopping region Γn+1 = {(φ0, φ1) ∈ R2
+ : vn+1(φ0, φ1) = 0} is given

by ∂Γe
n+1 = {(φ0, an(φ0)) : φ0 ∈ (ξe

n+1, ξn+1)}.
(i) Find the entrance boundary ∂Γe

n+1.

(ii) For every (φ0, φ1) ∈ ∂Γe
n+1, take the following steps to calculate the value func-

tion vn+1(·, ·) on the continuation region Cn+1 and the exit boundary ∂Γx
n+1:

(a) Calculate r̂(φ0, φ1) , inf{t ≥ 0 : (x(−t, φ0), y(−t, φ1)) 6∈ R2
+}.

(b) If −Jvn(−r̂(φ0, φ1), φ0, φ1) < 0, then set r̂n(φ0, φ1) = ∞. Otherwise, find

r̂n(φ0, φ1) , inf{t ∈ (0, r̂(φ0, φ1)] : −Jvn(−t, φ0, φ1) ≥ 0}

by a bisection search on (0, r̂(φ0, φ1)], and add the point

(x(−r̂n(φ0, φ1), φ0), y(−r̂n(φ0, φ1), φ1)) ∈ ∂Γx
n+1

to the exit boundary.

(c) Calculate the value function

vn+1(x(−t, φ0), y(−t, φ1)) = −e−(λ+µ)tJvn(−t, φ0, φ1)

along the curve (x(−t, φ0), y(−t, φ1)), t ∈ (0, r̂(φ0, φ1)∧ r̂n(φ0, φ1)] until it

either leaves R2
+ or hits the exit boundary ∂Γx

n+1.

The union ∂Γx
n+1 ∪ cl(∂Γe

n+1) = ∂Γx
n+1 ∪ {(x, an(x)) : x ∈ [ξe

n+1, ξn+1]} gives the

boundary ∂Γn+1 = {(x, γn+1(x)) : x ∈ [0, ξn+1]} and the boundary curve γn+1(·),
which is strictly decreasing and convex on its support [0, ξn+1].

(iii) Set vn+1(·, ·) = 0 on the stopping region Γn+1 = {(x, y) : y ≥ γn+1(x)}.
Step D.2: Set n to n + 1. Determine the locus of the points (φ0, φ1) in R2

+ satisfying

the equation [
1

µ
· g ◦ S−1

]
(φ0, φ1) = vn(φ0, φ1).

This locus is the same as {(x, S[an+1](x)) : x ∈ supp(S[an+1])}, see Notation 9.2.

Shift it by the linear transformation S−1 of (5.8) to obtain the boundary {(x, an(x)) :
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x ∈ supp(an)} of the region An = {(x, y) : [g + µ · vn ◦ S](x, y) < 0}. Go to Step

D.1.

12.18. Conjecture. The algorithm relies on only two results from Section 12: (i) the entrance

boundary ∂Γe
n+1, n ∈ N0 is connected, and (ii) the boundary ∂Γx

n+1, n ∈ N0 is the disjoint

union of the exit boundary ∂Γx
n+1 and the closure of the entrance boundary ∂Γe

n+1. Part (ii)

was proved by using (i) and the first hypothesis A1(n + 1) on page 60, see Lemma 12.13.

We conjecture that the hypothesis A1(n + 1) always holds for all n ∈ N0.

On the other hand, part (i) was proved by using the continuity of the mapping (φ0, φ1) 7→
rn(φ0, φ1) on the connected continuation region Cn+1, see Corollary 12.6. The continuity of

the mapping rn(·, ·) followed from its continuous differentiability on Cn+1 which we proved

by using the implicit function theorem (Theorem 12.2) under hypothesis A2(n + 1), see

Lemma 12.4. We conjecture that this mapping is always continuous on the continuation

region Cn+1. This may be proved directly by using a weaker version of the implicit function

theorem (see, e.g., Krantz and Parks (2002)) or by using nonsmooth analysis (see, e.g.,

Clarke et al. (1998)).

12.2. The regularity of the value functions and the optimal stopping boundaries

when the disorder arrival rate λ is “large”. One of the cases where both A1(n) and

A2(n) on page 60 are satisfied for every n ∈ N is when the disorder arrival rate λ is “large”,

see Section 4.3 and Figure 2(a).

Suppose that λ ≥ [1− (1 + µ)(c/2)]+. Then the parametric curve t 7→ (x(t, φ0), y(t, φ1)),

and therefore, the mapping t 7→ Gn(t, φ0, φ1), t ∈ R+ are strictly increasing for every

(φ0, φ1) ∈ R2
+ and n ∈ N0, see Lemma 10.2. Hence, A1(n) always holds for every n ∈ N0.

For the same reason, all of the exit boundaries ∂Γx
n, n ∈ N are empty, see Section 11. Since

∂Γx
1 is empty, the value function v1(·, ·) is continuously differentiable everywhere. Therefore,

A2(1) holds. Then Proposition 12.17 implies that v2(·, ·) is continuously differentiable ev-

erywhere since ∂Γx
2 is empty. Therefore, A2(2) holds, and so on.

12.19. Corollary (“Large” disorder arrival rate: smooth solutions of reference optimal stop-

ping problems). Suppose that λ ≥ [1− (1+µ)(c/2)]+. Then A1(n) and A2(n) hold for every

n ∈ N0, and Proposition 12.17 applies. Particularly, for every n ∈ N0

(1) the value function vn+1(·, ·) is continuously differentiable everywhere,

(2) the exit boundary ∂Γx
n+1 is empty, and ∂Γn+1 = cl(∂Γe

n+1),
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(3) the boundary function γn+1(·) is continuously differentiable on the interior of its sup-

port [0, ξn+1]. Thus, the function γn+1(·) coincides with the boundary function

a0(x) = −x +
λ

c

√
2 of the region A0 on the interval

[
0,

λ
√

2

2c

]
,

and fits smoothly to this function at the right end-point of the same interval.

The last part of (3) in the corollary follows from (11.11) in Section 11 and Proposi-

tion 12.17. Recall also from Remark 9.6 that, if the disorder arrival rate λ is “large”,

then there is an increasing sequence of sets R+ × [Bn,∞) whose limit is R+ × (0,∞), and

v(·, ·) = vn(·, ·) on R+ × [Bn,∞) for every n ∈ N. Therefore, Corollary 12.19 implies im-

mediately that the value function v(·, ·) and the boundary function γ(·) are continuously

differentiable on R+ × (0,∞) and on the interior of the support [0, ξ] of the function γ(·),
respectively.

To prove that v(·, ·) is continuously differentiable on (0,∞)× {0}, we shall again use the

implicit function theorem. By Proposition 5.6 and Remark 5.10, we have

v(φ0, 0) = Jv(r(φ0, 0), φ0, 0) =

∫ r(φ0,0)

0

e−(λ+µ)tG(t, φ0, 0)dt, φ0 ∈ R+.

The function (t, φ0) 7→ G(t, φ0, 0) , [g + µ · v ◦ S](x(t, φ0), y(t, 0)) is continuously dif-

ferentiable on (0,∞) × (0,∞) since v(·, ·) is continuously differentiable on R+ × (0,∞)

and (x(t, φ0), y(t, 0)) ∈ (0,∞) × (0,∞) for every t > 0. Moreover, the partial derivative

(t, φ0) 7→ Dφ0G(t, φ0, 0) is locally bounded on (0,∞) × (0,∞) by Corollary 5.4. Therefore,

the function (t, φ0) 7→ Jv(t, φ0, 0) is continuously differentiable on (0,∞)× (0,∞) and

Dφ0Jv(t, φ0, 0) =

∫ t

0

e−(λ+µ)uDφ0G(t, φ0, 0)du

=

∫ t

0

e−(µ+1)u [1 + (µ− 1) Dφ0v ◦ S] (x(u, φ0), y(u, 0))du, (t, φ0) ∈ R+ × (0,∞).

Since v(φ0, 0) ≡ 0 for every φ0 ∈ [ξ,∞), it is continuously differentiable on (ξ,∞). To

show that it is differentiable on (0, ξ), it is enough to prove that the mapping φ0 7→ r(φ0, 0)

from (0, ξ) to R+ is continuously differentiable. Observe that, if we define

F (t, φ0) , γ(x(t, φ0))− y(t, 0), (t, φ0) ∈ R2
+,

then F (r(φ0, 0), φ0) = 0 for every φ0 ∈ [0, ξ]. For every φ0 ∈ (0, ξ), the function F (·, ·)
is continuously differentiable in some neighborhood of (r0(φ0, 0), φ0) since x(r(φ0, 0), φ0) ∈
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(0, ξ) and γ(·) is continuously differentiable on [0, ξ). Moreover, at every (t, φ0) ∈ R2
+, where

DtF (t, φ0) exists, we have

DtF (t, φ0) = γ′(x(t, φ0))Dtx(t, φ0)−Dty(t, 0) < 0,

since γ(·) is decreasing, t 7→ x(t, 0) and t 7→ x(t, φ0) are strictly increasing. Then the

implicit function theorem implies that φ0 7→ r(φ0, 0), and therefore, φ0 7→ v(φ0, 0) =

Jv(r(φ0, 0), φ0, 0) is continuously differentiable on φ0 ∈ (0, ξ). A similar argument as in

12.12 shows that φ0 7→ r(φ0, 0) is continuous at φ0 = ξ and limφ0↑ξ r(φ0, 0) = 0. By Leibniz

rule (see, e.g., Protter and Morrey(1991, Theorem 11.1, p. 286)), the limit of the derivative

Dφ0v(φ0, 0) = DtJv(r(φ0, 0), φ0, 0)︸ ︷︷ ︸
=0 for every φ0∈[0,ξ)

+Dφ0Jv(r(φ0, 0), φ0, 0)

=

∫ r(φ0,0)

0

e−(µ+1)u [1 + (µ− 1) Dφ0v ◦ S] (x(u, φ0), y(u, 0))du, φ0 ∈ (0, ξ)

of the value function v(·, ·) at (φ0, 0) as φ0 increases to ξ equals zero. Recall that, since

r(φ0, 0) > 0 for every φ0 ∈ [0, ξ), the derivative of t 7→ Jv(t, φ0, 0) on the righthand side

vanishes at its minimizer t = r(φ0, 0). Thus, the left and right derivatives of the concave

function φ0 7→ v(φ0, 0) at φ0 = ξ,

D−
φ0

v(ξ, 0) = lim
φ0↑ξ

D−
φ0

v(φ0, 0) = lim
φ0↑ξ

Dφ0v(φ0, 0) = 0 = D+
φ0

v(ξ, 0),

are equal. This completely shows that the function φ0 7→ v(φ0, ·) from (0,∞) to R is

continuously differentiable. Hence the value function v(·, ·) is continuously differentiable on

R+ × {0}.

12.20. Corollary (“Large” disorder arrival rate: smooth solution of the main optimal stop-

ping problem). Suppose that λ ≥ [1− (1 + µ)(c/2)]+. Then

(1) the value function v(·, ·) is continuously differentiable everywhere,

(2) the boundary function γ(·) is continuously differentiable on the interior of its support

[0, ξ]. It coincides with the boundary function

a0(x) = −x +
λ

c

√
2 of the region A0 on the interval

[
0,

λ
√

2

2c

]
,

and fits smoothly to this function at the right end-point of the same interval,

(3) the value function v(·, ·) is the solution of the variational inequalities in (12.1)-(12.4).
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12.21. Corollary. If λ ≥ [1 − (1 + µ)(c/2)]+, then both the sequence {vn}n∈N of the value

functions and the sequences of their partial derivatives {Dφ0vn}n∈N and {Dφ1vn}n∈N converge

uniformly to the value function v and its partial derivatives Dφ0v and Dφ1v, respectively.

Proof. Immediately follows from Theorem 25.7 in Rockafellar (1997, p. 248). �

The results obtained in Section 10 for the functions vn, n ∈ N can be extended easily for

the value function v(·, ·), n ∈ N. As in Lemma 10.2, we have

A , {(x, y) ∈ R2
+ : [g + µ · v ◦ S](x, y) < 0} = {(x, y) ∈ R2

+ : y < a(x)},

{(x, y) ∈ R2
+ : [g + µ · v ◦ S](x, y) = 0} = {(x, a(x)) : x ∈ [0, α]}

for some decreasing function a : R+ 7→ R+ which is strictly decreasing on its finite support

[0, α]. We have A ⊆ C all the time, and the equality holds if λ ≥ [1 − (1 + µ)(c/2)]+ since

the parametric curves t 7→ (x(t, φ0), y(t, φ1)) increase and do not come back the region A

after they leave; see also Section 11. Therefore, γ(·) ≡ a(·) and

[g + µ · v ◦ S](x, y) > 0, (x, y) ∈ Γ\∂Γ.(12.19)

Proof of Corollary 12.20. Only (3) remains to be proven. The function v : R2
+ 7→ (−∞, 0]

is bounded and continuously differentiable. By the definition of the continuation region

C = {(x, y) ∈ R2
+ : v(x, y) < 0} and the stopping region Γ = R2

+\C, the (in)equalities (12.2)

and (12.4) are satisfied. On the other hand, (12.19) implies

[(Ã − λ)v + g](φ0, φ1) = [g + µ · v ◦ S](φ0, φ1), (φ0, φ1) ∈ Γ

is strictly positive for every (φ0, φ1) ∈ Γ\∂Γ, i.e., (12.3) is also satisfied. On the other hand,

[(Ã − λ)v + g](φ0, φ1) =

= Dφ0v(φ0, φ1)

[
(λ + 1)φ0 +

λ(1−m)√
2

]
+ Dφ1v(φ0, φ1)

[
(λ− 1)φ1 +

λ(1 + m)√
2

]
+ µ

[
v

((
1− 1

µ

)
φ0,

(
1 +

1

µ

)
φ1

)
− v(φ0, φ1)

]
− λv(φ0, φ1) + g(φ0, φ1)

= Dφ0v(φ0, φ1) ·Dtx(0, φ0) + Dφ1v(φ0, φ1) ·Dty(0, φ1)− (λ + µ)v(φ0, φ1)

+ [g + µ · v ◦ S](φ0, φ1)

=
∂

∂t

[
e−(λ+µ)tv(x(t, φ0), y(t, φ1)) +

∫ t

0

e−(λ+µ)t[g + µ · v ◦ S](x(u, φ0), y(u, φ1))du

]∣∣∣∣
t=0

=
∂

∂t

[
e−(λ+µ)tv(x(t, φ0), y(t, φ1)) + Jv(t, φ0, φ1)

]∣∣
t=0

, (φ0, φ1) ∈ C.
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Observe that the expression enclosed in square brackets in the last equation above equals

v(φ0, φ1) for every sufficiently small t > 0 by (5.19) in Remark 5.10. Therefore, the derivative

above equals zero, and (12.1) holds. This completes the proof of that the function v(·, ·)
satisfies the variational inequalities (12.1)-(12.4).

The boundary function γ(·) is strictly decreasing on its support. The process Φ̃ can have

at most countably many jumps, and its sample paths are strictly increasing between the

jumps. Therefore, the time that the process Φ̃ spends on the boundary ∂Γ = {(x, γ(x)) :

x ∈ [0, ξ]} equals zero almost surely. Finally, since the derivative of the convex boundary

curve 0 ≥ γ′(x) ≥ γ′(0+) = a0(0+) = −1 is bounded on x ∈ (0, ξ), it is also Lipschitz

continuous on its support. �

Finally, Corollary 12.20 also shows that, for every λ ≥ [1 − (1 + m)(c/2)]+, the smooth

restrictions of value function vn+1(·, ·) to the continuation region Cn+1 and to the stopping

region Γn+1 fit to each other smoothly across the smooth boundary ∂Γn+1 = {(x, γn+1(x)) :

x ∈ [0, ξn+1]}.
However, if 0 < λ < 1− (1 + m)(c/2) is small, then the corresponding value function does

not have to have the same smooth-fit property.

12.3. Failure of the smooth-fit principle: a concrete example. Here we shall give

a concrete example for a case where the value function fits smoothly across the entrance

boundary and fails to fit smoothly across the exit boundary of the optimal stopping region,

see Figure 9(d).

Suppose that the disorder arrival rate λ, the pre-disorder arrival rate µ of the observations,

the detection delay cost c per unit time, and the expectation m = E0[Λ−µ] of the difference

Λ− µ between the arrival rates of the observations after and before the disorder are chosen

such that 

0 < λ < 1− (1 + m)(c/2)

µ + 1

µ
φd > φ1

y < S[a0](x) =
µ + 1

µ
a0

(
µ

µ− 1
x

)
, (x, y) ∈

{
(φ∗0, φ

∗
1), (0, φ1)

}


,(12.20)

where φd > 0 is the mean-reversion level in (4.14) of y 7→ y(t, φ1) for every initial condition

φ1 ∈ R+, see Section 4.4. The point

(φ∗0, φ
∗
1) =

(
λ√
2

(
1− λ

c
− 1

)
,

λ√
2

(
1 + λ

c
+ 1

))
(12.21)
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is the intersection point of the straight lines ` in (6.7) and y = a0(x). Recall from (12.15) that

a0(·) is the boundary function of the region A0 = {(x, y) ∈ R2
+ : g(x, y) < 0} ≡ {(x, y) ∈

R2
+ : y < a0(x)}. For every initial point (φ0, φ1) in R2

+, the sum t 7→ x(t, φ0) + y(t, φ1),

t ∈ R+ of the coordinates of the parametric curve t 7→ (x(t, φ0), y(t, φ1)), t ∈ R+ strictly

decreases before the parametric curve meets the line `, and strictly increases thereafter, see

Lemma 12.3 and (6.8). Finally, the point (0, φ1) with

φ1 = − λ(1 + m)√
2(λ− 1)

+

[
φ∗1 +

λ(1 + m)√
2(λ− 1)

][
1 + φ∗0

√
2(λ + 1)

λ(1−m)

]−(λ−1)/(λ+1)

(12.22)

is the initial point on the y-axis of the parametric curve t 7→ (x(t, 0), y(t, φ1)), t ∈ R+

which passes trough the point (φ∗0, φ
∗
1) in (12.21). The coordinate φ1 in (12.22) is found by

substituting the solution of x(t∗, 0) = φ∗0 for t∗ into the equation y(t∗, φ1) = φ∗1 and solving

the latter for φ1; see also Figure 9(a).

Let us show that, under the conditions in (12.20), the “closedness” property in (9.4) holds.

By Lemma 12.3 and (6.8), the curve C1 in Corollary 12.9 becomes

C1 = {(x(t, 0), y(t, φ1)) : t ∈ R+} ≡ R2
+ ∩ {(x(t, φ∗0), y(t, φ∗1)) : t ∈ R};

it is tangent to the broken line {(x, a0(x)) : x ∈ R+} at the point (φ∗0, φ
∗
1). Therefore,

ξe
1 = φ∗0 by the same corollary, and the entrance boundary of the stopping region Γ1 =

{(x, y) : v1(x, y) = 0} is ∂Γe
1 = {(x, a0(x)) : x ∈ (φ∗0, (λ/c)

√
2)} by Corollary 12.6. Moreover,

the boundary function γ1(·) of the region Γ1 = {(x, γ1(x)) : γ1(x) ≤ y} is supported on

[0, (λ/c)
√

2] and satisfies

γ1(x) = a0(x), x ∈
[
φ∗0,

λ

c

√
2

]
and γ1(x) < y(0, φ1) = φ1, x ∈ [0, φ∗0).(12.23)

The equality follows from Corollary 12.7, and the inequality follows from Remark 12.10 and

that the parametric curve C1 is decreasing. One can easily see from (12.23) and the second

inequality in (12.20) that

(0, φd) ∈ R+ × [φd,∞) ⊂ S−1(Γ1) =
{
(x, S−1[γ1](x)) : x ∈ R+

}
,

φd ≥ S−1[γ1](0) =
µ

µ + 1
γ1(0).(12.24)
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φ1

λ
c

√
2

φd

A0 ≡ C0

(φ∗0, φ
∗
1)

C1

0 λ
c

√
2

a0(·)

S[a0](·):
[

1
µ · g ◦ S−1

]
(·, ·) = v0(·, ·)

`(a)

λ
c

√
2

φd

0 λ
c

√
2

B1

S[a1(·)]:
[

1
µ · g ◦ S−1

]
(·, ·) = v1(·, ·)

a1(·)

apply S−1

S−1[γ1](·)

γ(0)

ξe = φ∗0

γ1(·)
A1

x1

(c)

The value function v(·, ·)
is differentiable everywhere except
on the exit boundary ∂Γx

λ
c

√
2

φd

0

γ(0)

ξe = φ∗0

γ1(·)

γ2(·)

of the stopping region Γ

the exit boundary ∂Γx

γ(·)

x1
λ
c

√
2 ξ

Γ(d)

A0 ≡ C0

λ
c

√
2

φ1

(φ∗0, φ
∗
1)

C1

γ1(0)

φd

a0(·) γ1(·)

S−1[γ1](·)

v(·, ·) = v1(·, ·) on R+ × [B1,∞)

∂Γx = ∂Γx
1 = {(x, γ1(x)) : x ∈ [0, ξe

1)}

0

µ
µ+1γ1(0) ≡ B1

x1
λ
c

√
2ξe

1 = φ∗0

γ(·) = γ1(·) on [0, x1)

(b)

Figure 9. (a) shows the location of points (φ∗0, φ
∗
1) and (0, φ1) and the line described by the

function S[a0](·). If the sufficient-statistic process Φ̃ starts in the region R+ × [φd,∞), then

it stays there forever and jumps above the line y = φ1 every time an observation arrives.

In (b), one can calculate the value function v1(·, ·) by backtracing the parametric curve

t 7→ (x(t, φ0), y(t, φ1)) from every (φ0, φ1) on the entrance boundary ∂Γe
1 = {(x, a0(x)) :

x ∈ (ξe
1, (λ/c)

√
2)}, see Figure 8(a,b). The thick curve above the region A0 is the boundary

function γ1(·) of the stopping region Γ1. Since S−1(Γ) is “closed” in the sense of (9.4), the

functions v(·, ·) and v1(·, ·) (and therefore, every vn(·, ·), n ∈ N) coincide on S−1(Γ). In

(c), we recall how to find the region A1; the calculation of the value function v2(·, ·) and

the boundary function γ2(·) is similar to (b), see also Figure 6. Since the exit boundary

{(x, γ(x)) : x ∈ [0, ξe)} is the same for all of the functions and is contained in R+ × [φd,∞),

the functions a1(·) and γ2(·) coincide on [ξe,∞). This and the boundary function γ(·) of the

stopping region Γ = {(x, y) ∈ R2
+ : v(x, y) = 0} are sketched in (d).
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The restrictions of the value functions v(·, ·) and v1(·, ·), and therefore those of the bound-

aries ∂Γ and ∂Γ1, coincide on R+ × [φd,∞). First, observe thatx(t, φ0) + y(t, φ1) ≥ x(t, 0) + y(t, φ1) ≥
λ

c

√
2

i.e., (x(t, φ0), y(t, φ1)) /∈ C0, t ∈ R+

 , (φ0, φ1) ∈ R+ × [φ1,∞),

where C0 = {(x, y) ∈ R2
+ : g(x, y) < 0} is as in (4.13) and coincides with A0. By the second

inequality in (12.20) and the properties of the parametric curves t 7→ (x(t, φ0), y(t, φ1)),

t ∈ R+ (see Section 4.2), we have

(φ0, φ1) ∈ R+ × [φd,∞) =⇒

{
S(φ0, φ1) ∈ R+ × [φ1,∞) ⊂ R+ × [φd,∞)

(x(t, φ0), y(t, φ1)) ∈ R+ × [φd,∞), t ∈ R+

}
.

Using the last two displayed equations gives that, if the initial state Φ̃0 on a sample-path of

the sufficient statistic Φ̃ = (Φ̃(0), Φ̃(1)) is in R+ × [φd,∞), then the sample-path stays in the

region R2
+ × [φd,∞) and never returns to the advantageous region C0 after the first jump,

see Section 4.1. In fact,

v ◦ S(φ0, φ1) = inf
τ∈S

ES(φ0,φ1)
0

[∫ τ

0

e−λug(Φ̃u)du

]
= 0, (φ0, φ1) ∈ R+ × [φd,∞),

and therefore,

(12.25) v(φ0, φ1) = J0v(φ0, φ1) = inf
t∈[0,∞]

∫ t

0

e−(λ+µ)u

≡g(·,·)︷ ︸︸ ︷
[g + µ · v ◦ S](x(u, φ0), y(u, φ1))du

= J0v0(φ0, φ1) = v1(φ0, φ1), (φ0, φ1) ∈ R+ × [φd,∞).

The stopping region Γ = {(x, y) ∈ R2
+ : v(x, y) = 0} and its boundary ∂Γ are determined

by the value function v(·, ·). Then (12.25) implies that the restrictions of the boundaries ∂Γ

and ∂Γ1 to the region R+ × [φd,∞) also coincide. Therefore, the first inequality in (12.20)

implies

φd <
λ

c

√
2 ≤ γ1(0) = γ(0), and S−1[γ](0) ≡ µ

µ + 1
γ(0) < φd

follows from (12.24). Since the boundary function S−1[γ](·) of the region S−1(Γ) is decreasing

(see (9.7)), the second inequality gives

R+ × [φd,∞) ⊆ S−1(Γ) = {(x, y) ∈ R2
+ : S−1[γ](x) ≤ y}.

But starting at any (φ0, φ1) ∈ R × [0, φd], the parametric curves t 7→ (x(t, φ0), y(t, φ1)),

t ∈ R+ are increasing. Since the boundary functions S−n[γ](·) of the regions S−n(Γ) =
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{(x, y) ∈ R2
+ : S−n[γ](x) ≤ y}, n ∈ N are also decreasing, every region S−n(Γ), n ∈ N is

“closed” in the sense of (9.4). Therefore, Method A on page 43 can be used in order to

calculate the value function v(·, ·) on R2
+.

12.22. Corollary. Suppose that (12.20) holds. Let Bn , [µ/(µ + 1)]nγ1(0) for every n ∈ N.

Then the sequence R+×[Bn,∞), n ∈ N increases to R+×(0,∞), and we have v(·, ·) = vn(·, ·)
on R+ × [Bn,∞) for every n ∈ N.

Since (φ∗0, φ
∗
1) ∈ R+ × [φd,∞) ⊆ R+ × [B1,∞), the exit boundaries ∂Γx

1 and ∂Γx of the

stopping regions Γ1 and Γ are the same, and

∂Γx = ∂Γx
1 = {(x, γ1(x)) : x ∈ [0, ξe

1)} ≡ {(x, γ1(x)) : x ∈ [0, φ∗0)}.

From the entrance boundary ∂Γe
1 = {(x, a0(x)) : x ∈ (φ∗0, (λ/c)

√
2)} of the stopping region

Γ1, we can obtain its exit boundary ∂Γx
1 and the value function v1(·, ·) on the continuation

region C1 by using Method D on page 62, see Figures 8(a,b) and 9(b).

Note also that the value function v(·, ·) ≡ v1(·, ·) is continuously differentiable on R+ ×
[B1,∞)\∂Γx

1 and is not differentiable on ∂Γx
1 by Corollary 12.5 and Lemma 12.16. Let

x1 ≡ x1(γ1) = min{x ∈ R+ : S−1[γ1](x) = γ1(x)} is the (smallest) intersection point of the

functions S−1[γ1](·) and γ1(·) as in (9.9). Then Corollary 9.4 implies

{(x, γ(x)) : x ∈ R+} ∩ S−1(Γ1) = {(x, γ1(x)) : x ∈ [0, x1]},

and the restriction of the boundary function γ(·) ≡ γ1(·) to the interval [0, x1) is continuously

differentiable by Lemma 12.15.

Using Corollary 12.22, we can also show that the restrictions of the value function v(·, ·)
and the boundary ∂Γ of the stopping region Γ on the complement of the region R+× [B1,∞)

are continuously differentiable.

Since the sequence {vn(·, ·)}n∈N of the value functions increases to the function v(·, ·), all

of them coincide with v(·, ·) ≡ v1(·, ·) on the region R+× [B1,∞). On the region R+× [0, B1),

they differ, but are continuously differentiable.

In fact, since every parametric curve t 7→ (x(t, φ0), y(t, φ1)), t ∈ R+ starting at any point

(φ0, φ1) ∈ R+ × [0, φd] ⊃ R+ × [0, B1] is increasing, the hypothesis A1(n) on page 60 holds

on the region R+ × [0, φd] for every n ∈ N.

On the other hand, the third inequality in (12.20) guarantees that hypothesis A2(n) on

page 60 also holds on R+ × [0, φd] for every n ∈ N. Indeed, every entrance boundary

∂Γe
n+1 coincides with some part of the boundary ∂An = {(x, an(x)) : x ∈ R+} of the region
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An = {(x, y) ∈ R2
+ : [g+µ·vn◦S](x, y) < 0}, see Lemma 10.5. Since the sequence {an(·)}n∈N0

of the boundary functions is increasing, the third inequality in (12.20) implies

y < S[a0](x) ≤ S[an](x), n ∈ N0, (x, y) ∈
{
(φ∗0, φ

∗
1), (0, φ1)

}
.

Thus, by an induction on n ∈ N0, we can easily show that the transformation S(∂Γe
n+1) of

the entrance boundary ∂Γe
n+1 of every stopping region Γn+1 is away from the exit boundary

∂Γx
n+1 ≡ ∂Γx

1 . Therefore, the function (x, y) 7→ [g + µ · vn ◦ S](x, y) is differentiable on

the entrance boundary ∂Γe
n+1. The same induction, as in Section 12.2, will also prove the

continuous differentiability of the value functions vn(·, ·), n ∈ N and v(·, ·) on the region

R+ × [0, φd] ⊃ R+ × [0, B1], as well as, the continuous differentiability of the restrictions of

the boundaries ∂Γn, n ∈ N and ∂Γ to the set R+ × [0, φd].

12.23. Corollary. Suppose that (12.20) holds. Then the boundary function γ(·) of the stop-

ping region Γ = {(x, y) ∈ R2
+ : γ(x) ≤ y} is continuously differentiable on its support [0, ξ].

The exit boundary Γx is not empty. The value function v(·, ·) is continuously differentiable

on R2
+\∂Γx, but not differentiable on ∂Γx.

The interesting feature of the solutions of the problems covered under condition (12.20) is

that the smooth-fit principle is satisfied on one connected subset and violated on another of

the same connected and continuously differentiable boundary curve of the optimal stopping

region by the value function, which is also continuously differentiable everywhere away from

the boundary.

The conditions in (12.20) are satisfied, for example, if λ = 0.15, µ = 1.5 and c = 0.7 and

m = 0.9. In general, the functions S−1[a0](·) and a0(·) always intersect on the line y = x.

Since γ1(·) ≥ a0(·) and γ1(·) is decreasing, we have x1 ≤ (λ/c) · (
√

2/2). The equality holds

if and only if

S−1(φ∗0, φ
∗
1) ∈ {(x, y) ∈ R2

+ : x < y} ⇐⇒ 1 < µ(λ + c).

This condition is satisfied for the numbers above. As a result, we have x1 = (λ/c) · (
√

2/2)

and γ(x) = a0(x) = x−(λ/c)
√

2 for every x ∈ [φ∗0, x1]. The boundary function γ(·) is strictly

above the function a0(·) everywhere else.
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13. Appendix: proofs of selected results in Part 2

Proof of Proposition 9.3. Let us prove (9.5) for n = 1. Take (φ0, φ1) ∈ S−1(Γ). By (9.4),

the curve u 7→ (x(u, φ0), y(u, φ1)), u ∈ R+ does not leave S−1(Γ). Therefore,

S
(
x(u, φ0), y(u, φ1)

)
∈ Γ and (V ◦ S)

(
x(u, φ0), y(u, φ1)

)
= 0, u ∈ R+.

Then Lemma 5.6, (5.4), (5.6) and Proposition 5.5 imply that

V (φ0, φ1) = J0V (φ0, φ1) = inf
t∈[0,∞]

∫ t

0

e−(λ+µ)u[g + µ · V ◦ S]
(
x(u, φ0), y(u, φ1)

)
du

= inf
t∈[0,∞]

∫ t

0

e−(λ+µ)ug
(
x(u, φ0), y(u, φ1)

)
du = J0V0(φ0, φ1) = V1(φ0, φ1).

Since V is the limit of the decreasing sequence {Vn}n∈N, the equalities V = V1 = V2 = · · ·
on S−1(Γ) follow.

On S−1(Γ) ∩C, we have 0 > V = V1 = V2 = · · · . Therefore, S−1(Γ) ∩C ⊆ Ck for every

k ≥ 1. Taking intersection of both sides with S−1(Γ) gives S−1(Γ) ∩C ⊆ S−1(Γ) ∩Ck for

every k ≥ 1. To prove the opposite inclusion, note that V = Vk < 0 on S−1(Γ)∩Ck for every

k ≥ 1. Therefore, S−1(Γ) ∩ Ck ⊆ C, k ≥ 1. Intersecting both sides with the set S−1(Γ)

gives S−1(Γ) ∩Ck ⊆ S−1(Γ) ∩C, k ≥ 1.

The proof of S−n(Γ) ∩ Γ = S−n(Γ) ∩ Γn = S−n(Γ) ∩ Γn+1 = · · · reads the same as in the

previous paragraph after every “C” above is replaced with “Γ”, and every strict inequality

is replaced with an equality. This completes the proof of (9.5) for n = 1.

Suppose that (9.5) holds for some n ∈ N, and let us prove it for n + 1. Take (φ0, φ1) ∈
S−(n+1)(Γ). Since the curve u 7→ (x(u, φ0), y(u, φ1)), u ∈ R+ does not leave the region

S−(n+1)(Γ) by (9.4), we have S
(
x(u, φ0), y(u, φ1)

)
∈ S−n(Γ), u ∈ R+, and

(V ◦ S)
(
x(u, φ0), y(u, φ1)

)
= (Vn ◦ S)

(
x(u, φ0), y(u, φ1)

)
, u ∈ R+

by induction hypothesis. Then Lemma 5.6, (5.4), (5.6) and Proposition 5.5 imply that

V (φ0, φ1) = J0V (φ0, φ1) = inf
t∈[0,∞]

∫ t

0

e−(λ+µ)u[g + µ · V ◦ S]
(
x(u, φ0), y(u, φ1)

)
du

= inf
t∈[0,∞]

∫ t

0

e−(λ+µ)u[g + µ · Vn ◦ S]
(
x(u, φ0), y(u, φ1)

)
du = J0Vn(φ0, φ1) = Vn+1(φ0, φ1).

Since V is the limit of the decreasing sequence {Vn}n∈N, we have V = Vn+1 = Vn+2 = · · · on

S−(n+1)(Γ). From these equalities follows the proof of the equalities of the regions in (9.5)

for n + 1, by the similar arguments presented for n = 1 above. �
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Proof of Lemma 10.2. The obvious choices are the function an : R+ 7→ R+ and the num-

ber αn in (10.3) and (10.4), respectively. By the discussion above,

{
(x, y) ∈ R2

+; [g + µ · vn ◦ S](x, y) < 0
}

= An = R2
+\epi(an)

=
{
(x, y) ∈ R2

+; y < an(x)
}

= {(x, y) ∈ [0, αn)× R+; y < an(x)} ,

and (10.6) follows. The proof will be complete if we show the equality in (10.5).

Since [g + µ · vn ◦ S](x, y), x ∈ R+ is continuous, we have [g + µ · vn ◦ S](x, an(x)) ≥ 0 for

every x ∈ R+, and the equality holds for every x ∈ [0, αn) because an(x) > 0, x ∈ [0, αn).

Because an(·) is also continuous, the equality also holds for (x, y) = (αn, a(αn)), and

[g + µ · vn ◦ S](x, an(x)) = 0, x ∈ [0, αn].(13.1)

The identity (10.5) will follow immediately if we show for the same An in (10.1) that

[g + µ · vn ◦ S](x, y) > 0, (x, y) ∈
(
R2

+\An

)
\{(x, an(x)) : x ∈ [0, αn]}.(13.2)

The nonpositive function vn(·, ·) is concave and equal to zero outside the bounded region

Cn. Therefore, the functions y 7→ vn(x, y), x ∈ R+ and x 7→ vn(x, y), y ∈ R+ are nonpositive,

concave and equal zero for every large real y and x, respectively. This implies that the

functions y 7→ vn(x, y), x ∈ R+ and x 7→ vn(x, y), y ∈ R+ are nondecreasing. Therefore, the

functions y 7→ [g + µ · vn ◦ S](x, y), x ∈ R+ and x 7→ [g + µ · vn ◦ S](x, y), y ∈ R+ are strictly

increasing since both S(x, y) and g(x, y) are strictly increasing in both x and y. Now, (13.2)

follows from (13.1). �

Proof of Lemma 10.7. Fix any (φ0, φ1) ∈ ∂Γe
n+1. Then vn+1(φ0, φ1) = 0, and substituting

(φ−t
0 , φ−t

1 ) , (x(−t, φ0), y(−t, φ1)) into (10.15) for any t ∈ [0, r̂(φ0, φ1)] gives

Jtvn(x(−t, φ0), y(−t, φ1)) = −e−(λ+µ)tJvn(−t, φ0, φ1), t ∈ [0, r̂(φ0, φ1)],(13.3)

thanks to the semigroup property of x(·, ·) and y(·, ·).
By the definition of the entrance boundary ∂Γe

n+1 in (10.10), the point (φ0, φ1) is reachable

from the inside of the continuation region Cn+1. Namely, there exists some δ > 0 such that

(x(−t, φ0), y(−t, φ1)) ∈ Cn+1 and rn(x(−t, φ0), y(−t, φ1)) = t for every t ∈ (0, δ]. Then

(10.16) implies

0 > vn+1(x(−t, φ0), y(−t, φ1)) = Jtvn(x(−t, φ0), y(−t, φ1)) = −e−(λ+µ)tJvn(−t, φ0, φ1)



ADAPTIVE POISSON DISORDER PROBLEM 77

for every t ∈ (0, δ]. Since r̂n(φ0, φ1) is the first time when the last function on the right may

change its sign, we obtain

−Jvn(−t, φ0, φ1) < 0, t ∈ (0, r̂n(φ0, φ1) ∧ r̂(φ0, φ1)).

Using (10.16) once again, we conclude

vn+1(x(−t, φ0), y(−t, φ1)) ≤ Jtvn(x(−t, φ0), y(−t, φ1))

= −e−(λ+µ)tJvn(−t, φ0, φ1) < 0, t ∈ (0, r̂n(φ0, φ1) ∧ r̂(φ0, φ1)).

Thus

{(x(−t, φ0), y(−t, φ1)); t ∈ (0, r̂n(φ0, φ1) ∧ r̂(φ0, φ1))} ⊆ Cn+1,

rn(x(−t, φ0), y(−t, φ1)) = t, t ∈ (0, r̂n(φ0, φ1) ∧ r̂(φ0, φ1)),

vn+1(x(−t, φ0), y(−t, φ1)) = −e−(λ+µ)tJvn(−t, φ0, φ1), t ∈ (0, r̂n(φ0, φ1) ∧ r̂(φ0, φ1)).

The third equation follows from the second and (13.3), and the second equation follows from

the first and the fact (x(t, x(−t, φ0)), y(t, y(−t, φ1))) = (φ0, φ1) ∈ Γ. Taking the limit in the

third equation as t increases to r̂n(φ0, φ1) gives vn+1(x(−t, φ0), y(−t, φ1))
∣∣∣
t=brn(φ0,φ1)

= 0, and

(x(−r̂n(φ0, φ1), φ0), y(−r̂n(φ0, φ1), φ1)) ∈ ∂Γx
n+1

 if r̂n(φ0, φ1) ≤ r̂(φ0, φ1).

Finally, every (φ̃0, φ̃1) ∈ Cn+1∪∂Γx
n+1 is reachable from (φ0, φ1) ≡ rn(φ̃0, φ̃1) ∈ ∂Γe

n+1 on the

entrance boundary by the curve {(x(t, φ̃0), y(t, φ̃1)); t ∈ [0, rn(φ̃0, φ̃1)]} which is contained

(possibly, except the end-points) in the continuation region Cn+1. �

Proof of Corollary 12.6. By Lemma 12.4, the function (φ0, φ1) 7→ r0(φ0, φ1) is continuous

on the continuation region (φ0, φ1) ∈ C1. Therefore, the entrance boundary ∂Γe
1 is the image

of the continuous mapping, see the definition in (10.10),

(φ0, φ1) 7→ (x(r0(φ0, φ1), φ1), γ1(y(r0(φ0, φ1), φ1))), (φ0, φ1) ∈ C1

from the connected region C1 into R2
+. Thus the set ∂Γe

1 is a connected subset of R2
+.

Since the parametric curves t 7→ (x(t, φ0), y(t, 0)), φ0 ∈ R+ starting on the x-axis are

increasing, the points on the boundary ∂Γ1 where these curves meet the boundary belong

to the entrance boundary ∂Γe
1; see also Figure 2. Hence {(x, γ1(x)) : x ∈ [δ, ξ1)} ⊆ ∂Γe

1 for

some 0 ≤ δ < ξ1. Then the connectedness of ∂Γe
1 gives (12.14) with ξe

1 , inf{x ∈ R+ :

(x, γ1(x)) ∈ ∂Γe
1}.
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Indeed the point (ξe
1, γ1(ξ

e
1)) does not belong to the entrance boundary ∂Γe

1. Suppose it

does. Then {(x(−t, ξe
1), y(−t, γ1(ξ

e
1))); t ∈ (0, δ]} ⊂ C1 for some δ > 0. Let (φ0, φ1) ∈ C1 be

the point in the middle of the vertical line-segment connecting the points (x(−δ, ξe
1), y(−δ, γ1(ξ

e
1)))

and (x(−δ, ξe
1), γ1(x(−δ, ξe

1))). Then we have x(δ, φ0) = x(δ, x(−δ, ξe
1)) = ξe

1 and y(δ, φ1) >

y(δ, y(−δ, γ1(ξ
e
1))) = γ1(ξ

e
1) = γ1(x(δ, φ0)) since the mapping φ 7→ y(t, φ) is increasing for

every t ∈ R. Therefore, (x(δ, φ0), y(δ, φ1)) ∈ Γ1 and 0 < r0(φ0, φ1) < δ. Thus we have

(x(r0(φ0, φ1), φ0), y(r0(φ0, φ1), φ1)) ∈ ∂Γe
1, but x(r0(φ0, φ1), φ0) < x(δ, φ0) = ξe

1 (the mapping

φ 7→ x(t, φ) is increasing for every t ∈ R). This contradicts with the minimality of ξe
1. �

Proof of Corollary 12.12. Suppose ξe
1 > 0 and fix any φ0 ∈ [0, ξe

1). Let φ0 , (1/2)(φ0+ξe
1).

Then (φ0, γ1(φ0)) ∈ ∂Γx
1 , and γ1(φ0) > γ1(φ0) > γ1(ξ

e
1) since γ1(·) is strictly decreasing on

its support. Then the set B , [0, φ0) × (γ1(φ0),∞) is an open neighborhood of the point

(φ0, γ1(φ0)) such that for every (φ̃0, φ̃1) ∈ B ∩C1, we have

0 < r ≤ r0(φ̃0, φ̃1) ≤ r < ∞,

where r , inf{t ≥ 0 : y(t, γ1(φ0)) ≤ γ1(ξ
e
1)} and r , inf{t ≥ 0 : x(t, 0) ≥ ξ1}. This completes

the proof of the first part.

Now let (φ0, φ1) ∈ ∂Γe
1 be a point on the entrance boundary. Take any convergent sequence

{(φ(n)
0 , φ

(n)
1 )}n∈N in the continuation region C1 whose limit is the boundary point (φ0, φ1).

Since r0(·, ·) ≤ r (see above) on C1, the sequence {r0(φ
(n)
0 , φ

(n)
1 )}n∈N is bounded and has a

convergent subsequence. We shall conclude the proof of the second part by showing that

every convergent subsequence of the sequence {r0(φ
(n)
0 , φ

(n)
1 )}n∈N has the same limit 0.

Without changing the notation, suppose that {r0(φ
(n)
0 , φ

(n)
1 )}n∈N converges to some finite

number r0 ≥ 0. Since the value function (φ0, φ1) 7→ v1(φ0, φ1) from R2
+ to R and the function

(t, φ0, φ1) 7→ Jv0(t, φ0, φ1) from R3
+ to R are continuous, we have

0 = v1(φ0, φ1) = lim
n→∞

v1(φ
(n)
0 , φ

(n)
1 ) = lim

n→∞
Jv0

(
r0(φ

(n)
0 , φ

(n)
1 ), φ

(n)
0 , φ

(n)
1

)
= Jv0(r0, φ0, φ1) =

∫ r0

0

e−(λ+µ)tG0(t, φ0, φ1)dt.

If we show that G0(t, φ0, φ1) > 0 for every t > 0, then r0 = 0 follows.

However, t = 0 is a point of increase for the function t 7→ G0(t, φ0, φ1). Since (φ0, φ1) ∈
∂Γe

1 = {(x, a0(x)) : x ∈ (ξe
1, ξ1)} by Corollary 12.7, and the boundary function a0(·) of the

region A0 = {(x, y) ∈ R2
+ : [g + µ · v0 ◦ S](x, y) < 0} is strictly decreasing, there exists some
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δ > 0 such that (x(t, φ0), y(t, φ1)) ∈ A0 ⊆ C1 for every t ∈ [−δ, 0). Therefore,

G(t, φ0, φ1) = [g + µ · v0 ◦ S](x(t, φ0), y(t, φ1)) < 0 = G0(0, φ0, φ1), t ∈ [−δ, 0).

Then Lemma 12.3 implies that G0(t, φ0, φ1) > 0 for every t > 0 and completes the proof of

r0 = 0. �

Proof of Lemma 12.13. If ξe
1 = 0, then cl(∂Γe

1) = {(x, γ1(x)) : x ∈ [0, ξ1]} = ∂Γ1 by

Corollary 12.6. In the remainder, suppose that ξe
1 > 0 and fix any φ0 ∈ [0, ξe

1). The

boundary point (φ0, γ1(φ0)) is not included in the entrance boundary ∂Γe
1. We shall prove

that it is an exit boundary point; namely, there exists some δ > 0 such that (see (10.10))

(x(t, φ0), y(t, γ1(φ0))) ∈ C1, ∀ t ∈ (0, δ].(13.4)

Since the boundary γ1(·) is strictly decreasing on its support [0, ξ1], we have

0 ≤ φ0 < ξe
1 =⇒ γ1(φ0) > γ1(ξ

e
1).

Then there is always a sequence of points {(φ(n)
0 , φ

(n)
1 )}n∈N ⊆ C1 such that

φ
(n)
0 = φ0 and φ

(n)
1 > γ1(ξ

e
1) for every n ∈ N, and lim

n→∞
φ

(n)
1 =↑ γ1(φ0).

Namely, the sequence {(φ(n)
0 , φ

(n)
1 )}n∈N “increases” to the point (φ0, γ1(φ0)) along the vertical

line passing through the point (φ0, γ1(φ0)). For every n ∈ N, we have

v1(φ
(n)
0 , φ

(n)
1 ) = Jv0

(
r0(φ

(n)
0 , φ

(n)
1 ), φ

(n)
0 , φ

(n)
1

)
, and(

x
(
r0(φ

(n)
0 , φ

(n)
1 ), φ

(n)
0

)
, y
(
r0(φ

(n)
0 , φ

(n)
1 ), φ

(n)
1

))
∈ ∂Γe

1.

By Corollary 12.12, the sequence {r0(φ
(n)
0 , φ

(n)
1 )}n∈N is bounded. Therefore, it has a conver-

gent subsequence; we shall denote it by the same notation and its limit by r0. The functions

Jv0(·, ·, ·), x(·, ·), y(·, ·) and v1(·, ·) are continuous, and v1(φ0, γ1(φ0)) = 0. Therefore, taking

limits of the displayed equations above gives

0 = Jv0(r0, φ0, γ1(φ0)) and (x(r0, φ0), y(r0, γ1(φ0))) ∈ cl(∂Γe
1).(13.5)

The second expression implies that x(r0, φ0) ≥ ξe
1. We shall prove that the inequality is

strict, and therefore,

(x(r0, φ0), y(r0, γ1(φ0))) ∈ ∂Γe
1.(13.6)

Let us assume that x(r0, φ0) = ξe
1. Then the second expression in (13.5) implies that

(x(r0, φ0), y(r0, γ1(φ0))) = (ξe
1, γ1(ξ

e
1)). Thus (φ0, γ1(φ0)) is on the curve C1 given by (12.16).
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Then Corollary 12.9 implies that G(t, φ0, γ1(φ0)) > 0 for every t 6= r0. Since r0 > 0, this

implies that

Jv0(r0, φ0, γ1(φ0)) =

∫ r0

0

e−(λ+µ)sG0(s, φ0, γ1(φ0))ds

is strictly positive. But this contradicts the first equality in (13.5). Therefore, we must have

x(r0, φ0) > ξe
1, and (13.6) is correct.

Now we are ready to prove (13.4). Since φ0 < ξe
1, we have [g + µ · v0 ◦ S](φ0, γ1(φ0)) > 0

by Corollary 12.11. Because the mapping [g + µ · v0 ◦S](·, ·) is continuous, there exists some

r0 > δ > 0 such that

G0(t, φ0, γ1(φ0)) = [g + µ · v0 ◦ S](x(t, φ0), y(t, γ1(φ0))) > 0, t ∈ [0, δ].

Then for every t ∈ (0, δ]

v0(x(t, φ0), y(t, γ1(φ0))) ≤ Jv0(r0 − t, x(t, φ0), y(t, γ1(φ0)))

=

∫ r0−t

0

e−(λ+µ)u[g + µ · v0 ◦ S]
(
x(u, x(t, φ0)), y(u, y(t, γ1(φ0)))

)
du

= e(λ+µ)t

∫ r0

t

e−(λ+µ)u[g + µ · v0 ◦ S]
(
x(t, φ0), y(t, γ1(φ0))

)
du

= e(λ+µ)t

Jv0(r0, φ0, γ1(φ0))︸ ︷︷ ︸
=0

−
∫ t

0

e−(λ+µ)uG0(u, φ0, γ1(φ0))du

 < 0.

Therefore, (13.4) holds, and (φ0, γ1(φ0)) ∈ ∂Γx
1 . �

Proof of Lemma 12.14. There is nothing to prove if ξe
1 = 0. Therefore, suppose ξe

1 > 0.

Let B1 be the union of the continuation region C1 and the open subset of [0, ξe
1)×R+ strictly

below the curve C1 in Corollary 12.9, see Figure 7(b). Then B1 is open and C1 ∪ ∂Γx
1 ⊂ B1,

see Remark 12.10. Define{
r̃0(φ0, φ1) , inf{t > 0 : (x(t, φ0), y(t, φ1)) ∈ ∂Γe

1}

ṽ1(φ0, φ1) , Jv0(r̃0(φ0, φ1), φ0, φ1)

}
, for every (φ0, φ1) ∈ B1.

Then

r0(φ0, φ1) = r̃0(φ0, φ1) and v1(φ0, φ1) = ṽ1(φ0, φ1), (φ0, φ1) ∈ C1 ∪ ∂Γx
1 ,(13.7)
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Let us show that r̃0(·, ·), and therefore, ṽ1(·, ·) are continuously differentiable on B1. The

infimum r̃0(φ0, φ1) is finite and strictly positive for every (φ0, φ1) ∈ B1. By (10.12),

(13.8) G0(r̃0(φ0, φ1), φ0, φ1) =

[g + µ · v0 ◦ S](x(r̃0(φ0, φ1), φ0), y(r̃0(φ0, φ1), φ1)) = 0, (φ0, φ1) ∈ B1.

The mapping (t, φ0, φ1) 7→ G0(t, φ0, φ1) from R3
+ to R is continuously differentiable. If

DtG0(t, φ0, φ1)
∣∣∣
t=er0(φ0,φ1)

6= 0, (φ0, φ1) ∈ B1,(13.9)

then Theorem 12.2 implies that, in an open neighborhood in B1 of every (φ0, φ1), the equation

G0(t, φ0, φ1) = 0 determines t = t(φ0, φ1) implicitly as a function of (φ0, φ1), and this function

is continuously differentiable. In every neighborhood, these solutions must then coincide

with r̃0(φ0, φ1). Therefore, r̃0(φ0, φ1) is continuously differentiable on B1. Then the function

ṽ1(φ0, φ1) is continuously differentiable on B1 since Jv0(·, ·, ·) is continuously differentiable

on R3
+.

Now fix any (φ0, φ1) ∈ B1 and assume DtG0(r̃0(φ0, φ1), φ0, φ1) = 0. Then the function

t 7→ G0(t, φ0, φ1) has a local minimum at t = r̃0(φ0, φ1). Lemma 12.3 and (13.8) imply that

G0(t, φ0, φ1) > 0 for every t 6= r̃0(φ0, φ1). Therefore, the parametric curve

{(x(t, φ0), y(t, φ1)) : t ∈ R} ∩ R2
+ ⊆ R2

+\A0

does not intersect A0, but touches the boundary ∂A0. Then this curve has to be the same

as C1 in Corollary (12.16), and (φ0, φ1) ∈ C1. But this contradicts with (φ0, φ1) ∈ B1, since

Remark 12.10 and the description of B1 show that C1 ∩B1 = ∅. Therefore, (13.9) holds.

Now let us show that γ1(·) is continuously differentiable on [0, ξe
1). Fix any φ0 ∈ [0, ξe

1).

Then (φ0, γ1(φ0)) ∈ ∂Γx
1 ⊂ B1, and ṽ1(φ0, γ1(φ0)) = 0 by (13.7). The function ṽ1(·, ·) is

continuously differentiable on B1. Therefore, the result will again follow from the implicit

function theorem (Theorem 12.2) if we show that Dφ1 ṽ1(φ0, γ1(φ0)) 6= 0. However,

Dφ1 ṽ1(φ0, γ1(φ0)) = D−
φ1

ṽ1(φ0, γ1(φ0)) = D−
φ1

v1(φ0, γ1(φ0))

= lim
φ1↑γ1(φ0)

D−
φ1

v1(φ0, φ1) = lim
φ1↑γ1(φ0)

Dφ1v1(φ0, φ1) = lim
φ1↑γ1(φ0)

1− e−(µ+1)r0(φ0,φ1)

µ + 1
> 0.

The second equality follows from (13.7), and the third from the concavity of v1(·, ·). The

fourth and the fifth follow from Corollary 12.5. Finally, the limit at the end is strictly positive

since r0(·, ·) is bounded away from zero in the intersection of C1 with some neighborhood of

(φ0, γ1(φ0)) by Corollary 12.12. �
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Proof of Lemma 12.15. The result follows from Corollary 12.7 if ξe
1 = 0. Therefore, sup-

pose ξe
1 > 0. Then the boundary function γ1(·) is continuously differentiable on [0, ξe

1)∪(ξe
1, ξ1)

by Corollary 12.7 and Lemma 12.14. We need to show that x 7→ γ1(x) is continuously dif-

ferentiable at x = ξe
1.

Recall that the function γ1(·) is convex. Therefore, the left derivative D−γ1(·) and the right

derivative D+γ1(·) of the function γ1(·) exist and are left- and right- continuous, respectively,

at x = ξe
1. Thus

lim
x↑ξe

1

Dγ1(x) = lim
x↑ξe

1

D−γ1(x) = D−γ1(ξ
e
1) ≤ D+γ1(ξ

e
1) = lim

x↓ξe
1

D+γ1(x) = lim
x↓ξe

1

Dγ1(x).(13.10)

The continuity of the derivative Dγ1(·) of the function γ1(·) at x = ξe
1 will follow immediately

from the existence of the derivative of γ1(·) at x = ξe
1.

Now recall from Corollary 12.9 and Remark 12.10 that the point (ξe
1, γ1(ξ

e
1)) is on the

parametric curve C1, which lays above {(x, γ1(x)) : x ∈ R+} and touches it at the point

(ξe
1, γ1(ξ

e
1)). Therefore, for every t > 0 and s > 0

y(0, γ1(ξ
e
1))− y(−t, γ1(ξ

e
1))

x(0, ξe
1)− x(−t, ξe

1)
≤ γ1(x(0, ξe

1))− γ1(x(−t, ξe
1))

x(0, ξe
1)− x(−t, ξe

1)

≤ γ1(x(s, ξe
1))− γ1(x(0, ξe

1))

x(s, ξe
1)− x(0, ξe

1)
≤ y(s, γ1(ξ

e
1))− y(0, γ1(ξ

e
1))

x(s, ξe
1)− x(0, ξe

1)
.

When we take the limit as t ↓ 0 and s ↓ 0, we obtain

Dty(0, γ1(ξ
e
1))

Dtx(0, ξe
1)

≤ D−γ1(ξ
e
1) ≤ D+γ1(ξ

e
1) ≤

Dty(0, γ1(ξ
e
1))

Dtx(0, ξe
1)

.

Note that the terms on far left and far right are the same. Therefore, D−γ1(ξ
e
1) = D+γ1(ξ

e
1)

and the derivative of the boundary function γ1(·) at x = ξe
1 exists. �

Proof of Lemma 12.16. Since v1(·, ·) is concave, the left partial derivatives D−
φ0

v1(·, ·),
D−

φ1
v1(·, ·) and the right partial derivatives D+

φ0
v1(·, ·), D+

φ1
v1(·, ·) exist and are left- and

right-continuous on the boundary ∂Γ, respectively. Because v1(·, ·) vanishes on Γ1, and the

function γ1(·) is strictly decreasing, we have

D−
φ0

v1(φ0, φ1) ≥ D+
φ0

v1(φ0, φ1) = 0, (φ0, φ1) ∈ ∂Γ1\{(0, γ1(0))}.(13.11)

D−
φ1

v1(φ0, φ1) ≥ D+
φ1

v1(φ0, φ1) = 0, (φ0, φ1) ∈ ∂Γ1\{(ξ1, 0)}.(13.12)
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For every boundary point (φ0, φ1) ∈ ∂Γ1\{(0, γ1(0))} and any sequence {(φ(n)
0 , φ

(n)
1 )}n∈N ⊂

C1 such that limn→∞ φ
(n)
0 =↑ φ0 and φ

(n)
1 = φ1 for every n ∈ N, we have

(13.13) D−
φ0

v1(φ0, φ1) = lim
n→∞

D−
φ0

v1(φ
(n)
0 , φ

(n)
1 ) = lim

n→∞
Dφ0v1(φ

(n)
0 , φ

(n)
1 )

= lim
n→∞

1− exp
{
−(µ− 1)r0(φ

(n)
0 , φ

(n)
1 )
}

µ− 1
.

The second and the third equalities follow from Corollary 12.5. The function r0(·, ·) is con-

tinuous on the entrance boundary ∂Γe
1 and is bounded away from zero in some neighborhood

of every point on the exit boundary ∂Γx
1 , see Corollary 12.12. Therefore, the limit on the

right in (13.13) equals zero for every point (φ0, φ1) on the entrance boundary ∂Γe
1 and is

strictly positive for every point (φ0, φ1) on the exit boundary ∂Γx
1 .

Thus, for every (φ0, φ1) ∈ ∂Γe
1, the equality in (13.11), and as a result of a similar argu-

ment, the equality in (13.12) are attained. Therefore, the partial derivatives Dφ0v1(·, ·) and

Dφ1v1(·, ·) exist at every (φ0, φ1) ∈ ∂Γe
1 and are continuous since Dφ0v1(·, ·) = D±

φ0
v1(·, ·) is

both left- and right-continuous near the entrance boundary ∂Γe
1.

However, if (φ0, φ1) is a point on the exit boundary ∂Γx
1 , then the inequalities in (13.12)

and (13.13) are strict. Namely, the v1(·, ·) is not differentiable on the exit boundary ∂Γx
1 . �
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