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In compound Poisson disorder problem, arrival rate and/or jump distribution of some compound Poisson process
change suddenly at some unknown and unobservable time. The problem is to detect the change (or disorder)
time as quickly as possible. A sudden regime-shift may require some counter-measures be taken promptly, and a
quickest detection rule can help with those efforts. We describe complete solution of compound Poisson disorder
problem with several standard Bayesian risk measures. Solution methods are feasible for numerical implementation
and are illustrated on examples.
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1. Introduction. Let (Ω,F, P) be a probability space hosting a compound Poisson process

Xt = X0 +
Nt∑

k=1

Yk, t ≥ 0. (1)

Jumps arrive according to a standard Poisson process N = {Nt; t ≥ 0} at some rate λ0 > 0. The
marks at each jump are i.i.d. Rd-valued random variables Y1, Y2, . . . with some common distribution ν0(·)
independent of the arrival process N . The process X may represent customer orders arriving in batches
to a multi-product service system, claims of various sizes filed with an insurance company, or sizes of
electronic files requested for download from a network server.

Suppose that, at an unknown and unobservable time θ, the initial arrival rate λ0 and mark distribution
ν0(·) of the process X change suddenly to λ1 and ν1(·), respectively. This regime shift at the disorder time
θ may become detrimental on the underlying system unless certain counter-measures are taken quickly.
For example, optimal inventory levels, insurance premiums, or number of network servers may need to
be revised as soon as the regime changes in order to maintain profitability, avoid bankruptcy, or ensure
the network availability.

The objective of this paper is to detect the disorder time θ as quickly as possible in order to give
decision makers an opportunity to react the regime change on a timely basis. We assume that λ0, λ1,
ν0(·) and ν1(·) are known, and that the disorder time θ is a random variable whose prior distribution is

P{θ = 0} = π and P{θ > t} = (1− π)e−λt, t ≥ 0; π ∈ [0, 1), λ > 0.

The disorder time θ is still unobservable, and we need a quickest detection rule adapted to the history F
of the observation process X in (1). More precisely, we would like to find a stopping time τ of the process
X whose Bayes risk

Rτ (π) , P{τ < θ}+ c E(τ − θ)+, π ∈ [0, 1), τ ∈ F (2)

is the smallest (x+ , max{x, 0}.) If an F-stopping time τ attains the minimum Bayes risk

U(π) , inf
τ∈F

Rτ (π), π ∈ [0, 1), (3)

then it is called a Bayes-optimal alarm time and solves optimally the tradeoff between the false-alarm
frequency P{τ < θ} and the expected detection delay cost c · E(τ − θ)+.
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All of the early work has dealed with (simple) Poisson disorder problem. In that problem and in
the notation above, the observation process was the counting process N whose rate changes at some
unobservable time θ from some known constant λ0 to some other λ1. While the question was the same;
namely, to detect the disorder time θ as quickly as possible, the information about marks Y1, Y2, . . . were
ignored completely. This omission was understandable because of the difficulty of the problem: simple
Poisson disorder problem was solved completely by Peskir and Shiryaev [13] only recently—more than
thirty years after it was formulated by Galchuk and Rozovskii [9] for the first time. In the meantime,
partial solutions and new insights were provided. Most notably, Davis [5] showed that quickest detection
rules should not differ much if they are to minimize some “standard” Bayes risks; namely, one of R(1),
R(2) (same as R of (2)), or R(3) in

R(1)
τ (π) , P{τ < θ − ε}+ c E(τ − θ)+, R(2)

τ (π) , P{τ < θ}+ c E(τ − θ)+,

R(3)
τ (π) , E(θ − τ)+ + c E(τ − θ)+, R(4)

τ (π) , P{τ < θ}+ c E[eα(τ−θ)+ − 1],
(4)

where ε, c, and α are some known positive constants (see also Shiryaev [17]). Recently, Bayraktar
and Dayanik [1] solved simple Poisson disorder problem with Bayes risk R(4) in (4), whose exponential
detection-delay penalty makes it more suitable for financial applications. Later, Bayraktar, Dayanik,
and Karatzas [2] showed that the measure R(4) is also a “standard” Bayes risk (if the latter is redefined
suitably) and gave a general solution method for standard problems.

For the first time, Gapeev [10] has recently succeeded to include the observed marks Y1, Y2, . . . into an
optimal decision rule in order to detect the disorder time (more) quickly and accurately. He provided the
full solution for the following very special instance of compound Poisson disorder problem: before and
after the disorder time θ, real-valued marks Y1, Y2, . . . have exponential distributions, and the expected
mark sizes are the same as the corresponding jump arrival rates. Namely, the mark distributions are

νi(A) =
∫

A

1
λi

exp
{
− 1

λi
y

}
dy, A ∈ B(R+), i = 0, 1, (5)

where λ0 and λ1 are the arrival rates of jumps (i.e., the counting process N in (1)) before and after the
disorder, respectively.

The main contribution of our paper is the complete solution of compound Poisson disorder problem
in its full generality. For any pair of arrival rates λ0 and λ1 and mark distributions ν0(·) and ν1(·), we
describe explicitly a quickest detection rule. These rules depend on the some F-adapted odds-ratio process
Φ = {Φt; t ≥ 0}; see (11). At every t ≥ 0, the random variable Φt is the conditional odds-ratio of the
event {θ ≤ t} that disorder has happened at or before time t given past and present observations Ft of
the process X. For a suitable constant ξ > 0, the first crossing time U0 = inf{t ≥ 0 : Φt ≥ ξ} of the
process Φ turns out to be a quickest detection rule: the Bayes risk RU0 in (2) of U0 is the smallest among
all of the stopping times of the process X. The critical threshold ξ can be calculated numerically, and
the quickest detection rule U0 is suitable for online implementation since Φt, t ≥ 0 can be updated by a
recursive formula; see (13).

We also show that every compound Poisson disorder problem with one of “standard” Bayes risks in
(4) can be solved in the same way.

Our probabilistic methods are different from the analytical methods of all previously cited work. The
latter attacked Poisson disorder problems by studying analytical properties of related free-boundary
integro-differential equations. Instead, we study very carefully sample-paths of the process Φ, which turn
out to be piecewise deterministic and Markovian. General characterization of stopping times of jump
processes allows us to approximate the minimum Bayes risk successively. This approximation is the key
to our computational and theoretical results.

In the next section we give the precise description of compound Poisson disorder problem and show
how to reduce it to an optimal stopping problem for a suitable Markov process. In Sections 3 and 4, we
introduce successive approximations of the value function of the optimal stopping problem and establish
key results for an efficient numerical method, which is presented in Section 5. We illustrate this method
on several old and new examples and discuss briefly some extensions in Section 6. Finally, we establish
in Section 7 the connection between our method and method of variational inequalities as applied to
compound Poisson disorder problem. Appendix A contains some basic derivations and long proofs.
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2. Model and problem description. Starting with a reference probability measure, we shall first
construct a model containing all of the random elements of our problem with the correct probability laws.

Model. Let (Ω,F, P0) be a probability space hosting the following independent stochastic elements:

(i) a standard Poisson process N = {Nt; t ≥ 0} with the arrival rate λ0,

(ii) independent and identically distributed Rd-valued random variables Y1, Y2, . . . with some common
distribution ν0(B) , P0{Y1 ∈ B} for every set B in the Borel σ-algebra B(Rd) and ν0({0}) = 0,

(iii) a random variable θ with the distribution

P0{θ = 0} = π ∈ [0, 1) and P0{θ > t} = (1− π)e−λt, t ≥ 0, λ > 0. (6)

Let X = {Xt; t ≥ 0} be the process defined by (1) with the jump times

σn , inf{t > σn−1 : Xt 6= Xt−}, n ≥ 1 (σ0 ≡ 0), (7)

and F = {Ft}t≥0 be the augmentation of its natural filtration σ(Xs, s ≤ t), t ≥ 0 with P0-null sets. Then
the process X is a (P0, F)-compound Poisson process with the arrival rate λ0 and the jump distribution
ν0(·).

Let λ1 > 0 be a constant, and ν1(·) be a probability measure on (Rd,B(Rd)) absolutely continuous with
respect to the distribution ν0(·). In general, every probability measure ν1(·) is the sum of two probability
measures; one is singular, and the other is absolutely continuous with respect to ν0(·). If it is necessary,
the distribution ν1(·) is replaced with its component which is absolutely continuous with respect to the
measure ν0(·) without loss of generality as explained by Poor [14, pp. 269-271]. Then the Radon-Nikodym
derivative

f(y) ,
dν1

dν0

∣∣∣∣
B(Rd)

(y), y ∈ Rd (8)

of ν1(·) with respect to ν0(·) exists and is a ν0-a.e. nonnegative Borel function.

We shall denote by G = {Gt}t≥0 and Gt , Ft ∨σ(θ), t ≥ 0 the enlargement of the filtration F with the
sigma-algebra σ(θ) generated by θ. Let us define a new probability measure P on the measurable space
(Ω,∨s≥0Gs) locally in terms of the Radon-Nikodym derivatives

dP
dP0

∣∣∣∣
Gt

= Zt , 1{t<θ} + 1{t≥θ}e
−(λ1−λ0)(t−θ)

Nt∏
k=Nθ−+1

[
λ1

λ0
f(Yk)

]
, t ≥ 0, (9)

where Nθ− is the number of arrivals in the time-interval [0, θ). If the disorder time θ is known, then each
random variable Zt is simply the likelihood ratio of the interarrival times σ1, σ2−σ1, . . . and the jump sizes
Y1, Y2, . . . observed at or before time t. Under P, the interarrival times and jump sizes are conditionally
independent and have the desired conditional distributions given θ: the rate of exponentially distributed
interarrival times and the distribution of the jump sizes change at time θ from λ0 and ν0(·) to λ1 and
ν1(·), respectively. See also Appendix A.1 for another justification by using an absolutely continuous
change of measure for point processes.

Finally, because Z0 = 1 almost surely and the probability measures P0 and P coincide on G0 = σ(θ),
the distribution of θ is the same under P and P0. Hence, under the probability measure P defined by
(9), the process X and the random variable θ have the same properties as in the setup of the disorder
problem described in the introduction.

Problem description. In the remainder, we shall work with the concrete model described above.
The random variable θ is the unobservable disorder time and must be detected as quickly as possible as
the history F of the observation process X is unfolded. The admissible detection rules are the stopping
times of the filtration F.

Our problem is to find the smallest Bayes risk U(·) in (3) by minimizing over all stopping rules τ of the
filtration F the tradeoff Rτ (·) in (2) between the false-alarm frequency and expected detection delay cost.
If this infimum is attained, then we also want to describe explicitly a stopping rule with the minimum
Bayes risk.
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In the remainder of this section, we shall formulate the quickest-detection problem as an optimal
stopping problem for a suitable Markov process; see (16) below. In later sections, we solve this optimal
stopping problem completely and identify an optimal stopping rule.

One may check as in Bayraktar, Dayanik, and Karatzas [2, Proposition 2.1] that the Bayes risk in (2)
can be expressed as

Rτ (π) = (1− π) + c(1− π) E0

[∫ τ

0

e−λt

(
Φt −

λ

c

)
dt

]
, π ∈ [0, 1), τ ∈ F (10)

in terms of the F-adapted odds-ratio process

Φt ,
P{θ ≤ t|Ft}
P{θ > t|Ft}

, t ≥ 0. (11)

For every t ≥ 0, the random variable Φt is the conditional odds-ratio of the event that the disorder
happened at or before time t given the history Ft of the process X. In (10), the expectation E0 is taken
with respect to P0, and the probability measure P in (11) is defined by the absolutely continuous change
of measure in (9).

In Appendix A.2, we show that the process Φ = {Φt; t ≥ 0} in (11) is a piecewise-deterministic Markov
process (Davis [6, 7]). If we define

a , λ− λ1 + λ0, φd ,

{
− λ/a, if a 6= 0
−∞, if a = 0

}
,

x(t, φ) ,

{
φd + eat [φ− φd] , a 6= 0
φ + λt, a = 0

}
, t ∈ R, φ ∈ R.

(12)

and the σn, n ≥ 0 are the jump times in (7) of the process X, then we get
Φt = x

(
t− σn−1,Φσn−1

)
, t ∈ [σn−1, σn)

Φσn
=

λ1

λ0
f(Yn)Φσn−

 , n ≥ 1. (13)

Namely, the process Φ follows one of the deterministic curves t 7→ x(t, φ), φ ∈ R in (12) between
consecutive jumps of X and is updated instantaneously at every jump of X as in (13); see also Figure 1
on page 9. The (P0, F)-infinitesimal generator of the process Φ coincides on the collection of continuously
differentiable functions h : R+ 7→ R with the first-order integro-differential operator (see Appendix A.3)

Ah(x) = [λ + ax]h′(x) + λ0

∫
y∈Rd

[
h

(
λ1

λ0
f(y) x

)
− h(x)

]
ν0(dy), x ∈ R+. (14)

Finally, the minimum Bayes risk in (3, 10) is given by

U(π) = (1− π) + c(1− π) V

(
π

1− π

)
, π ∈ [0, 1) (15)

in terms of the value function

V (φ) , inf
τ∈F

Eφ
0

[∫ τ

0

e−λtg(Φt)dt

]
, φ ∈ R+ (16)

of a discounted optimal stopping problem with the running cost

g(φ) , φ− λ

c
, φ ∈ R+ (17)

and discount rate λ > 0 for the piecewise-deterministic Markov process Φ in (13). In (16), the expectation
Eφ

0 is taken with respect to the probability measure P0 and P0{Φ0 = φ} = 1.

Thus, our problem becomes to calculate the value function V (·) in (16) and to find an optimal stopping
rule if the infimum is attained. Our approach is direct and very suitable for piecewise-deterministic
Markov processes. The solution is described in Section 5 in terms of single-jump operators after key
results are established in Sections 3 and 4.
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We adopt the direct approach instead of its widely-used alternative, namely, the method of variational
inequalities. In the latter method, the value function V (·) in (16) is expected to satisfy the variational
inequalities

min {(A− λ)v(φ) + g(φ),−v(φ)} = 0, φ ∈ R+ (18)

in some suitable sense and may be identified by solving (18) subject to certain boundary conditions.
However, solving (18) is very difficult because of unfavorable analytical properties of the (singular) integro-
differential operator A in (14). Our direct approach not only provides the complete solution of the original
optimal stopping problem in (16), but also concludes as a by-product that V (·) is indeed the unique
solution of the variational inequalities in (18); see Section 7.

3. A useful approximation and its single-jump analysis. Let us introduce the family of optimal
stopping problems

Vn(φ) , inf
τ∈F

Eφ
0

[∫ τ∧σn

0

e−λtg(Φt)dt

]
, φ ∈ R+, n ∈ N, (19)

obtained from (16) by stopping the odds-ratio process Φ at the nth jump time σn of the observation process
X. Since the running cost g(·) in (17) is bounded from below by the constant −λ/c, the expectation in
(19) is well-defined for every stopping time τ ∈ F. In fact, −1/c ≤ Vn ≤ 0 for every n ∈ N. Since the
sequence (σn)n≥1 of jump times of the process X is increasing almost surely, the sequence (Vn)n≥1 is
decreasing. Therefore, limn→∞ Vn exists everywhere. It is also obvious that Vn ≥ V , n ∈ N.

Proposition 3.1 As n → ∞, the sequence Vn(φ) converges to V (φ) uniformly in φ ∈ R+. In fact, for
every n ∈ N and φ ∈ R+, we have

−1
c
·
(

λ0

λ + λ0

)n

≤ V (φ)− Vn(φ) ≤ 0. (20)

Proof. Since g(φ) ≥ −λ/c for every φ ≥ 0, we have

Eφ
0

[∫ τ

0

e−λsg(Φs)ds

]
≥ Eφ

0

[∫ τ∧σn

0

e−λsg(Φs)ds

]
− 1

c
· Eφ

0

[
e−λσn

]
, τ ∈ F, n ∈ N.

Under P0, the nth jump time σn has Erlang distribution with parameters n and λ0. Taking the infimum
of both sides over τ ∈ F gives the first inequality in (20). �

The uniform approximation in Proposition 3.1 is fast and accurate. On the other hand, the functions
Vn(·) can be found easily by an iterative algorithm. We shall calculate the Vn’s by adapting to our
problem a method of Gugerli [11] and Davis [7, Chapter 5]. Developed for optimal stopping of general
piecewise-deterministic Markov processes with an undiscounted terminal reward, the results of U. Gugerli
and M. Davis do not apply here immediately. Since total discounted running cost over the infinite horizon
has infinite expectation, an obvious transformation of our problem to those studied by U. Gugerli and
M. Davis does not exist.

Let us start by defining the following operators acting on bounded Borel functions w : R+ 7→ R:

Jw(t, φ) , Eφ
0

[∫ t∧σ1

0

e−λug (Φu) du + 1{t≥σ1}e
−λσ1w (Φσ1)

]
, t ∈ [0,∞], (21)

Jtw(φ) , inf
u∈[t,∞]

Jw(u, φ), t ∈ [0,∞]. (22)

The special structure of the stopping times of jump processes (see Lemma A.1 below) implies

J0w(φ) = inf
τ∈F

Eφ
0

[∫ τ∧σ1

0

e−λtg (Φt) dt + 1{τ≥σ1}e
−λσ1w (Φσ1)

]
.

By relying on the strong Markov property of the process X at its first jump time σ1, one expects that
the value function V of (16) satisfies the equation V = J0V . In Proposition 3.6 below, we show that this
is indeed the case. In fact, if we define vn : R+ 7→ R, n ∈ N0, sequentially by

v0 ≡ 0, and vn , J0vn−1 ∀n ∈ N, (23)
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then every vn is bounded and identical to Vn of (19), limn→∞ vn exists and equals the value function V
in (16); see Corollary 3.4 and Proposition 3.5.

Under P0, the first jump time σ1 of the process X has exponential distribution with rate λ0. Using
the Fubini theorem and (13), we can write (21) as

Jw(t, φ) =
∫ t

0

e−(λ+λ0)u
(
g + λ0 · Sw

)(
x(u, φ)

)
du, t ∈ [0,∞], (24)

where the function x(·, φ) is given by (12), and S is the linear operator

Sw(x) ,
∫

Rd

w

(
λ1

λ0
f(y) x

)
ν0(dy), x ∈ R, (25)

defined on the collection of bounded functions w : R 7→ R.

Remark 3.2 Using the explicit form of x(u, φ) in (12), it is easy to check that the integrand in (24) is
absolutely integrable on R+. Therefore,

lim
t→∞

Jw(t, φ) = Jw(∞, φ) < ∞,

and the mapping t 7→ Jw(t, φ) : [0,+∞] 7→ R is continuous. Therefore, the infimum Jtw(φ) in (22) is
attained for every t ∈ [0,∞].

Lemma 3.3 For every bounded Borel function w : R+ 7→ R, the mapping J0w is bounded. If we define
||w|| , supφ∈R+

|w(φ)| < ∞, then

−
(

λ

λ + λ0
· 1
c

+
λ0

λ + λ0
· ||w||

)
≤ J0w(φ) ≤ 0, φ ∈ R+. (26)

If the function w(·) is concave, then so is J0w(·). If w1(·) ≤ w2(·) are real-valued and bounded Borel
functions defined on R+, then J0w1(·) ≤ J0w2(·). Namely, the operator J0 preserves the boundedness,
concavity, and monotonicity.

Proof. The lower bound in (26) follows from the lower bound −λ/c on the running cost g(·) in (16).
The concavity and the monotonicity can be checked directly. �

Corollary 3.4 Every vn, n ∈ N0 in (23) is bounded and concave, and −1/c ≤ . . . ≤ vn ≤ vn−1 ≤ v1 ≤
v0 ≡ 0. The limit

v(φ) , lim
n→∞

vn(φ), φ ∈ R+ (27)

exists, and is bounded, concave, and nondecreasing. Both vn : R+ 7→ R, n ∈ N and v : R+ 7→ R are
continuous and nondecreasing. Their left and right derivatives are bounded on every compact subset of
R+.

Proof. By definition, v0 ≡ 0 is bounded, concave, and nondecreasing. By an induction argument
on n, the conclusions follow from Lemma 3.3, the properties of concave functions, and the monotonicity
of the functions x(t, ·) for every fixed t ∈ R and g(·) in (12) and (17), and the operator S in (25). �

Next proposition describes some ε-optimal stopping rules for each problem in (19). In conjunction
with Proposition 3.6 below, it is the basic block of the numerical scheme described in Section 5. Its proof
is presented in Section A.4.

Proposition 3.5 For every n ∈ N, the functions vn of (23) and Vn of (19) coincide. For every ε ≥ 0,
let

rε
n(φ) , inf

{
s ∈ (0,∞] : Jvn

(
s, φ
)
≤ J0vn(φ) + ε

}
, n ∈ N0, φ ∈ R+,

Sε
1 , rε

0

(
Φ0

)
∧ σ1, and Sε

n+1 ,

{
rε/2
n

(
Φ0

)
, if σ1 > rε/2

n

(
Φ0

)
σ1 + Sε/2

n ◦ θσ1 , if σ1 ≤ rε/2
n

(
Φ0

)} , n ∈ N,
(28)

where θs is the shift-operator on Ω: Xt ◦ θs = Xs+t. Then

Eφ
0

[∫ Sε
n

0

e−λtg
(
Φt

)
dt

]
≤ vn(φ) + ε, ∀n ∈ N, ∀ ε ≥ 0. (29)
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Proposition 3.6 We have v(φ) = V (φ) for every φ ∈ R+. Moreover, V is the largest nonpositive
solution U of the equation U = J0U .

Proof. Corollary 3.4 and Propositions 3.5 and 3.1 imply that v(φ) = limn→∞ vn(φ) =
limn→∞ Vn(φ) = V (φ) for every φ ∈ R+. Next, let us show that V = J0V . Since (vn)n≥1 and (Jvn)n≥1

are decreasing, the bounded convergence theorem gives

V (φ) = lim
n→∞

vn(φ) = inf
n≥1

J0vn−1(φ) = inf
t∈[0,∞]

lim
n→∞

Jvn−1(t, φ) = inf
t∈[0,∞]

Jv(t, φ) = J0v(φ).

If U = J0U and U ≤ 0 ≡ v0, then repeated applications of J0 to both sides of the last inequality and the
monotonicity of J0 (see Lemma 3.3) imply U ≤ V . �

The next lemma and its immediate corollary below characterize the smallest (deterministic) optimal
stopping times r0

n(·), n ∈ N of Proposition 3.5 in a way familiar from the general theory of optimal
stopping: r0

n(φ) is the first time when the continuous path t 7→ x(t, φ) enters the stopping region {x ∈
R+ : Vn+1(x) = 0}.

Lemma 3.7 Let w : R+ 7→ R be a bounded function. For every t ∈ R+ and φ ∈ R+,

Jtw(φ) = Jw(t, φ) + e−(λ+λ0)t J0w
(
x(t, φ)

)
. (30)

Corollary 3.8 Let

rn(φ) = inf
{
s ∈ (0,∞] : Jvn

(
s, φ
)

= J0vn(φ)
}

(31)

be the same as rε
n(φ) in Proposition 3.5 with ε = 0. Then

rn(φ) = inf
{
t > 0 : vn+1

(
x(t, φ)

)
= 0
}

(inf ∅ ≡ ∞). (32)

Remark 3.9 For every t ∈ [0, rn(φ)], we have Jtvn(φ) = J0vn(φ) = vn+1(φ). Then substituting w(·) =
vn(·) in (30) gives the “dynamic programming equation” for the family {vk(·)}k∈N0 : for every φ ∈ R+

and n ∈ N0

vn+1(φ) = Jvn(t, φ) + e−(λ+λ0)tvn+1(x(t, φ)), t ∈ [0, rn(φ)].

Remark 3.10 Since V (·) is bounded, and V = J0V by Proposition 3.6, Lemma 3.7 gives

JtV (φ) = JV (t, φ) + e−(λ+λ0)t V
(
x(t, φ)

)
, t ∈ R+ (33)

for every φ ∈ R+. If we define

r(φ) , inf{t > 0 : JV (t, φ) = J0V (φ)}, φ ∈ R+,

then same arguments as in the proof of Corollary 3.8 with obvious changes and (33) give

r(φ) = inf{t > 0 : V (x(t, φ)) = 0}, φ ∈ R+, (34)

V (φ) = JV (t, φ) + e−(λ+λ0)tV (x(t, φ)), t ∈ [0, r(φ)]. (35)

Let us define the F-stopping times

Uε , inf{t ≥ 0 : V (Φt) ≥ −ε}, ε ≥ 0. (36)

Next proposition shows that for the problem in (16) the stopping time U0 = inf{t ≥ 0 : V (Φt) = 0} is
optimal, and the stopping times Uε in (36), ε ≥ 0 are ε-optimal as in (37).

Proposition 3.11 For every ε ≥ 0, the stopping time Uε in (36) is an ε-optimal stopping time for the
optimal stopping problem (16), i.e.,

Eφ
0

[∫ Uε

0

e−λsg(Φs)ds

]
≤ V (φ) + ε, for every φ ∈ R+. (37)

The proof in Section A.4 makes use of the local martingales described by the next proposition, which
will be needed also in Section 7, where we show that the value function V (·) is the unique solution of
variational equations in (18).
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Proposition 3.12 The process

Mt , e−λtV (Φt) +
∫ t

0

e−λsg(Φs)ds, t ≥ 0. (38)

is a (P0, F)-local martingale. For every n ∈ N, ε ≥ 0, and φ ∈ R+, we have Eφ
0 [M0] = Eφ

0 [MUε∧σn ], i.e.,

V (φ) = Eφ
0

[
e−λ(Uε∧σn)V (ΦUε∧σn) +

∫ Uε∧σn

0

e−λsg(Φs)ds

]
. (39)

4. Sample paths and bounds on the optimal alarm time. A brief study of sample paths of
the sufficient statistic Φ in (11-13) gives simple lower and upper bounds on the optimal alarm time U0

in (36). In several special cases, the lower bound becomes optimal. On the other hand, the upper bound
has always finite Bayes risk.

Recall from Section 2 that the sufficient statistic Φ follows the deterministic curves t 7→ x(t, φ), φ ∈ R+

in (12) when the observation process X does not jump. At every jump of the process X, the motion of Φ
restarts on a different curve. Between jumps, the process Φ reverts to the mean-level φd if φd is positive,
and grows unboundedly otherwise; see Figure 1. A jump at time t of the process Φ is in the forward
direction if f (YNt

) (λ1/λ0) ≥ 1 and in the backward direction otherwise.

Since the running cost g(φ) = φ − λ/c in (17) is negative on the interval φ ∈ [0, λ/c), the maximum
τ ∨ τ of any stopping rule τ and

τ , inf{t ≥ 0 : Φt ≥ λ/c} (40)

gives a lower expected discounted total running cost than τ does:

Eφ
0

[∫ τ∨τ

0

e−λtg(Φt)dt

]
= Eφ

0

[∫ τ

0

e−λtg(Φt)dt

]
+ Eφ

0

[
1{τ>τ}

∫ τ

τ

e−λtg(Φt)dt

]
≤ Eφ

0

[∫ τ

0

e−λtg(Φt)dt

]
, for every φ ∈ R+.

Therefore, the infimum in (16) can be taken over the stopping times {τ ∈ F : τ ≥ τ} without any loss,
and τ in (40) is a lower bound on the optimal alarm time.

Proposition 4.1 Suppose that f(y)(λ1/λ0) ≥ 1 for every y ∈ Rd. If φd < 0 or 0 < λ/c ≤ φd in (12),
then the stopping rule τ of (40) is optimal for the problem (16).

By Proposition 3.11, the stopping time U0 = inf{t ≥ 0 : V (Φt) = 0} is always optimal for the problem
(16). Next we show that U0 is bounded almost surely between τ in (40) and

τ , inf{t ≥ 0 : Φt ≥ ξ}

with ξ , max
{

λ + λ0

c
,

[
λ + λ0

c
− φd

](
λ1

λ + λ0

)
+ φd

}
>

λ

c
.

(41)

Proposition 4.2 We always have U0 ∈ [τ , τ ] almost surely and

[λ/c,∞) ⊇ {φ ∈ R+ : v1(φ) = 0} ⊇ {φ ∈ R+ : V (φ) = 0} ⊇ [ξ,∞). (42)

From (10), we find that the Bayes risk of the upper bound τ in (41)

Rτ (π) = 1− π + c(1− π) E0

[∫ τ

0

e−λt

(
Φt −

λ

c

)
dt

]
≤ 1− π + c(1− π)

(
ξ − λ

c

)
1
λ

is finite. Since E[τ ] ≤ E[(τ −θ)+]+E[θ] < (1/c)Rτ (π)+(1/λ) < ∞, the stopping time τ is finite P-almost
surely.
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(c) φd < 0

φd0 λ/c

Φt(ω)
t

φφdλ/c0

(a) 0 < λ/c ≤ φd (b) 0 < φd < λ/c

Φt(ω)
t

λ/c0 φ

Φt(ω)

t

φ

Figure 1: The sample paths of the process Φ in (11-13). If the quantity φd in (12) is positive, then it
is the mean-reversion level for the process Φ: between successive jumps, the process reverts to the level
φd as in (a). If however φd < 0, then the process increases unboundedly between jumps as in (c). In
general, the process Φ may jump in both directions in both cases (compare this with the sample paths of
a similar statistic in the standard Poisson disorder problem; see Bayraktar, Dayanik, and Karatzas [2]).

5. The solution. By Propositions 3.1 and 3.5, the value function V (·) of the optimal stopping
problem in (16) is approximated uniformly with a decreasing sequence of functions {vn(·)}n≥0 defined
sequentially by v0 ≡ 0, and

vn+1(φ) = inf
t∈[0,∞]

Jvn(t, φ) =
∫ t

0

e−(λ+λ0)u [g + λ0 · Svn] (x(u, φ))du, n ≥ 0, (43)

where S is the operator in (25). The sequence {vn(·)}n≥1 converges to V (·) pointwise at an exponential
rate, and the explicit bound in (20) determines the number n of iterations of (43) needed in order to
achieve any desired accuracy: for any given ε > 0, we have

1
c

(
λ

λ + λ0

)n+1

< ε =⇒ 0 ≤ V (φ)− vn+1(φ) < ε for every φ ∈ R+. (44)

For every integer n + 1 as in (44), the stopping rule Sn+1 ≡ S0
n+1 of Proposition 3.5 is ε-optimal for the

problem in (16):

0 ≤ V (φ)− Eφ
0

[∫ Sn+1

0

e−λtg(Φt)dt

]
< ε for every φ ∈ R+.

The stopping time Sn+1 is determined collectively by the jump times σ1, . . . , σn+1 of the observation
process X and the smallest minimizers rn(·), rn−1(·), . . . , r0(·) of the deterministic optimization problems
in (43); see (28) and (31): We wait until the earliest of the first jump at σ1 and the time rn(Φ0). If
rn(Φ0) occurs first, then we stop; otherwise, we reset the clock and continue to wait until the earliest of
the next jump at σ2 − σ1 = σ1 ◦ θσ1 and the time rn−1(Φσ1). If rn−1(Φσ1) occurs first, then we stop;
otherwise, we reset the clock and continue to wait until the earliest of the next jump at σ3−σ2 = σ1 ◦θσ2

and the time rn−2(Φσ2), and so on. We stop at the (n + 1)st jump time σn+1 if we have not stopped yet.



10 S. Dayanik and S. O. Sezer: Compound Poisson disorder problem
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

The original definition of the time rn(·), n ≥ 0 in (28) obscures its simple meaning. Let us introduce
the stopping and continuation regions,[

Γn , {φ ∈ R+ : vn(φ) = 0}, n ≥ 1

Γ , {φ ∈ R+ : v(φ) = 0}

]
and

[
Cn , R+ \ Γn, n ≥ 1

C , R+ \ Γ

]
, (45)

respectively. By Corollary 3.8, the deterministic time

rn(φ) = inf{t > 0 : x(t, φ) ∈ Γn+1}, n ≥ 0 (46)

is the first return time of the continuous and deterministic path t 7→ x(t, φ) in (12) to the stopping region
Γn+1.

Clearly, a concrete characterization of the stopping regions Γn+1, n ≥ 0 will ease the calculation of
the return times rn(·), n ≥ 0 and an ε-optimal alarm time Sn+1 as described above. Moreover, the
function vn+1(·) is already known on the set Γn+1 (it equals zero identically), so the location and shape
of the region Cn+1 = R+ \Γn+1 help a better implementation of (43). Since the sequence of nonpositive
functions {vn(·)}n≥0 decreases to v(·), Proposition 4.2 implies that

[λ/c,∞) ⊇ Γ1 ⊇ Γ2 ⊇ · · · ⊇ Γn+1 ⊇ · · · ⊇ Γ ⊇ [ξ,∞),

[0, λ/c) ⊆ C1 ⊆ C2 ⊆ · · · ⊆ Cn+1 ⊆ · · · ⊆ C ⊆ [0, ξ),
(47)

where ξ is the explicit threshold in (41) for the upper bound on the optimal alarm time U0. Therefore,
the deterministic problems in (43) should be solved only for φ ∈ [0, ξ]. The smallest infimum rn(φ) in
(46) of the problem (43) is less than or equal to

rn(φ) , inf{t > 0 : x(t, φ) ≥ ξ},

and the infimum in (43) may be taken only over the interval t ∈ [0, rn(φ)] without any loss. Let us define

ξn , inf{φ ∈ R+ : vn(φ) = 0}, n ≥ 1 and ξ , inf{φ ∈ R+ : v(φ) = 0}. (48)

Proposition 5.1 We have λ/c ≤ ξ1 ≤ ξ2 ≤ · · · ≤ ξn ≤ · · · ≤ ξ ≤ ξ, and

Γn = [ξn,∞), n ≥ 1 and Γ = [ξ,∞). (49)

Moreover, ξn ↗ ξ as n →∞. The functions vn(·), n ≥ 1 and v(·) are strictly increasing on Cn = [0, ξn),
n ≥ 1 and C = [0, ξ), respectively.

Proof. By (47), we have λ/c ≤ ξn ≤ ξ ≤ ξ for every n ≥ 1, and the sequence (ξn)n≥1 is increasing.

Since the nonpositive functions vn(·), n ≥ 1 and v(·) are increasing and continuous by Corollary 3.4,
the identities in (49) follow. Because the functions are also concave, they are strictly increasing on the
corresponding continuation regions.

Because (ξn)n≥1 is increasing, we have ξ ≥ ξ∗ , limn→∞ ξn ∈ Γk and vk(ξ∗) = 0 for every k ≥ 1.
Therefore, v(ξ∗) = limk→∞ vn(ξ∗) = 0 and ξ∗ ∈ Γ, i.e., ξ∗ ≥ ξ. Hence ξ = ξ∗ ≡ limn→∞ ξn. �

The structure of the problems in (43) helps to lay out a concrete iterative solution algorithm; see
Figure 2. Suppose that vn(·) is already calculated for some n ≥ 0, and vn+1(·) is the next. The infimum
in (43) is not reached before the curve t 7→ x(t, φ) leaves the region

An , {φ ∈ R+ : [g + λ0 · Svn](φ) < 0} = [0, αn), n ≥ 0, (50)

where the boundary point

αn , inf{x ∈ R+ : [g + λ0 · Svn](x) = 0} (51)

can be calculated immediately since vn(·) is known. In (50), the identity An = [0, αn) follows from
that the mapping x 7→ [g + λ0 · Svn](x) : R+ 7→ R is strictly increasing and continuous with limits
−λ/r + vn(0) < 0 and +∞ as x goes to 0 and +∞, respectively. Now the unknown boundary ξn+1 of
the continuation region Cn+1 = [0, ξn+1) and the function vn+1(φ) for φ ∈ Cn+1 can be found from the
relation between the known αn in (51) and φd in (12):
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Step 0 Set n = 0 and v0 ≡ 0. Calculate ξ of (41).
Step 1 Find αn of (51) by a bisection search in [0, ξ].

• If φd /∈ [0, αn), then set ξn+1 to αn, and calculate on R+ the function

vn+1(φ) =

{
Jvn(rn(φ), φ), φ < ξn+1

0, φ ≥ ξn+1

}
, rn(φ) ≡


1
a

ln
ξn+1 − φd

φ− φd
, a 6= 0

ξn+1 − φ

λ
, a = 0

 .

• If φd ∈ [0, αn), then set ξn+1 to the unique root of the strictly increasing mapping φ 7→
Jvn(∞, φ) of (52). The root can be found by another bisection search in [αn, ξ]. Calculate on
R+ the function

vn+1(φ) =

{
Jvn(∞, φ), φ < ξn+1

0, φ ≥ ξn+1

}
.

Step 2 For the (n+1)st problem in (19) set the stopping region Γn+1 to [ξn+1,∞) and the value function
Vn+1 to vn+1. Increase n by one and go to Step 1.

Figure 2: The solution of (16) by iterative approximations. In Step 2, the relation (44) may be used as
a stopping rule to obtain arbitrarily close approximations Vn+1(·) for the value function V (·) of (16).

Case I: φd /∈ [0, αn): the curve t 7→ x(t, φ), φ ∈ R+ leaves the interval [0, αn) and never comes back;
see (12) and Figure 1 on page 9 . Therefore, Cn+1 = An (i.e., ξn+1 = αn) and

vn+1(φ) = Jvn(rn(φ), φ) =
∫ rn(φ)

0

e−(λ+λ0)u [g + λ0 · Svn] (x(u, φ))du,

where rn(φ) in (46) becomes the first exit time of t 7→ x(t, φ) from An = [0, αn).

Case II: φd ∈ [0, αn): as t → +∞, we have x(t, φ) → φd monotonically. Therefore, the infimum in
(43) is attained at either t = 0 or t = +∞. The continuous function

φ 7→ Jvn(+∞, φ) =
∫ ∞

0

e−(λ+λ0)t[g + λ0 · Svn](x(t, φ))dt : R+ 7→ R (52)

is strictly increasing and Jvn(+∞, αn) < 0 < limφ7→∞ Jvn(+∞, φ) = +∞. Therefore, the mapping
φ 7→ Jvn(+∞, φ) has unique root, and this root is at ξn+1 > αn, since min{0, Jvn(∞, φ)} = vn+1(φ)
is negative at φ ∈ [0, ξn+1) and zero at φ ∈ [ξn+1,∞). The algorithm is summarized in Figure 2. It is
implemented to solve several numerical examples in Section 6.

We shall close this section with a summary of the discussions above. The following corollary will be
needed later as we describe how smooth the value function V (·) is. Below (i) is proved while discussing
Case I and Case II above. The proof of (ii) is very similar.

Corollary 5.2 Recall that the continuation regions {Cn}n≥1 and C, the sets {An}n≥1, the numbers
{ξn}n≥1, ξ, {αn}n≥1, and α are defined as in (45), (50), (48), and (51), respectively. Analogously, let
us introduce

α , inf{x ∈ R+ : [g + λ0 · SV ](x) = 0},
A , {φ ∈ R+ : [g + λ0 · SV ](φ) < 0} = [0, α).

The identity A = [0, α) follows from that the mapping x 7→ [g+λ0 ·SV ](x) : R+ 7→ R is strictly increasing
and continuous with limits −λ/r + V (0) < 0 and +∞ as x goes to 0 and +∞, respectively. Moreover,
the followings hold:

(i) If φd /∈ Cn+1 = [0, ξn+1), then Cn+1 = An = [0, αn) and [g+λ0 ·SV ](ξn+1) = [g+λ0 ·SV ](αn) =
0. If φd ∈ Cn+1 = [0, ξn+1), then An $ Cn+1 and

vn+1(φ) = Jvn(+∞, φ) =
∫ ∞

0

e−(λ+λ0)t[g + λ0 · Svn](x(t, φ))dt, φ ∈ Cn+1.
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(ii) If φd /∈ C = [0, ξ), then C = A = [0, α) and [g + λ0 · SV ](ξ) = [g + λ0 · SV ](α) = 0. If
φd ∈ C = [0, ξ), then A $ C and

V (φ) = JV (+∞, φ) =
∫ ∞

0

e−(λ+λ0)t[g + λ0 · SV ](x(t, φ))dt, φ ∈ C.

6. Examples and extensions. In Section 6.1, we provide numerical examples with discrete and
absolutely continuous jump distributions.

The methods of previous sections apply to quickest detection problems with other “standard” Bayes
risk measures. A few necessary minor changes are explained, and numerical examples are given in Section
6.2. Finally, we revisit in Section 6.4 Gapeev’s [10] very special compound Poisson disorder problem.

6.1 Numerical examples. In the first example, jump sizes are discrete. The jump distributions
before and after the disorder are

ν0 =
(

1
15

,
5
15

,
4
15

,
3
15

,
2
15

)
and ν1 =

(
2
15

,
3
15

,
4
15

,
5
15

,
1
15

)
(53)

on the set {1, 2, 3, 4, 5}, respectively; see the upper left panel in Figure 3 on page 13. The jump distribution
is right skewed before the disorder (histogram with heavy outline in the background) and left skewed after
the disorder (histogram with filled bars in the foreground). The mode of the jump distribution increases
after the disorder.

After having set the parameters c (cost per unit delay time), λ (disorder arrival rate), λ0 (arrival rate
of observations before the disorder), the quickest-detection problem has been solved for three different
arrival rates λ1 of observations after the disorder; see the upper panels (b)-(d) in Figure 3: (b) λ1 = λ0/2
(observations arrive at a lower rate after the disorder), (c) λ1 = λ0 (arrival rate does not change), and
(d) λ1 = 2λ0 (observations arrive at a higher rate after the disorder).

In each panel (b)-(d) are the successive approximations V1(·), V2(·), . . . of the value function V (·) of
(16) drawn. The successive approximations V1(·), V2(·), . . . are the same as the functions in (19) and
are calculated iteratively by using the algorithm in Figure 2. The algorithm is terminated after 13, 14,
and 17 iterations, respectively, for (b), (c), and (d), when the largest difference between most recent two
approximations becomes negligible. The functions V13(·) in (b), V14(·) in (c), and V17(·) in (d) are the
approximations of V (·). In (b), the relation V13(·) ≈ V (·) implies that the disorder time will be spotted
as closely as possible by the arrival of the 13th observation with a negligible sacrifice from the optimal
Bayes risk; see also (20). Similar conclusions are true in (c) and (d).

Given that everything else is the same, we expect that the minimum Bayes risk is smaller when pre- and
post-disorder arrival rates of observations are different than when they are the same. Intuitively, if the
arrival rates before and after the disorder are different, then the interarrival times between observations
carry useful information for the quickest detection of the disorder time. In the light of the relation in (15)
between the Bayes risk U(·) and the value function V (·), this intuitive remark is confirmed empirically by
a comparison of the case (c) with (b) and (d). The value functions in cases (b) and (d) (where λ1 6= λ0)
are smaller than that in case (c) (where λ1 = λ0). The difference is more striking between (d) and
(c) than between (b) and (c). This is perhaps because case (b) (unlike case (d)) is deprived of useful
additional information about the jump-sizes due to slow arrival rate of observations after the disorder.

Finally, the rightmost vertical bar at the edge of each panel marks the critical threshold ξ in (49) which
determines the optimal alarm time: declare an alarm as soon as the odds-ratio process Φ in (11-13) leaves
the interval [0, ξ).

In the second example, jump-size distributions before and after the disorder are absolutely continuous.
Before the disorder, jump sizes are exponentially distributed with some rate µ. After the disorder, they
have gamma distribution with scale parameter µ—the same as the rate of the exponential distribution.
For three different shape parameters—2, 3, and 6, the quickest detection problem is solved; in Figure
3, see panel (e) for the comparisons of probability density functions and panels (f)-(h) for successive
approximations V1(·), V2(·), . . . for each of three cases.

In all of the cases, the arrival rate of observations before and after the disorder is kept the same (i.e.,
λ0 = λ1); thus, only observed jump sizes contain useful information to detect quickly the disorder time.
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Figure 3: The solutions of the compound Poisson disorder problems with the Bayes risk in (2) (c = 0.2,
λ = 1.5, λ0 = 3). Top row: The jump distributions before and after the disorder are discrete. In (a),
their probability mass functions are sketched (shaded is the post-disorder probability mass function).
The number of iterations (jumps) and the successive approximations vn(·) are reported when the ratio
λ1/λ0 equals (b) 1/2, (c) 1, and (d) 2. Bottom row: Before the disorder, the jumps are exponentially
distributed with rate µ = 2. After the disorder, the jumps have (f) Gamma(2,µ), (g) Gamma(3,µ), and
(h) Gamma(6,µ) distributions; see (e) for the sketches of their probability density functions. In all of the
cases, λ1 = λ0. The optimal thresholds are indicated by the vertical bars at upper and lower edges of the
panels; see also Figure 4.

Intuitively, if jump distributions before and after the disorder concentrate more on distinct/disjoint
subsets, then the disorder can be spotted more accurately, and the Bayes risk becomes smaller. The
numerical results (e)-(h) confirm our expectation. As the shape parameter increases, the post-disorder
jump distribution shifts to the right—away from the pre-disorder jump distribution. At the same time,
the value function V (·) (and the Bayes risk U(·) thanks to (15)) gets uniformly smaller.

6.2 Standard Poisson disorder problems. The Bayes risk of (2) is the second of four “standard”
Bayes risks in (4). The risk measures in (4) are called “standard” by Bayraktar et. al. [2] following Davis
[5] since they have essentially the same representation

Rτ (π |α, k, γ(·), β(·) ) , γ(π) + β(π)E0

[∫ τ

0

e−λt
(
Φ(α)

t − k
)]

dt, π ∈ [0, 1) (54)

for some known constants α ≥ 0, k > 0 and functions γ(·), β(·) from [0, 1) into R+. The generalized
odds-ratio process

Φ(α)
t ,

E
[
eα(t−θ)1{θ≤t}|Ft

]
P{θ > t|Ft}

, t ≥ 0, α ≥ 0 (55)
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Figure 4: The critical thresholds ξn, n = 1, 2, . . . for the compound Poisson disorder problems considered
in Figure 3

becomes the same as the odds-ratio process Φt, t ≥ 0 in (11) when α = 0. If we redefine the parameter
a in (12) by

a , λ + α− λ1 + λ0,

then the process Φ(α) = {Φ(α)
t ; t ≥ 0} has the same dynamics as in (13) for every α ≥ 0:

Φ(α)
t = x

(
t− σn−1,Φ(α)

σn−1

)
, t ∈ [σn−1, σn)

Φ(α)
σn

=
λ1

λ0
f(Yn)Φ(α)

σn−

 , n ≥ 1.

See Bayraktar et. al. [2, Proposition 2.1] for the proof of the following result.

Proposition 6.1 For every π ∈ [0, 1) and stopping time τ ∈ F, we have

R(i)
τ (π) = Rτ (π|αi, ki, γi(·), βi(·)), for every i = 1, 2, 3, 4, (56)

where α1 = α2 = α3 = 0, α4 = α; k1 = (λ/c)e−ελ, k2 = λ/c, k3 = 1/c, k4 = λ/(cα); and

γ1(π) = (1− π)e−λε, γ2(π) = 1− π, γ3(π) =
1− π

λ
, γ4(π) = 1− π

β1(π) = c(1− π), β2(π) = c(1− π), β3(π) = c(1− π), β4(π) = cα(1− π).

For i = 2 the identity in (54, 56) is the same as the representation (10) which was the key for the
solution. Therefore, the solution of the compound Poisson disorder problem with any “standard” Bayes
risk in (4,56) remains the same after a few obvious changes.

The minimum Bayes risk U(π) = infτ∈F R(π|α, k, γ(·), β(·)), π ∈ [0, 1) is given by

U(π) = γ(π) + β(π) V

(
π

1− π

)
, π ∈ [0, 1)
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Figure 5: As in Bayraktar, Dayanik, and Karatzas [2], we take c = 0.2, λ = 1.5, λ0 = 3 and ν0(·) ≡ ν1(·) ≡
δ{1}(·). For each case, the rate λ1 is determined according to the ratio λ1/λ0 at the beginning of the same
row. In every column, the disorder problem is solved for one of four penalties (linear, ε, expected miss, and
exponential). The number of iterations (jumps) before convergence and the successive approximations
vn(·) of the value function V (·) are displayed for eight cases. In every case, the optimal threshold ξn for
each subproblem vn(·) is indicated by a vertical bar on both top and bottom edges of the panels; see also
Figure 6.

in terms of the value function

V (φ) , inf
τ∈F

Eφ
0

[∫ τ

0

e−λtg(Φ(α)
t )dt

]
, φ ∈ R+

of a discounted optimal stopping problem with the running cost

g(φ) , φ− k, φ ∈ R+

and discount rate λ > 0 for the piecewise-deterministic Markov process Φ(α) in (55). The successive
approximations {Vn(·)}n≥1 in (19) of the value function V (·) are uniformly decreasing; and since g(·) ≥
−k, we have

−k

λ
·
(

λ0

λ + λ0

)n

≤ V (φ)− Vn(φ) ≤ 0.

The results of Sections 3-5 remain valid in this general case.

Figure 5 illustrates solutions of some Poisson disorder problem for each of four “standard” Bayes risk
measures in (4). For comparison the parameters are chosen the same as in Bayraktar et. al. [2, Table
1], whose methods are unable to detect the change in the jump-size distribution, and therefore, can only
use the count data on the number of arrivals to detect the disorder. On the other hand, the method of
Sections 3-5 can be told to ignore completely the jump-size information (and to use number of arrivals
only) by setting the density function f(·) in (8) and (13) identically to one (more precisely, the jump-
distributions ν0(·) and ν1(·) are replaced with the Dirac measure δ{1}(·) at one on R+, so that the process
X is the same as the counting process N in (1)). In Figure 5, the rightmost vertical bars at the edge of
panels mark the critical thresholds of the quickest alarm rules and agree with those reported by Bayraktar
et. al. [2, Table 1].
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Figure 6: The critical thresholds ξn, n = 1, 2, . . . for the standard Poisson disorder problems considered
in Figure 5.

6.3 Reducing the Bayes-risk by observing marks in addition to arrival times. Suppose
that in the examples (b)-(d) of Figure 3 the observations of marks are unavailable, and one has to use
only the data on the arrival times in order to detect the disorder time. How do the optimal Bayes risks
and optimal strategies differ?

For different values of the ratio λ1/λ0, the value function of (16) is calculated in the presence and the
absence of the mark data and displayed in the first row of Figure 7. In the absence of the mark data,
compound Poisson disorder problem reduces to standard Poisson disorder problem, and the solutions of
the latter are recalled from Figure 5(a) for λ1/λ0 = 1/2 and 2.

If λ1/λ0 = 1, and the mark data is absent, then (i) the sufficient statistic Φ in (11-13) becomes the
increasing deterministic process

Φt = x(t, Φ0) = −1 + eλt [Φ0 + 1] , t ≥ 0 (λ0 = λ1, f(·) ≡ 1), (57)

(ii) following from (16, 17, 19)), the optimal thresholds in (49) become ξ1 = ξ2 = . . . = ξ = λ/c, (iii) the
optimal alarm time t∗(Φ0) = inf{t ≥ 0 : Φt ≥ λ/c} is also deterministic,

t∗(Φ0) =
[

1
λ

ln
(

1 + (λ/c)
1 + Φ0

)]+
and V (φ) =

1 + φ

λ

[
1 + ln

(
1 + (λ/c)

1 + φ

)]
− λ + c

cλ
.

The latter expression is used to draw the graph in Figure 7(b) of the value function V (·) of (16) corre-
sponding to the case without mark observations.

The first row of Figure 7 shows that the reduction in the Bayes risk obtained by using the observations
of the marks (in addition to those of the arrival times) can be significant. Moreover, this reduction tends
to grow as the number of arrivals (hence the additional information carried by the accompanying mark
data) increases with the increasing rate λ1 for fixed λ0. Finally, observe from (57) that arrival times carry
no information about the disorder time if the arrival rate is not expected to change (i.e., λ0 = λ1), and
the observations of marks become more crucial for early detection of the disorder and for lower Bayes
risk; see Figure 7(b).

Since every stopping time of the arrival process N = {Nt; t ≥ 0} in (1) is also a stopping time
of X = {Xt; t ≥ 0}, the value function V (·) of (19) is always at least as small in the presence of
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Figure 7: In the presence and the absence of mark observations, the value function V (·) of (16) and the
thresholds {ξn; n = 1, 2, . . .} of (48) (until the termination of the algorithm in Figure 2) are displayed,
respectively, in the first and second rows. The data are the same as those of Figure 3 (b), (c), and (d):
c = 0.2, λ = 1.5, λ0 = 3, and the discrete mark distributions ν0(·), ν1(·) are as in (53).

mark observations as the same function in the absence of mark observations. Therefore, the thresholds
{ξn;n = 1, 2, . . .} and ξ in (48) are always at least as large in the presence of mark observations as
those in the absence of mark observations. This fact is confirmed by the illustrations in the second row
of Figure 7, where the thresholds {ξn;n = 1, 2, . . .} are displayed for each case before the algorithm in
Figure 2 terminates. Note that this fact does not imply that an optimal alarm in the presence of mark
observations is given always earlier than that in the absence of mark observations: not only the critical
thresholds ξ but also the dynamics of the sufficient statistic Φ in (12, 13) are different in the presence
(i.e., nontrivial f(·)) and in the absence (i.e., f(·) ≡ 1) of the mark observations. Therefore, the relation
between optimal alarm times is not obvious.

6.4 Compound Poisson disorder problem with exponential jumps. Gapeev [10] recently
solved fully a very special compound Poisson disorder problem: before and after the disorder, the jump
sizes are exponentially distributed, and their common expected values are the same as the arrival rates of
jumps in corresponding regimes. Namely, jump-size distributions are as in (5), and the Radon-Nikodym
derivative in (8) becomes

f(y) =
dν1

dν0

∣∣∣∣
B(R+)

=
λ0

λ1
exp

{
−
(

1
λ1
− 1

λ0

)
y

}
. (58)

Below are Gapeev’s [10, Theorem 4.1] conclusions obtained by using general methods of this paper.

If λ0 < λ1 and −a ≡ λ1 − λ0 − λ ≤ c, then f(·)(λ1/λ0) ≥ 1 and either φd < 0 or 0 < λ/c ≤ φd.
Therefore, Proposition 4.1 applies, and the stopping time τ in (40) is optimal. P. Gapeev works with the
posterior probability process

Πt , P{θ ≤ t|Ft} ≡
Φt

1 + Φt
, t ≥ 0,



18 S. Dayanik and S. O. Sezer: Compound Poisson disorder problem
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

and the optimal stopping rule τ can be rewritten as

τ = inf
{

t ≥ 0 : Πt ≥
λ

λ + c

}
.

If either “λ0 < λ1 and −a > c” or λ0 > λ1, then the stopping rule U0 = inf{t ≥ 0 : Φt ≥ ξ} = inf{t ≥
0 : Πt ≥ ξ/(1+ξ)} in (36, 45, 48, 49) is optimal by Propositions 3.11 and 5.1. If λ0 > λ1, then φd < 0 and
the value function V (·) in (16) is continuously differentiable on R+ by Lemma 7.1 below, and V ′(ξ) = 0.

7. Differentiability and variational inequalities. In this final section, smoothness of the value
function V (·) in (16) is studied. The function V (·) is shown to be piecewise continuously differentiable
and unique bounded solution of the variational inequalities in (18); see Lemma 7.1 and Proposition 7.3
on pages 20 and 21, respectively.

7.1 Differentiability of the value function. Since V (·) ≡ 0 on the stopping region Γ = [ξ,∞) by
(45, 48, 49), it is obviously continuously differentiable on (ξ,∞). Its smoothness on [0, ξ] is investigated
below separately in two cases due to different behavior of functions t 7→ x(t, φ), φ ∈ R+ of (12) for
φd /∈ (0, ξ] and φd ∈ (0, ξ]. We summarize our conclusions in Lemma 7.1.

In both case, it will be very useful to recall from Remark 3.10 and (34, 35, 45, 49) that the value
function V (·) satisfies some form of dynamic programming equation; namely,

V (φ) = JV (t, φ) + e−(λ+λ0)tV (x(t, φ)), t ∈ [0, r(φ)], (59)
r(φ) = inf{t > 0 : x(t, φ) ≥ ξ}, φ ∈ R+

Case I: φd /∈ (0, ξ]. Let us fix some φ ∈ [0, ξ) and define for every 0 < h < ξ − φ that

T (h, φ) , inf{t ≥ 0 : x(t, φ) ≥ φ + h} =


1
a
· ln
(

φ + h− φd

φ− φd

)
, a 6= 0

h/λ, a = 0

 .

The second equality follows from (12). Because T (h, φ) ≤ r(φ), replacing T (h, φ) with t in (59) gives

V (φ) =
∫ T (h,φ)

0

e−(λ+λ0)u [g + λ0 · SV ] (x(u, φ))du + e−(λ+λ0)T (h,φ)V (φ + h). (60)

Subtracting V (φ + h) from each side and dividing by −1/h give

V (φ + h)− V (φ)
h

= − 1
h

∫ T (h,φ)

0

e−(λ+λ0)u [g + λ0 · SV ] (x(u, φ)du

− 1
h

[
e−(λ+λ0)T (h,φ) − 1

]
V (φ + h).

Since V (·) is concave by Corollary 3.4 and Proposition 3.6, it has right derivatives everywhere. As h
decreases to 0, we obtain

lim
h→0+

V (φ + h)− V (φ)
h

= −
(
g(φ) + λ0 · SV (φ)− (λ + λ0)V (φ)

)
·
(

∂T (h, φ)
∂h

∣∣∣∣
h=0

)
, (61)

since the functions V (·) and SV (·) are bounded and continuous (by bounded convergence theorem).
Because

∂T (h, φ)
∂h

∣∣∣∣
h=0

=

{
1/[a(φ− φd)

]
, a 6= 0

1/λ, a = 0

}
=

1
λ + aφ

(62)

is a continuous function of φ ∈ [0, ξ) (recall that φd /∈ [0, ξ), so the denominator is bounded away from
zero on φ ∈ [0, ξ)), the right derivative of V (·) in (61) is continuous on φ ∈ [0, ξ). Since V (·) is concave,
this implies that V (·) is continuously differentiable on [0, ξ), and (61, 62) give the derivative

V ′(φ) =
g(φ) + λ0 · SV (φ)− (λ + λ0)V (φ)

λ + aφ
, φ ∈ [0, ξ). (63)

Finally, V ′(ξ−) = 0 = V ′(ξ+) since V (·) ≡ 0 on [ξ,∞) and [g + λ0 · SV ](ξ) = 0 because of Corollary
5.2(ii) and φd /∈ [0, ξ). The concavity of V (·) implies again that V ′(ξ) exists and equals zero. Hence the
function V (·) is continuously differentiable everywhere on R+ if φd /∈ [0, ξ).
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Case II: φd ∈ (0, ξ]. For every φ ∈ R+, the function x(t, φ) converges monotonically to φd as t
increases to infinity. For every φ ∈ [0, ξ), we have V (φ) = JV (∞, φ) by Corollary 5.2(ii).

If we redefine T (h, φ) , inf{t ≥ 0 : |x(t, φ) − φ| ≥ h} for every φ ∈ [0, ξ) and h > 0, then the same
arguments as in the previous case show that V (·) is continuously differentiable (with the same derivative
V ′(φ) as in (63)) on φ ∈ [0, ξ) \ {φd}.

Let us show now that the function V (φ) is not differentiable at φ = ξ. In terms of

W (φ) , [g + λ0 · SV ](φ), φ ∈ R+,

one can write using Corollary 5.2(ii) that

V (ξ)− V (ξ − h)
h

=
∫ ∞

0

e−(λ+λ0)u

[
W
(
x(u, ξ)

)
−W

(
x(u, ξ − h)

)
x(u, ξ)− x(u, ξ − h)

]
·

[
x(u, ξ)− x(u, ξ − h)

h

]
du.

Since the functions g(·) and V (·) are increasing, so are SV (·) of (25) and W (·). Therefore,

W
(
x(u, ξ)

)
−W

(
x(u, ξ − h)

)
x(u, ξ)− x(u, ξ − h)

≥ 0 and
x(u, ξ)− x(u, ξ − h)

h
= eau;

and Fatou’s Lemma gives

lim
h→0+

V (ξ)− V (ξ − h)
h

≥
∫ ∞

0

e−λ1u

[
1 + λ0 lim

h→0+

SV
(
x(u, ξ)

)
− SV

(
x(u, ξ − h)

)
x(u, ξ)− x(u, ξ − h)

]
du.

Since SV (·) is increasing, the limit infimum above is non-negative and

lim
h→0+

V (ξ)− V (ξ − h)
h

≥
∫ ∞

0

e−λ1udu =
1
λ1

> 0 = lim
h→0+

V (ξ + h)− V (ξ)
h

. (64)

Hence, the lefthand and righthand derivatives of V (·) are unequal at φ = ξ, and V (·) is not differentiable
at φ = ξ.

On the other hand, the function V (·) may or may not be differentiable at φ = φd. Since x(t, φd) = φd

for every t ≥ 0 by (12), Corollary 5.2(ii) gives

V (φd + h)− V (φd)
h

=
1
λ1

+ λ0

∫ ∞

0

e−(λ+λ0)u
SV (φd + eauh)− SV (φd)

h
du.

Because SV (·) is nondecreasing, Fatou’s lemma gives

lim
h→0+

V (φd + h)− V (φd)
h

≥ 1
λ1

+ λ0

∫ ∞

0

e−(λ+λ0)u
[

lim
h→0+

SV (φd + eauh)− SV (φd)
h

]
du. (65)

We shall calculate the limit infimum on the righthand side. In terms of the sets

A ,
{

y ∈ Rd; f(y)
λ1

λ0
= 1
}

and B ,
{

y ∈ Rd; f(y)
λ1

λ0
φd = ξ

}
, (66)

the definition in (25) of SV (·) implies

SV (φd + eauh)− SV (φd)
h

=
∫

Rd\(A∪B)

ν0(dy)

[
V
(
f(y)λ1

λ0
(φd + eauh)

)
− V

(
f(y)λ1

λ0
φd

)
h

]

+
∫

A

ν0(dy)
[
V (φd + eauh)− V (φd)

h

]
+
∫

B

ν0(dy)
[
V (ξ + (ξ/φd)eauh)− V (ξ)

h

]
.

The last integral is equal to 0 because V (φ) = 0 for every φ ≥ ξ. Since the concave and increasing function
V (·) has bounded right derivatives by Corollary 3.4 and is continuously differentiable on R+ \ {φd, ξ},
the dominated convergence theorem implies that

lim
h→0+

SV (φd + eauh)− SV (φd)
h

= eau λ1

λ0

∫
Rd\(A∪B)

ν1(dy)V ′
(
f(y)

λ1

λ0
φd

)
+ eauν0(A). lim

h→0+

V (φd + h)− V (φd)
h

for every u ∈ R+. (67)
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Inside the integral above, we used the relation f(y)ν0(dy) = ν1(dy). After plugging (67) into (65),
rearrangement of the terms gives[

lim
h→0+

V (φd + h)− V (φd)
h

]
·
(

1− λ0

λ1
ν0(A)

)
≥ 1

λ1
+
∫

Rd\(A∪B)

ν1(dy)V ′
(

f(y)
λ1

λ0
φd

)
.

Similar arguments will also give[
lim

h→0+

V (φd + h)− V (φd)
h

]
·
(

1− λ0

λ1
ν0(A)

)
≤ 1

λ1
+
∫

Rd\(A∪B)

ν1(dy)V ′
(

f(y)
λ1

λ0
φd

)
.

Since φd ∈ (0, ξ] in Case II, we have a < 0, λ0 < λ1, and [1−(λ0/λ1)ν0(A)] > 0. By the last two displayed
inequalities, the righthand derivative D+V (φ) of V (·) at φ = φd becomes

D+V (φd) =
(

1− λ0

λ1
ν0(A)

)−1
[

1
λ1

+
∫

Rd\(A∪B)

ν1(dy)V ′
(
f(y)

λ1

λ0
φd

)]
.

By following the same arguments, one can show that the lefthand derivative D−V (φ) of V (·) at φ = φd

becomes

D−V (φd) = D+V (φd) +
(

1− λ0

λ1
ν0(A)

)−1 [
λ0ξ

λ1φd
ν0(B) D−V (ξ)

]
.

Since the derivative D−V (ξ) on the right does not vanish by (64), this equality shows that the value
function V (·) is differentiable at φ = φd (i.e., D−V (φd) = D+V (φd)) if and only if ν0(B) = 0 for the set
B defined in (66). Next lemma summarizes main conclusions.

Lemma 7.1 Recall from (45, 48, 49) that the optimal continuation region for the problem (16) is in the
form of C = [0, ξ) for some ξ > 0, and the constant φd is given by (12).

(i) If φd /∈ C = [0, ξ), then the value function V (·) in (16) is continuously differentiable on R+.

(ii) If φd ∈ C = [0, ξ), then V (·) is continuously differentiable on R+ \{φd, ξ}. It is not differentiable
at ξ. It is differentiable at φd if and only if

ν0

({
y ∈ Rd; f(y)

λ1

λ0
φd = ξ

})
= 0.

Remark 7.2 If φd ∈ C, then V (φd) < 0. The local martingale in (38) and optional sampling imply that

V (φd) = Eφd

0

[∫ σ1

0

e−λtg(Φ)dt + eλσ1V (Φσ1)
]

=
g(φd)
λ + λ0

+
λ0

λ + λ0
· SV (φd),

since the process Φ does not leave φd until the first jump time σ1 if it starts initially at φd. This relation
of SV (φd) of (25) to V (φd) and Lemma 7.1(ii) suggest that the lack of smoothness of V (·) at φd can
occur if and only if this “ill” behavior can be “transmitted” from ξ. Alternatively, the function V (·)
is not differentiable at φd if and only if the process Φ may jump before the disorder from φd to ξ with
positive probability.

7.2 Unique solution of variational inequalities. The value function V (·) satisfies the variational
inequalities in (18) wherever V (·) is differentiable. By Proposition 5.1,

V < 0 on C = [0, ξ) and V = 0 on Γ = R+ \C. (68)

The function V (·) is piecewise continuously differentiable by Lemma 7.1. The derivative V ′(·) exists and
equals zero on the stopping region Γ. Since V (·) ≡ 0 on Γ and A , {x ∈ R+ : [g + λ0 · SV ](x) < 0} ⊆ C
by Lemma 5.2, we have

(A− λ)V (φ) + g(φ) = [g + λ0 · SV ](φ) ≥ 0 on φ ∈ Γ = [ξ,∞).

The above inequality is strict in the interior of Γ because φ 7→ [g + λ0 · SV ](φ) is strictly increasing. At
every point φ ∈ C where the derivative V ′(φ) exists (see Lemma 7.1 above), it is given by (63) which can
be rearranged as

0 = (λ + aφ)V ′(φ) + λ0SV (φ)− (λ + λ0)V (φ) + g(φ)

= [λ + aφ]V ′(x) + λ0

∫
y∈Rd

[
V

(
λ1

λ0
f(y) φ

)
− V (φ)

]
ν0(dy)− λV (φ) + g(φ)

= (A− λ)V (φ) + g(φ).

(69)
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It is easy to see from (68-69) that V (·) satisfies the variational inequalities in (18) wherever the derivative
V ′(·) exists. Next result shows that V (·) is the unique piecewise continuously differentiable bounded
solution of (18).

Proposition 7.3 Suppose that U : R+ 7→ R is a continuous and bounded function which is continuously
differentiable except at most finitely many points and satisfies (18) everywhere except at those points.
Then U = V on R+.

Proof. Let T be any F-stopping time and t ≥ 0 be any constant. As in Appendix A.3,

e−λ(T∧t)U(ΦT∧t)− U(Φ0) =
∫ T∧t

0

e−λs(A− λ)U(Φs−)ds

+
∫

(0,T∧t]×Rd

e−λs

[
U

(
λ1

λ0
f(y)Φs−

)
− U(Φs−)

]
q0(dsdy).

Since U(·) is bounded, the integrand of the last integral on the right is absolutely integrable with respect
to the (P0, F)-compensator measure p0(dsdy) = λ0ds ν0(dy). Therefore, the last integral on the right is a
martingale, and its P0-expectation equals zero. Taking the P0-expectations of both sides and using the
inequality (A− λ)U + g ≥ 0 give

U(φ) ≤ Eφ
0

[
e−λ(T∧t)U(ΦT∧t)

]
+ Eφ

0

[∫ T∧t

0

e−λsg(Φs)ds

]
. (70)

Since U(·) is bounded and g(·) + λ/c ≥ 0, the bounded convergence and monotone convergence theorems
give U(φ) ≤ Eφ

0

[∫ T

0
e−λsg(Φs)

]
when we take limit of both sides as t goes to infinity. Since F-stopping

time T is arbitrary, this implies U ≤ V .

For the opposite inequality, let T∗ , inf{t ≥ 0 : U(Φt) = 0}. Then [(A− λ)U + g](Φs) = 0 for s < T∗,
and (70) holds with equality. When we take the limits as before, we obtain U(φ) = Eφ

0

[∫ T∗
0

e−λsg(Φs)
]
≥

V (φ) for every φ ∈ R+. �
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Appendix.

A.1 Absolutely continuous change of measure. The process X in (1) can also be expressed as
the integral

Xt = X0 +
∫

(0,t]×Rd

y p(dsdy), t ≥ 0 (A.71)

with the respect to the point process

p((0, t]×A) ,
∞∑

k=1

1{σk≤t}1{Yk∈A}, t ≥ 0, A ∈ B(Rd) (A.72)

on
(
R+ × Rd,B(R+)⊗B(Rd)

)
. Let P0 be the probability measure described in Section 2 and define

h(t, y) , 1{t<θ} + 1{t≥θ}
λ1

λ0
f(y), t ∈ R+, y ∈ Rd.

Since θ is G0-measurable, the process {h(t, y); t ≥ 0} is G-predictable for every y ∈ Rd. Therefore, the
process

Zt , exp

{∫
(0,t]×Rd

[lnh(s, y)]p(dsdy)−
∫

(0,t]×Rd

[h(s, y)− 1]λ0 ds ν0(dy))

}
, t ≥ 0

is a (P0, G)-martingale and induces a new probability measure P on the measurable space (Ω,∨s≥0Gs)
in terms of the Radon-Nikodym derivatives (9). The exponential formula for Zt above also simplifies to
that in (9). Girsanov theorem for the point processes (Jacod and Shiryaev [12, Chapter III], Cont and
Tankov [4, p. 305]) guarantees that, under the new probability measure P, the process X has the desired
finite-dimensional distribution described in the introduction.
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A.2 The dynamics of the odds-ratio process Φ in (11). The Radon-Nikodym derivative Zt in
(9) of the restriction to Gt of the probability measure P with respect to that of P0 can be written as

Zt = 1{θ>t} + 1{θ≤t}
Lt

Lθ
, where Lt , e−(λ1−λ0)t

Nt∏
k=1

[
λ1

λ0
f(Yk)

]
, t ≥ 0 (A.73)

is the likelihood ratio process. The process L = {Lt; t ≥ 0} is the unique locally bounded solution of the
differential equation (Elliott [8, p. 155])

dLt = Lt−

[
−(λ1 − λ0)dt +

∫
y∈Rd

(
λ1

λ0
f(y)− 1

)
p(dtdy)

]
, t ≥ 0 (L0 = 1), (A.74)

where p(·) is the point process in (A.72). Since the random variable θ is independent of the process X
and has the exponential distribution in (6) under P0, the generalized Bayes theorem (Shiryaev [16, pp.
230-231]) and (A.73) give

Φt =
E[1{θ≤t}|Ft]
P{τ > θ|Ft}

=
E0[Zt1{θ≤t}|Ft]

E0[Zt|Ft]

(E0[Zt1{θ>t}|Ft]
E0[Zt|Ft]

)−1

=
eλt

1− π
E0

[
Lt

Lθ
1{θ≤t}

∣∣∣∣Ft

]
=

eλt

1− π

[
πLt + (1− π)

∫ t

0

λe−λu Lt

Lu
du

]
≡ π

1− π
Ut + Vt

in terms of

Ut , eλtLt and Vt ,
∫ t

0

λeλ(t−u) Lt

Lu
du.

Using the change-of-variable formula (Protter [15, p. 78], Jacod and Shiryaev [12, p. 57], Cont and Tankov
[4, p. 277]) and the dynamics of the process L in (A.74) give

dUt = Ut−

[
(λ− λ1 + λ0)dt +

∫
y∈Rd

(
λ1

λ0
f(y)− 1

)
p(dtdy)

]
, U0 = 1,

dVt = λdt + Vt−

[
(λ− λ1 + λ0)dt +

∫
y∈Rd

(
λ1

λ0
f(y)− 1

)
p(dtdy)

]
, V0 = 0.

Therefore, the dynamics of the process Φ = [π/(1− π)] · U + V are

dΦt = [λ + (λ− λ1 + λ0)Φt] dt + Φt−

∫
y∈Rd

[
λ1

λ0
f(y)− 1

]
p(dtdy), t ≥ 0,

Φ0 =
π

1− π
.

(A.75)

The stochastic differential equation in (A.75) can be solved pathwise and explicitly for Φ. Let the
parameters a = λ− λ1 + λ0, φd = −λ/a be defined as in (12) and let x(·, φ) = {x(t, φ); t ∈ R}, φ ∈ R be
the unique solution (given explicitly in (12)) of the ordinary differential equation

d

dt
x(t, φ) = λ + ax(t, φ), t ∈ R and x(0, φ) = φ. (A.76)

As clearly seen from (A.75), the process Φ follows the integral curves of the differential equation in (A.76)
between consecutive jumps of X and is updated instantaneously at every jump of X as summarized in
(13).

A.3 The infinitesimal generator of the process Φ. The dynamics of Φ in (A.75) and the
(P0, F)-compensator measure p̃0(dsdy) = λ0dsν0(dy) of the point process p(·) in (A.72) determine the
(P0, F)-infinitesimal generator of the process Φ. Let a = λ− λ1 + λ0 as in (12), and h : R+ 7→ R be any
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locally bounded continuously differentiable function. Then

h(Φt)− h(Φ0) =
∫ t

0

(λ + aΦs−) h′(Φs−)ds +
∫

(0,t]×Rd

[
h

(
λ1

λ0
f(y)Φs−

)
− h(Φs−)

]
p(dsdy)

=
∫ t

0

(λ + aΦs−) h′(Φs−)ds +
∫

(0,t]×Rd

[
h

(
λ1

λ0
f(y)Φs−

)
− h(Φs−)

]
p̃0(dsdy)

+
∫

(0,t]×Rd

[
h

(
λ1

λ0
f(y)Φs−

)
− h(Φs−)

]
q0(dsdy)

=
∫ t

0

{
(λ + ax) h′(x) + λ0

∫
Rd

[
h

(
λ1

λ0
f(y)x

)
− h(x)

]
ν0(dy)

}∣∣∣∣
x=Φs−

ds

+
∫

(0,t]×Rd

[
h

(
λ1

λ0
f(y)Φs−

)
− h(Φs−)

]
q0(dsdy).

The last integral with respect to the compensated random measure q0(·) = p0(·) − p̃0(·) is a (P0, F)-
local martingale. Therefore, the integrand of the last Lebesgue integral equals the (P0, F)-infinitesimal
generator (Ah) ◦ Φs− composed with the process Φ; see (14).

A.4 Long proofs. For the proof of Proposition 3.5, we shall need the following result on the char-
acterization of F-stopping times; see Brémaud [3, Theorem T33, p. 308], Davis [7, Lemma A2.3, p. 261].

Lemma A.1 For every F-stopping time τ and every n ∈ N0, there is an Fσn-measurable random variable
Rn : Ω 7→ [0,∞] such that τ ∧ σn+1 = (σn + Rn) ∧ σn+1 P0-a.s. on {τ ≥ σn}.

Proof of Proposition 3.5. First, we shall establish the inequality

Eφ
0

∫ τ∧σn

0

e−λtg
(
Φt

)
dt ≥ vn(φ), τ ∈ F, φ ∈ R+ (A.77)

for every n ∈ N0, by proving inductively on k = 1, . . . , n + 1 that

Eφ
0

[∫ τ∧σn

0

e−λtg
(
Φt

)]
dt

≥ Eφ
0

[∫ τ∧σn−k+1

0

e−λtg
(
Φt

)
dt + 1{τ≥σn−k+1}e

−λσn−k+1vk−1

(
Φσn−k+1

)]
=: RHSk−1. (A.78)

Observe that (A.77) follows from (A.78) when we set k = n + 1.

If k = 1, then the inequality (A.78) is satisfied as an equality since v0 ≡ 0. Suppose that (A.78) holds
for some 1 ≤ k < n + 1. We shall prove that it must also hold when k is replaced with k + 1. Let us
denote the righthand side of (A.78) by RHSk−1, and rewrite it as

RHSk−1 = RHS
(1)
k−1 + RHS

(2)
k−1 , Eφ

0

[∫ τ∧σn−k

0

e−λtg
(
Φt

)
dt

]
+ Eφ

0

[
1{τ≥σn−k}

(∫ τ∧σn−k+1

σn−k

e−λtg
(
Φt

)
dt + 1{τ≥σn−k+1}e

−λσn−k+1vk−1

(
Φσn−k+1

))]
(A.79)

where we used
∫ τ∧σn−k+1

0
=

∫ τ∧σn−k

0
+1{τ≥σn−k}

∫ τ∧σn−k+1

τ∧σn−k
, as well as 1{τ≥σn−k}1{τ≥σn−k+1} =

1{τ≥σn−k+1}. By Lemma A.1, there is an Fσn−k
-measurable random variable Rn−k such that τ∧σn−k+1 =

(σn−k + Rn−k) ∧ σn−k+1 P0-almost surely on {τ ≥ σn−k}. Therefore, the second expectation, denoted
by RHS

(2)
k−1, in (A.79) becomes

Eφ
0

{
1{τ≥t}

[∫ (t+Rn−k)∧s

t

e−λtg
(
Φt

)
dt + 1{t+Rn−k≥s}e

−λsvk−1

(
Φs

)]∣∣∣∣∣t=σn−k
s=σn−k+1

}

= Eφ
0

{
1{τ≥σn−k}e

−λσn−kfn−k(Rn−k,Φσn−k
)
}
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by the strong Markov property of X, where fk−1(r, φ) equals

Eφ
0

[∫ r∧σ1

0

e−λtg
(
Φt

)
dt + 1{r≥σ1}e

−λσ1vk−1

(
Φσ1

)]
= Jvk−1(r, φ) ≥ J0vk−1(φ) = vk(φ).

The (in)equalities follow from (21), (22) and (23), respectively. Thus

RHS
(2)
k−1 ≥ Eφ

0

[
1{τ≥σn−k}e

−λσn−kvk

(
Φσn−k

)]
.

From (A.78) and (A.79), we finally obtain

Eφ
0

[∫ τ∧σn

0

e−λtg
(
Φt

)
dt

]
≥ RHSk−1 = Eφ

0

[∫ τ∧σn−k

0

e−λtg
(
Φt

)
dt

]
+ RHS

(2)
k−1

≥ Eφ
0

[∫ τ∧σn−k

0

e−λtg
(
Φt

)
dt + 1{τ≥σn−k}e

−λσn−kvk

(
Φσn−k

)]
= RHSk.

This completes the proof of (A.78) by induction on k, and (A.77) follows by setting k = n + 1 in (A.78).
When we take the infimum of both sides in (A.77), we obtain Vn ≥ vn, n ∈ N.

The opposite inequality Vn ≤ vn, n ∈ N follows immediately from (29) since every F-stopping time Sε
n

is less than or equal to σn, P0-a.s. by construction. Therefore, we only need to establish (29). We will
prove it by induction on n ∈ N. For n = 1, the lefthand side of (29) becomes Eφ

0

[∫ Sε
1

0
e−λtg

(
Φt

)
dt
]

=

Eφ
0

[∫ rε
0(φ)∧σ1

0
e−λtg

(
Φt

)
dt
]

= Jv0(rε
0(φ), φ). Since Jv0(rε

0(φ), φ) ≤ J0v0(φ) + ε by Remark 3.2, the
inequality (29) holds for n = 1.

Suppose that (29) holds for every ε > 0 for some n ∈ N. We will prove that it also holds when n is
replaced with n + 1. Since Sε

n+1 ∧ σ1 = r
ε/2
n

(
Φ0

)
∧ σ1, P0-a.s., we have

Eφ
0

[∫ Sε
n+1

0

e−λtg
(
Φt

)
dt

]
= Eφ

0

[∫ Sε
n+1∧σ1

0

e−λtg
(
Φt

)
dt + 1{Sε

n+1≥σ1}

∫ Sε
n+1

σ1

e−λtg
(
Φt

)
dt

]

= Eφ
0

[∫ rε/2
n (φ)∧σ1

0

e−λtg
(
Φt

)
dt + 1{rε/2

n (φ)≥σ1}

∫ σ1+Sε/2
n ◦θσ1

σ1

e−λtg
(
Φt

)
dt

]

= Eφ
0

[∫ rε/2
n (φ)∧σ1

0

e−λtg
(
Φt

)
dt

]
+ Eφ

0

[
1{rε/2

n (φ)≥σ1}
e−λσ1fn

(
Φσ1

)]
by strong Markov property of X, where fn(φ) , Eφ

0

[∫ Sε/2
n

0
e−λtg

(
Φt

)
dt
]
≤ vn(φ)+ ε/2. by the induction

hypothesis. Therefore, Eφ
0

[∫ Sε
n+1

0
e−λtg

(
Φt

)
dt
]

is less than or equal to

Eφ
0

[∫ rε/2
n (φ)∧σ1

0

e−λtg
(
Φt

)
dt + 1{rε/2

n (φ)≥σ1}
e−λσ1vn

(
Φσ1

)]
+

ε

2
= Jvn(rε/2

n (φ), φ) +
ε

2
.

However, Jvn(rε/2
n (φ), φ) ≤ vn+1(φ) + ε/2 by Remark 3.2. The last two inequalities prove (29) when n is

replaced with n + 1. �

Proof of Lemma 3.7. Let us fix a constant u ≥ t and φ ∈ R+. Then

Jw(u, φ) = Eφ
0

[(∫ t∧σ1

0

+1{σ1>t}

∫ u∧σ1

t

)
e−λsg(Φs)ds + 1{u≥σ1}e

−λσ1w(Φσ1)
]

. (A.80)

On the event {σ1 > t}, we have u ∧ σ1 = [t + (u − t)] ∧ [t + σ1 ◦ θt] = t + [(u − t) ∧ σ1 ◦ θt]. Therefore,
the strong Markov property of X gives

Eφ
0

[
1{σ1>t}

∫ u∧σ1

t

e−λsg(Φs)ds

]
= Eφ

0

[
1{σ1>t}e

−λtEΦt
0

[∫ (u−t)∧σ1

0

e−λsg(Φs)ds

]]
= Eφ

0

[
1{σ1>t}e

−λt
(
Jw(u− t, Φt)− EΦt

0

[
1{u−t≥σ1}e

−λσ1w(Φσ1)
] )]

= e−(λ+λ0)t Jw
(
u− t, x(t, φ)

)
− Eφ

0

[
1{σ1>t}1{u≥σ1}e

−λσ1w(Φσ1)
]
.

(A.81)
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The second equality follows from the definition of Jw in (21), and the last from (13) and the strong
Markov property. Substituting (A.81) into (A.80) gives

Jw(u, φ) = Eφ
0

[∫ t∧σ1

0

e−λsg(Φs)ds + 1{t≥σ1}e
−λσ1w(Φσ1)

]
+ e−(λ+λ0)t Jw

(
u− t, x(t, φ)

)
= Jw(t, φ) + e−(λ+λ0)t Jw

(
u− t, x(t, φ)

)
.

Finally, taking the infimum of both sides over u ∈ [t, +∞] proves (30). �

Proof of Proposition 3.11. Note that the sequence of random variables

∫ Uε∧σn

0

e−λsg(Φs)ds + e−λ(Uε∧σn)V (ΦUε∧σn) ≥ −2
∫ ∞

0

e−λs λ

c
ds = −2

c

is bounded from below; see (16). By (39) and Fatou’s Lemma, we have

V (φ) ≥ Eφ
0

[
lim

n→∞

(∫ Uε∧σn

0

e−λsg(Φs)ds + e−λ(Uε∧σn)V (ΦUε∧σn)

)]

= Eφ
0

[∫ Uε

0

e−λsg(Φs)ds + 1{Uε<∞}e
−λUεV (ΦUε)

]

≥ Eφ
0

[∫ Uε

0

e−λsg(Φs)ds

]
− ε Eφ

0

[
1{Uε<∞}e

−λUε
]
≥ Eφ

0

[∫ Uε

0

e−λsg(Φs)ds

]
− ε

for every φ ∈ R+. This concludes the proof. �

Proof of Proposition 3.12. First, let us show (39) for n = 1. Fix ε ≥ 0 and φ ∈ R+. By
Lemma A.1, there exists a constant u ∈ [0,∞] such that Uε ∧ σ1 = u ∧ σ1. Then

Eφ
0 [MUε∧σ1 ] = Eφ

0

[∫ u∧σ1

0

e−λsg(Φs)ds + 1{u≥σ1}e
−λσ1V (Φσ1)

]
+ Eφ

0

[
1{u<σ1}e

−λuV (Φu)
]

= JV (u, φ) + e−(λ+λ0)uV
(
x(u, φ)

)
= JuV (φ), (A.82)

where the second equality follows from (21) and (13), and the last from (33).

Fix any t ∈ [0, u). By (33) and (13),

JV (t, φ) = JtV (φ)− e−(λ+λ0)tV (x(t, φ))

≥ J0V (φ)− e−(λ+λ0)tV (x(t, φ)) = J0V (φ)− Eφ
0

[
1{σ1>t}e

−λtV (Φt)
]
.

On the event {σ1 > t}, we have Uε > t (otherwise, Uε ≤ t < σ1 would imply Uε = u ≤ t, which
contradicts with our initial choice of t < u). Thus, V (Φt) < −ε on {σ1 > t}. Hence, JV (t, φ) > J0V (φ)+
ε Eφ

0

[
1{σ1>t}e

−λt
]

= J0V (φ) + ε e−(λ+λ0)u ≥ J0V (φ) for every t ∈ [0, u). Therefore, J0V (φ) = JuV (φ),
and (A.82) implies Eφ

0 [MUε∧σ1 ] = JuV (φ) = J0V (φ) = V (φ) = Eφ
0 [M0]. This completes the proof of (39)

for n = 1.

Now suppose that (39) holds for some n ∈ N, and let us show the same equality for n + 1. Note that
Eφ

0 [MUε∧σn+1 ] = Eφ
0 [1{Uε<σ1}MUε ] + Eφ

0 [1{Uε≥σ1}MUε∧σn+1 ] equals

Eφ
0 [1{Uε<σ1}MUε ] + Eφ

0

[
1{Uε≥σ1}

∫ σ1

0

e−λsg(Φs)ds

]
+ Eφ

0

[
1{Uε≥σ1}

{∫ Uε∧σn+1

σ1

e−λsg(Φs)ds + e−λ(Uε∧σn+1)V (ΦUε∧σn+1)

}]
.
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Since Uε ∧ σn+1 = σ1 + [(Uε ∧ σn) ◦ θσ1 ] on the event {Uε ≥ σ1}, the strong Markov property of Φ at the
stopping time σ1 implies that Eφ

0 [MUε∧σn+1 ] equals

Eφ
0 [1{Uε<σ1}MUε ] + Eφ

0

[
1{Uε≥σ1}

∫ σ1

0

e−λsg(Φs)ds

]
+ Eφ

0

[
1{Uε≥σ1}e

−λσ1 EΦσ1
0

[∫ Uε∧σn

0

e−λsg(Φs)ds + e−λ(Uε∧σn)V (ΦUε∧σn)

]
︸ ︷︷ ︸

is equal to V (Φt) by the induction hypothesis

]

= Eφ
0 [1{Uε<σ1}MUε ] + Eφ

0

[
1{Uε≥σ1}

(∫ σ1

0

e−λsg(Φs)ds + e−λσ1V (Φσ1)
)]

= Eφ
0 [1{Uε<σ1}MUε ] + Eφ

0 [1{Uε≥σ1}Mσ1 ] = Eφ[MUε∧σ1 ] = Eφ[M0],
where the last equality was proved above. This concludes the proof of the induction step. �

Proof of Proposition 4.1. The hypotheses guarantee that the process Φ always jumps forward
and does not return to [0, λ/c) after it leaves the same interval at time τ . Therefore, for every stopping
time τ ∈ F,

Eφ
0

[∫ τ

0

e−λtg(Φt)dt

]
≥ Eφ

0

[∫ τ∨τ

0

e−λtg(Φt)dt

]
= Eφ

0

[∫ τ

0

e−λtg(Φt)dt

]
+ Eφ

0

[
1{τ≥τ}

∫ τ

τ

e−λtg(Φt)dt

]
≥ Eφ

0

[∫ τ

0

e−λtg(Φt)dt

]
.

�

Proof of Proposition 4.2. Proposition 3.6 and Corollary 3.4 imply for every φ ∈ [0, λ/c) that

V (φ) = v(φ) ≤ v1(φ) = J0v0(φ) = inf
t∈[0,∞]

∫ t

0

e−(λ+λ0)ug(x(u, φ))du < 0,

since the continuous curve t 7→ x(t, φ) in (12) stays in the interval [0, λ/c) = {x ∈ R+ : g(x) < 0} for some
positive amount of time. Therefore, we have [0, λ/c) ⊆ {φ ∈ R+ : v1(φ) < 0} ⊆ {φ ∈ R+ : V (φ) < 0},
and the first inclusion in (42) follows.

For the proof of the last inclusion, let us fix any stopping time τ ∈ F. By Lemma A.1, there exists
some constant t ∈ [0,∞] such that τ ∧ σ1 = t ∧ σ1 almost surely, and

Eφ
0

[∫ τ

0

e−λug(Φu)du

]
= Eφ

0

[∫ τ∧σ1

0

e−λug(Φu)du

]
+ Eφ

0

[
1{τ>σ1}

∫ τ

σ1

e−λug(Φu)du

]
≥ Eφ

0

[∫ t

0

1{u<σ1}e
−λug(x(u, φ))du

]
− 1

c
· Eφ

0

[
1{t>σ1}e

−λσ1
]

=
∫ t

0

e−(λ+λ0)u

[
x(u, φ)− λ + λ0

c

]
du.

The inequality and the last equality follow from that g(φ) = φ− λ/c ≥ −λ/c for every φ ∈ R+, and that
the first jump time σ1 of the observation process X has exponential distribution with rate λ0 under P0,
respectively. Now the infimum of both sides gives

0 ≥ V (φ) ≥ inf
t∈[0,∞]

h(t, φ) ,
∫ t

0

e−(λ+λ0)u

[
x(u, φ)− λ + λ0

c

]
du. (A.83)

The solution of the deterministic optimization problem on the right depends on φd in (12).

Case I: φd /∈ [0, (λ + λ0)/c). Then x(u, φ) ≥ (λ + λ0)/c for every u ≥ 0 and φ ≥ (λ + λ0)/c.
Therefore, the infimum in (A.83) is attained at t = 0 and V (φ) = 0 if φ ≥ (λ + λ0)/c.

Case II: φd ∈ [0, (λ + λ0)/c). As t tends to infinity, the monotone function t 7→ x(t, φ) converges to
φd ∈ [0, (λ + λ0)/c). Therefore, the infimum in (A.83) is attained at t = 0 if h(∞, φ) ≥ 0, and at t = ∞
otherwise. However, the affine function φ 7→ h(∞, φ) : R+ 7→ R increases to +∞ with φ, is negative at
φ = (λ + λ1)/c > φd and has unique zero at φ = ξ > (λ + λ0)/c of (41). Thus, the infimum in (A.83) is
attained at t = 0 and V (φ) = 0 for every φ ≥ ξ. Finally, both cases imply together the second inclusion
in (42). �
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