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Abstract. We solve the Poisson disorder problem when the delay is penalized exponen-

tially. Our objective is to detect as quickly as possible the unobservable time of the change

(or disorder) in the intensity of a Poisson process. The disorder time delimits two different

regimes in which one employs distinct strategies (e.g., investment, advertising, manufactur-

ing). We seek a stopping rule that minimizes the frequency of false alarms and an exponential

(unlike previous formulations, which use a linear) cost function of the detection delay. In

the financial applications, the exponential penalty is a more apt measure for the delay cost

because of the compounding of the investment growth. The Poisson disorder problem with a

linear delay cost was studied by Peskir and Shiryaev [Advances in Finance and Stochastics,

Springer, Berlin, 295-312, 2002], which is a limiting case of ours.

1. Introduction

In this paper, we address a change-detection problem involving Poisson processes. Suppose

that we observe a Poisson process X = {Xt; t ≥ 0} whose intensity changes from λ0 to

λ1 at some random time θ. The “disorder time” θ is unobservable, but has a known a-

priori probability distribution: it equals zero with probability π ∈ [0, 1) and has exponential

distribution with rate λ given that it is positive. The parameters λ, λ0, λ1 are known

positive constants. The Poisson disorder problem is to detect the change-time θ by using

the observations of X. Here, we are interested in the best detection rule which minimizes

the expected sum of the frequency of the false alarms and an exponential cost function of

the detection delay.

The change-detection and sequential hypothesis testing problems about the drift of a

Wiener process have been extensively studied; see, e.g., Shiryaev (2002; 1978, Chapter IV),
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Beibel (2000; 1996), Karatzas (2003), Moustakides (2004). Similar questions for the intensity

of a Poisson process also draw significant attention, because Poisson processes are often used

to model abrupt changes, such as sudden price movements in stock markets, changes in

credit ratings due to defaults, changes in the intensity of earthquakes, product failures in a

manufacturing system, etcetera.

Particularly, the Poisson disorder problem with linear penalty functions of the delay has

been investigated well; see, e.g., Galchuk and Rozovsky (1971), Davis (1976), Peskir and

Shiryaev (2002; 2000). However, in many applications the cost of the lost opportunity due

to the detection delay exponentiates with the delay time. Therefore, it is captured better by

an exponential penalty function than by a linear one.

As a simple motivating example from quality control, let us consider an assembly line

whose finished products are continuously inspected for defects. A sudden upward shift (e.g.,

from low λ0 to high λ1) in the rate of the number of defective items (the observation process

X) may have an assignable cause and warrant an investigation at some fixed cost. A good

control policy should balance the costs of false alarm (due to unnecessary inspection) and

detection delay (due to lost production time and raw materials, scrapping or recycling, etc.).

A firm often measures its financial losses and gains by compounding those at its own

internal rate of return (IRR). Let us denote our firm’s IRR by α. Typically the production

rate of an assembly line is constant, say one item per unit time. Suppose also that a defective

item costs one dollar. If the production system goes out of control at time θ, and an alarm

is given at some later time τ , then every dt units of defective items at each t ∈ [θ, τ) will

cost exp{α(τ − t)}dt at the detection time τ . Therefore, total cost of detection delay equals

1{τ>θ}

∫ τ

θ

eα(τ−t)dt = 1{τ>θ}

∫ τ−θ

0

eαtdt =

∫ (τ−θ)+

0

eαtdt =
1

α

[
eα(τ−θ)+ − 1

]

and is an exponential function of the detection delay time (τ − θ)+. In addition, if each false

alarm costs 1/(cα) dollars on average, then an optimal alarm time τ should minimize the

expected total inspection cost, which is proportional to

P{τ < θ}+ c E
[
eα(τ−θ)+ − 1

]
,(1.1)

i.e., the alarm time τ should solve optimally some Poisson disorder problem with an expo-

nential penalty for delay.
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The only alternative to exponential delay penalty in the literature (see, e.g., Galchuk and

Rozovsky (1971), Davis (1976), Peskir and Shiryaev (2002)) is the linear delay penalty as in

P{τ < θ}+ c E[(τ − θ)+].(1.2)

From decision theoretic point of view, the penalty E[(τ−θ)+] is the choice of a risk-neutral

decision maker. Indeed, if the risks implied by the fluctuations in the delay time (τ − θ)+

are important to a decision maker, then the linear penalty E[(τ − θ)+] falls short.

On the other hand, the exponential penalty E[eα(τ−θ)+−1] not only captures the variability

of the delay time, but also reflects the risk-sensitivity of a risk-averse decision maker; see

Whittle (1990; 1996). By adjusting the parameter α, the decision maker can tune the

exponential penalty to his/her risk preferences. To see these, let us replace in (1.2) the

linear penalty E[(τ − θ)+] with the exponential penalty 1
α
E[eα(τ−θ)+ − 1] and use the identity

(see, for example, Bensoussan (1992, p. 54))

eαx = 1 + αx + α2x2

∫ 1

0

∫ s

0

erαxdrds, x ≥ 0

to rewrite it. We obtain

(1.3) P{τ < θ}+
c

α
E

[
eα(τ−θ)+ − 1

]
= P{τ < θ}+ c E[(τ − θ)+]

+ cα E
[(

(τ − θ)+
)2

∫ 1

0

∫ s

0

erα(τ−θ)+drds

]
.

Hence, the exponential penalty on the left accounts for the losses in (1.2) as well as the effect

of the second-order terms in the delay time. For large values of α, every alarm time τ causing

high variations in the delay time (τ − θ)+ is now punished severely according to (1.3). For

small values of α, the punishment is lesser, and we retrieve the risk-neutral (linear) case (1.2)

if we let α go to zero. Hence, the exponential penalty contains the linear penalty as a sub

case and allows the risk preferences to be added to the analysis by a natural mechanism.

The importance of exponential delay penalty was recognized first by Poor (1998), who

solved a quickest-detection problem with exponential delay cost in the discrete-time setting.

Later, Beibel (2000) solved the Wiener disorder problem with the same cost function. The

Poisson disorder problem with an exponential penalty function of the detection delay is

studied for the first time in this paper, to the best of our knowledge.

To solve the Poisson disorder problem, we first show that it is equivalent to an optimal

stopping problem for a two-dimensional jump process (Π, Φ) in [0, 1]×R+. For every t ≥ 0,

Πt is the conditional probability that the change occurred at or before time t given the
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past observations of X. On the other hand, Φt is essentially the likelihood-ratio process

Ψt , Πt/(1−Πt) with an adjustment, adapted to the history of X, reflecting the exponential

detection delay cost; see (2.4). The optimal stopping problem is reduced to a free-boundary

problem involving a differential delay equation. By means of a key verification lemma,

one solution of the free-boundary problem is identified as the value function of the optimal

stopping problem. The optimal stopping rule turns out a threshold type for the process Φ

regardless of Π: declare that the disorder happened at or before time t ≥ 0 as soon as Φt

exceeds a suitable threshold (constant over time).

We characterize the optimal threshold and the value function of the optimal stopping

problem. To calculate the threshold and the value function, we describe an efficient numerical

method using bisection search on the real line and finite-difference method for differential-

delay equations.

Our systematic numerical method also complements the work of Peskir and Shiryaev

(2002) whose problem is a limiting case of ours. Let us also mention that Beibel (2000)

reduced the Wiener disorder problem with exponential penalty function to a similar optimal

stopping problem, and solved it as a generalized parking problem. Beibel’s approach relies on

the continuity of the paths of the process Π. For the Poisson disorder problem, the process Π

has jumps, and the related optimal stopping problem cannot be formulated as a generalized

parking problem.

In the next section, we give a precise description of our problem and formulate the equiv-

alent optimal stopping problem in (2.3-2.5). The latter is solved, and an optimal Bayes

rule and the minimum Bayes cost function are determined in Section 3; see Propositions

3.1-3.4. To calculate the optimal decision rules, numerical methods are also described; they

are illustrated on examples in Figures 2 and 3. Long proofs are presented in Section 4 and

in the appendix.

Let us remark that our analysis of the free-boundary problem may be useful to solve other

quickest detection problems; see, for example, Bayraktar, Dayanik, and Karatzas (2005) for

an application to “standard” Poisson disorder problems.

2. The problem

Let (Ω,F , Pπ) be a probability space hosting two independent Poisson processes X0 =

(X0
t )t≥0 and X1 = (X1

t )t≥0 with rates λ0 and λ1, respectively, and a random variable θ,

independent of the processes X0 and X1, having the distribution

Pπ{θ = 0} = π and Pπ{θ > t} = (1− π)e−λt, t ≥ 0.
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The processes X0, X1 and the random variable θ are unobservable. The observation process

is

Xt =

∫ t

0

1{s≤θ}dX0
s +

∫ t

0

1{s>θ}dX1
s , t ≥ 0,(2.1)

with the natural filtration FX = (FX
t )t≥0 (modified suitably to make it satisfy the usual

conditions) and FX
∞ , ∨t≥0FX

t . For every FX-stopping time τ (sometimes, we write τ ∈
FX), the associated Bayes error

Rτ (π) , Pπ{τ < θ}+ c Eπ

[
eα(τ−θ)+ − 1

]
(2.2)

is the sum of the probability of the false alarm Pπ(τ < θ) and the expected exponential delay

penalty c Eπ[eα(τ−θ)+ − 1] for some known positive constants c and α. The Poisson disorder

problem is to find an FX-stopping time τ ∗ as close to the disorder time θ as possible in the

sense that, if such a stopping time exists, it achieves the minimum Bayes error

V (π) , inf
τ

Rτ (π), ∀π ∈ [0, 1],(2.3)

where the infimum is taken over all FX-stopping times τ . In fact, it is enough to take the

infimum in (2.3) only over the FX-stopping times having finite expectations (this will be

useful later in establishing the relationship (3.6)). Indeed, if τ is an FX-stopping time and

Eπτ = ∞, then the Jensen’s inequality implies that Rτ ≥ c Eπ[eα(τ−θ)+−1] ≥ c [exp{α(Eπτ−
Eπθ)+} − 1] = ∞ > 1 − π = R0(π) ≥ V (π); i.e., τ cannot attain the infimum in (2.3). In

terms of the FX-adapted processes

Πt , Pπ{θ ≤ t|FX
t } and Φt ,

Eπ[1{θ≤t}e
α(t−θ)+|FX

t ]

1− Πt

, t ≥ 0,(2.4)

the Bayes error Rτ (π) in (2.2) can be expressed as

Rτ (π) = 1− π + Eπ

∫ τ

0

(1− Πs)(cαΦs − λ)ds(2.5)

for every FX-stopping time τ (see page 25 for the proof). We interpret the process Φt in (2.4)

as the weighted likelihood-ratio process—with the exponential delay cost as the weight—

because of its resemblance to the well-known likelihood-ratio process Ψt , Πt/(1 − Πt),

the sufficient statistic in many statistical detection and hypothesis testing problems. In our

problem, Φ also turns out the sufficient statistic in the sense that it completely determines

the optimal detection rule. The standard applications of Bayes’ theorem and the chain rule
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(see Section 5.1 in the Appendix) reveal the dynamics of the jump processes Π, Ψ and Φ as

dΠt = [λ− (λ1 − λ0)Πt](1− Πt)dt +
(λ1 − λ0)Πt−(1− Πt−)

λ0(1− Πt−) + λ1Πt−
dXt, Π0 = π,(2.6)

dΨt = [λ + (λ− λ1 + λ0)Ψt]dt + (λ1/λ0 − 1)Ψt−dXt, Ψ0 = π/(1− π),(2.7)

dΦt = [λ + (λ + α− λ1 + λ0)Φt]dt + (λ1/λ0 − 1)Φt−dXt, Φ0 = π/(1− π).(2.8)

Evidently, the processes Π, Ψ and Φ are strongly Markovian. With the new look of the

Bayes risk in (2.5), the quickest detection problem of (2.3) is an optimal stopping problem

for the two-dimensional Markovian jump process (Π, Φ). In the next section, we shall for-

mulate the optimal stopping problem as a free-boundary problem involving the infinitesimal

generator of (Π, Φ), and solve the latter.

3. Free boundary problem and its solution

We shall start this section with an observation. For every real number φ, let us denote

the exit time of Φ out of the interval [0, φ) by

τφ , inf{t ≥ 0 : Φt ≥ φ} (inf ∅ ≡ +∞),(3.1)

and define for future reference

a , λ + α− λ1 + λ0, b , λ + λ0 > 0,

r , λ1/λ0, φr , λ/cα > 0,
φd ,

{
− λ/a if a 6= 0

−∞, if a = 0

}
.(3.2)

The drift φ 7→ λ + aφ of Φ in (2.8) changes its sign at φ = φd (“d” for drift); the sign of the

integrand in (2.5) is determined by the function φ 7→ cαφ− λ whose sign changes at φ = φr

(“r” for reward). As clearly seen from (2.5), the Bayes risk Rτ (π) decreases as long as the

process Φ stays in [0, φr). Therefore, it is not optimal to stop before Φ leaves [0, φr).

Lemma 3.1. If an FX-stopping time τ is optimal for (2.3, 2.5), then so is τ ∨ τφr , where φr

is as in (3.2).

Proof. For every π ∈ [0, 1], (2.5) implies Rτ∨τφr
(π) = Rτ (π)+Eπ

∫ τ∨τφr

τ
(1−Πs)(cαΦs−λ)ds ≤

Rτ (π) = V (π), i.e., Rτ∨τφr
(π) = V (π). �

Hence, we can restrict our search for an optimal stopping time to those FX-stopping times

τ satisfying τ ≥ τφr , Pπ-a.s. for all π ∈ [0, 1]. From this observation and the behavior of the

paths of the process Φ, our first result follows.

Proposition 3.1 (Case I). Let λ1 ≥ λ0. If φd < 0 or 0 < φd ≤ φr, then the stopping time

τφr is optimal for (2.3, 2.5), where φr and φd are as in (3.2).
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φr φφd0

(a) λ1 > λ0, φd > 0

t

φ0

Φt(ω)

t

φ

(b) λ1 > λ0, φd < 0

0

t

(c) λ1 < λ0 (φd < 0)

Φt(ω)

φrφr

Φt(ω)

φ′r

Figure 1. Sample paths of the process Φ of (2.8,3.3). The process Φ has

positive jumps if λ1 > λ0 (a,b), and negative jumps if λ1 < λ0 (c). The paths

increase between jumps if φd < 0 (b,c). Note from (3.2) that φd is always

negative if λ1 < λ0. If φd > 0, then Φ reverts to the mean-level φd between

(positive) jumps (a).

Let σ0 ≡ 0 and σn , inf{t > σn−1 : Φt − Φt− > 0} be the n-th jump time of Φ for every

n ∈ N (by convention, inf ∅ = +∞). From (2.8), it is easy to obtain that

Φt =

{
φd + [Φσn−1 − φd] exp{−(λ/φd)(t− σn−1)}, φd 6= −∞

Φσn−1 + λt, φd = −∞

}
, σn−1 ≤ t < σn,

Φ0 ∈ R+ and Φσn = (λ1/λ0)Φσn−, n ∈ N.

(3.3)

If φd < 0, then the paths of the process Φ always increase between jumps. If φd > 0, then

φd is the mean-level to which the process Φ reverts between jumps; the difference Φt − φd

in (3.3) never vanishes before a jump, and Φσn 6= φd for all n > 0 almost surely. If φd > 0,

then the state φd is an “entrance boundary” for Φ: it can start at φd—and stays there until

the first jump time, but never comes back to φd after it leaves.
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If λ1 > λ0, then Φ has positive jumps; φd may be negative or positive; see Figure 1(a,b).

If λ1 = λ0, then the process Φ never jumps; since φd is always defined and negative, the

paths of Φ increase. If λ1 < λ0, then Φ has negative jumps; since φd is always defined and

negative, the paths of Φ increase between jumps; see Figure 1(c).

Proof of Proposition 3.1. In all of three cases, the process Φ does not return to the

interval [0, φr], once it leaves; see Figure 1(a,b). Therefore, τφr is optimal. �

In the remainder, we focus on λ1 > λ0, 0 < φd < φr (Case II), and λ1 < λ0 (Case III).

In both cases, the process Φ returns to the interval [0, φr] with positive probability after

every exit (see Figure 1(a,c)); the optimal stopping rule for (2.3, 2.5) turns out in the form

of τφ of (3.1) for some suitable φ > φr.

On (Ω,F , Pπ), let the FX-adapted process Φ̃ be the unique solution of the stochastic

differential equation

dΦ̃t = [λ + (λ + α− λ1 + λ0)Φ̃t]dt + (λ1/λ0 − 1)Φ̃t−dXt, Φ̃0 = φ ∈ [0, +∞).(3.4)

For every (π, φ) ∈ [0, 1]×R+, we shall denote by Pπ,φ the probability measure Pπ if Pπ{Φ̃0 =

φ} = 1. Let Eπ,φ be the expectation under Pπ,φ, and introduce the auxiliary optimal stopping

problem

Ṽ (π, φ) , inf
τ

Eπ,φ

∫ τ

0

(1− Πs)(cαΦ̃s − λ)ds, (π, φ) ∈ [0, 1]× R+,(3.5)

where the infimum is taken over all FX-stopping times having finite Pπ,φ-expectations. Note

from (2.8) and (3.4) that the finite-dimensional distribution of (X, Π, Φ̃) under Pπ,π/(1−π) is

the same as that of (X, Π, Φ) under Pπ. Therefore, the value function of the original optimal

stopping problem (2.3, 2.5) is given by

V (π) = 1− π + Ṽ (π, π/(1− π)), π ∈ [0, 1].(3.6)

Ansatz. For a suitable function g : R+ 7→ R and a real number φ > φr, the value function

Ṽ and the optimal continuation region for (3.5) are in the forms of

Ṽ (π, φ) = (1− π)g(φ), (π, φ) ∈ [0, 1]× R+ and C = [0, 1]× [0, φ),(3.7)

respectively. The first exit time of (Π, Φ̃) out of C ⊂ [0, 1]× R+ is optimal for (3.5).

It is obvious from (2.2), (2.3) and (2.5) that 0 ≤ V (π) ≤ 1− π for every π ∈ [0, 1]. If the

ansatz is true, then (3.6) and (3.7) imply that 0 ≤ V (π) = 1−π+(1−π)g(π/(1−π)) ≤ 1−π
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for every π ∈ [0, 1]; namely, g(·) is bounded, and

−1 ≤ g(φ) ≤ 0, ∀φ ∈ R+.(3.8)

The infinitesimal generator A of (Π, Φ̃) coincides with the first order differential-difference

operator in (5.12) acting on the functions in C1,1([0, 1] × R+). If g ∈ C1(R+), then the

free-boundary problem associated with (3.5, 3.7) becomes

A (1− π)g(y) = −(1− π)(cαy − λ), (π, y) ∈ [0, 1]× [0, φ),(3.9)

(1− π)g(y) = 0, (π, y) ∈ [0, 1]× [φ,∞).(3.10)

It is easily checked that A (1 − π)g(y) = (1 − π)[(λ + ay)g′(y) − bg(y) + λ0g(ry)] for every

(π, y) ∈ [0, 1] × R+, where a, b, r are defined as in (3.2). Therefore, (3.9, 3.10) simplifies to

the one-dimensional free-boundary problem (3.9′, 3.10′) below. The proof of the next lemma

is given on page 28 after the supporting facts are established in Section 5.2 of the appendix.

Verification Lemma. Let g : R+ 7→ (−∞, 0] be a bounded, continuous and piecewise

continuously differentiable function such that

(λ + ay)g′(y)− bg(y) + λ0g(ry) ≥ −cαy + λ, y ∈ R+(3.11)

whenever g′(y) exists. Then Ṽ (π, y) ≥ (1−π)g(y) for every (π, y) ∈ [0, 1]×R+. In addition,

if g ∈ C(R+) ∩C1(R+\{φd, φ}) for some real number φ > φr and

(λ + ay)g′(y)− bg(y) + λ0g(ry) = −cαy + λ, y ∈ (0, φd) ∪ (φd, φ),(3.9′)

g(y) = 0, y ∈ [φ,∞),(3.10′)

then (3.7) holds, i.e., Ṽ (π, y) = (1− π)g(y) for every (π, y) ∈ [0, 1]× R+; the stopping time

τφ , inf{t ≥ 0 : Φ̃t ≥ φ} has finite Pπ,φ-expectation and is optimal for (3.5).

Proposition 3.2 (Case II and III). There exist unique real number φ∗ > φr and unique

function g : R+ 7→ [−1, 0] in C(R+) ∩ C1(R+\{φd, φ
∗}) which satisfy (3.11), (3.9′), (3.10′)

with φ∗ instead of φ. The minimum Bayes error in (2.2) is

V (π) = 1− π + (1− π)g(π/(1− π)), ∀ π ∈ [0, 1],

and τ ∗ , τφ∗ = {t ≥ 0 : Φt ≥ φ∗} is a minimum Bayes stopping rule.

The next section is devoted to the proof of the existence and the uniqueness of φ∗ and

g. The rest of Proposition 3.2 follows from (3.6) and the verification lemma above. In the

remainder of this section, we shall describe a numerical method to calculate φ∗ and the

function g(·).
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Figure 2. Case II: (a) bisection search for φ∗, (b) comparison of hφ(·) for

different φ-values, see (3.12, 3.13). For both illustrations, the parameters are

λ = 1, λ0 = 3, λ1 = 6, α = 1 and c = 0.2; we compute r = 2, φd = 1,

φr = 5, see (3.2). In (a), the search for φ∗ starts in [φr, φ] = [5, 15.33] with

the tight upper bound φ of Proposition 3.3, and continues along the intervals

[φr, φ1] ⊃ [φr, φ2] ⊃ [φr, φ3] ⊃ [φ4, φ3] ⊃ [φ5, φ3] ⊃ [φ5, φ6] · · · . The mid-points

of the intervals are φ1, φ2, . . .; the lefthand (righthand, resp.) half of each

interval is eliminated if I(φi) , hφi
(φd) is positive (negative, resp.). The unique

root of I(φ∗) = 0 is found at φ∗ = 6.016 up to three decimal points after 17

iterations. The figure in (b) illustrates that the function hφ∗(·) is the separatrix

for (3.12, 3.13): among all hφ, φ ∈ [φd,∞), it is the only function bounded

between y-axis and y 7→ f−1(y) of Proposition 3.3. Moreover, hφ∗(φd) = 0,

and hφ(φd) is positive (negative, resp.) for every φ < φ∗ (φ > φ∗, resp.); the

functions gφ(y) , |λ + ay|b/ahφ(y) explode near y = φd for all φ but φ∗. If

a + b < 0, equivalently 1 < r ≤ 2 + (2λ + α)/λ0, then only hφ∗ has a stable

extension onto R+; the functions y 7→ hφ(y) above it (below it, resp.) increase

to +∞ (decrease to −∞, resp.) as y decreases to φd/r. (In both (a) and (b),

the solutions hφ(·) of the differential equation (3.12, 3.13) of advanced type are

computed by the finite difference method.)

Case II: λ1 > λ0 and 0 < φd < φr. For every real number φ > φd, denote by hφ : [φd,∞) 7→
R the unique solution in C([φd,∞)) ∩C1([φd, φ) ∪ (φ,∞)) of

h′φ(y) = −λ0l(y)hφ(ry)− sgn(λ + ay)|λ + ay|−b/a−1(cαy − λ), y ∈ [φd, φ),(3.12)

hφ(y) = 0, y ∈ [φ, +∞),(3.13)
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where l(y) , sgn(λ + ay)|λ + ay|−b/a−1|λ + ary|b/a is well-defined for every y ∈ [φd,∞) since

a < 0 and r > 1; see (3.2).

Proposition 3.3. Let φ∗ and g(·) be as in Proposition 3.2. The function hφ∗(·) is the only

one among all hφ, φ > φd such that

f−1(y) , −|λ + ay|−b/a ≤ hφ(y) ≤ 0, ∀ y ∈ [φd,∞).(3.14)

By defining it on (0, φ∗) as the solution of the differential equation (3.12), its extension onto

R+ (denoted also by hφ∗) remains between the same bounds of (3.14) on R+. We have

g(y) = |λ + ay|b/ahφ∗(y) for every y ∈ R+, and

φr < φ∗ < φ ,
r

cα
·
[

b− a

r−(b/a)+1 − 1
+ (b− a− cα) · λ

b
· r−b/a − 1

r−(b/a)+1 − 1

]
.

The function I(φ) , hφ(φd), φ ∈ [φr,∞) is continuous and strictly decreasing, and I(φ∗) = 0.

Thanks to Proposition 3.3, one can find φ∗ (and hφ∗(·) on [φd,∞)) by the bisection search

in the interval (φr, φ): Initially, let (φ
0
, φ0) = (φr, φ). For every n ≥ 0, let φn be the

mid-point of the interval [φ
n
, φn]; if I(φn) < 0, then set (φ

n+1
, φn+1) = (φ

n
, φn), otherwise

(φ
n+1

, φn+1) = (φn, φn). Then {φ∗} = ∩n≥0[φn
, φn]. Unfortunately, the solution hφ of (3.12,

3.13) is unavailable in closed-form; however, it can be calculated on [φr, φ] fairly accurately

by the finite difference methods. After φ∗ and hφ∗ on [φd,∞) are found, hφ∗ on [0, φd)

can be calculated similarly from (3.12) by the continuation process (see, e.g., Bellman and

Cooke (1963, p. 47)). See Figure 2(a) for an illustration.

Case III: λ1 < λ0. For every real number β, let ~β : R+ 7→ R be the unique continuously

differentiable solution of

~′β(y) = −(λ + ay)−b/a−1
[
λ0(λ + ary)b/a~β(ry) + cαy − λ

]
, y > 0,(3.15)

~β(0) = β.(3.16)

The differential equations in (3.12) and (3.15) are essentially the same (in the latter case,

λ + ay is positive for every y ∈ R+ since a is positive). However, the solution hφ(y) of (3.12)

is unique if it is initially described for all y ∈ [φ, rφ), whereas ~β(0) uniquely determines

the solution ~β(·) of (3.15). Strictly speaking, (3.12) of Case II is a differential equation of

advanced type (r = λ1/λ0 > 1), and (3.15) of Case III is a differential equation of retarded

type (r = λ1/λ0 < 1), see Bellman and Cooke (1963, p. 48). The integral equation obtained

from (3.15) also resembles a renewal equation; this will be useful in the next section.
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Figure 3. Case 3: (a) bisection search for β∗, (b) comparison of ~β(·) for

different β-values, see (3.15, 3.16). For both illustrations, the parameters

are λ = 1, λ0 = 3, λ1 = 1.5, α = 1 and c = 0.2; we compute r = 1/2,

φd < 0, φr = 5, see (3.2). By Proposition 3.4, φr < φ∗ < b/cα = 20. The

condition (3.17) on ~β∗ implies that −λ−b/a = f−1(0) ≤ hβ∗(0) = β∗ ≤ 0.

Therefore, our search for β∗ starts in [−λ−b/a, 0] = [−1, 0]; it continues along

the intervals [−1, β1] ⊃ [β2, β1] ⊃ [β3, β1] ⊃ [β3, β4] · · · where β1, β2, . . . are the

mid-points of the intervals; the lefthand (righthand, resp.) half of each interval

is eliminated if J(βi) , maxy∈[0,b/cα] ~βi
(y) is negative (positive, resp.). The

unique zero of J(β) = 0 in [−1, 0] is found after 10 iterations at β∗ = −0.581

up to three decimal points; J(β∗) is attained at y = φ∗ ≈ 6.196. The figure in

(b) displays the functions ~β for β = −1,−0.75,−0.581(= β∗),−0.40,−0.25, 0.

The function ~β∗ is the smallest among all functions ~β, β ∈ [−λ−b/a, 0] which

intersect the y-axis.

Proposition 3.4. Let φ∗ and g(·) be as in Proposition 3.2. Then g(y) = (λ + ay)b/a~β∗(y)

for every y ∈ [0, φ∗), where β∗ is the unique number satisfying both ~β∗(φ
∗) = ~′β∗(φ∗) = 0

and

f−1(y) , −(λ + ay)−b/a ≤ ~β∗(y) ≤ 0, ∀ y ∈ [0, φ∗].(3.17)

We have φr < φ∗ < b/cα and −λ−b/a < β∗ < 0. The function J(β) , maxy∈[0,b/cα] ~β(y),

β ∈ [−λ−b/a, 0] is continuous and strictly increasing, and J(β∗) = 0.

One can find β∗ in Proposition 3.4 by bisection search in the interval (β
0
, β0) = (−λ−b/a, 0):

For every n ≥ 0, let βn be the mid-point of (β
n
, βn). If J(βn) < 0, then let (β

n+1
, βn+1) =

(βn, βn), otherwise (β
n+1

, βn+1) = (β
n
, βn). Then {β∗} = ∩n≥0[βn

, βn]. See Figure 3(a).
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As the proof of Proposition 3.4 on page 21 reveals that the maximum φ∗ at which J(β∗) =

maxx∈[0,b/cα] ~β∗(x) is attained is unique in [0, b/cα].

Remark 3.1. If the discount rate α decreases to zero in such a way that C , cα remains

constant, then the Bayes error Rt(π) of (2.2) converges for every t ∈ R+ to R̂t(π) , Pπ(θ >

t) + C Eπ[(t− θ)+], where the detection delay cost is proportional to the delay time. Peskir

and Shiryaev (2002) showed that the Poisson disorder problem V̂ (π) , infτ∈FX R̂τ (π) accepts

a Bayes optimal stopping rule in the form of τ∗ , inf{t ≥ 0 : Πt ≥ B∗} for some suitable

constant B∗ ∈ (0, 1). Our results are in agreement with their findings. As α ↘ 0, we have

Φt → Ψt , Πt/(1 − Πt) for every t ∈ R+ almost surely (see (2.7) and (2.8)); moreover,

since C ≡ cα remains constant, we have φr = λ/C, φd = −λ/a with a = λ − λ1 + λ0 in

(3.2). By Propositions 3.1 and 3.2, there is a suitable φ∗ ≥ φr such that τ∗ , inf{t ≥ 0 :

Ψt ≥ φ∗} is a minimum Bayes stopping rule. Equivalently, τ∗ = inf{t ≥ 0 : Πt ≥ B∗} with

B∗ , φ∗/(1 + φ∗), since x 7→ x/(1 + x), x ∈ R+ is increasing. Propositions 3.1, 3.3 and

3.4 describe how to find φ∗ (therefore, B∗) and the value function for different parameter

ranges. For example, if λ1 ≥ λ0, and either φd < 0 or 0 < φr ≤ φd (equivalently, λ > λ1−λ0

or C ≥ λ1 − λ0 − λ), then φ∗ = φr and B∗ = λ/(λ + C) by Proposition 3.1 (compare with

Peskir and Shiryaev (2002, Theorem 4.1)).

4. Proofs of Propositions 3.2, 3.3 and 3.4

In Case II, we shall prove Propositions 3.2 and 3.3 simultaneously by showing that there

is a suitable φ∗ > φd such that the solution hφ∗ of (3.12, 3.13) with φ = φ∗ is bounded as in

(3.14), and the function g(y) , |λ + ay|b/ahφ∗(y), y ∈ R+ has the desired properties enlisted

in Proposition 3.2. In Case III, we shall prove Propositions 3.2 and 3.4 similarly. For the

proofs of several lemmas below, it will be crucial to notice that the family of the auxiliary

functions

fm(y) , m|λ + ay|−b/a, y ∈ R+, m ∈ R solves f ′(y) = −bl(y)f(ry), y ∈ R+\{φd},(4.1)

which resembles the equations (3.12) and (3.15) that every hφ and ~β satisfy, respectively.

For every m ∈ R, it is also easy to check that

fm(x) = fm(R)−
∫ R

x

b |λ + ay|−b/a−1|λ + ary|b/a fm(ry)dy, φd ≤ x ≤ R < ∞.(4.2)

4.1. Case II: λ1 > λ0 and 0 < φd < φr. For every φ > φd, let hφ : [φd,∞) 7→ R be the

unique solution of (3.12, 3.13)) in C([φd,∞))∩C1([φd, φ)∪(φ,∞)). The proof of the existence

and the uniqueness of the function hφ∗ , bounded as in (3.14), for some φ∗ > φd is broken



14 ERHAN BAYRAKTAR AND SAVAS DAYANIK

down into several lemmas below. Lemmas 4.3 and 4.4 identify the crucial property of the

family of functions {hφ}: for any φ > φr, if y 7→ hφ(y) violates one of the bounds in (3.14),

then hφ(φd) 6= 0 (see also Figure 2(b)). However, the continuous mapping φ 7→ I(φ) , hφ(φd)

has unique root in (φr,∞) (identified with φ∗) by Lemmas 4.1, 4.2, 4.5 and 4.6. Therefore,

hφ∗ becomes one (and the only) member of {hφ}φ>φr between the bounds in (3.14).

Lemma 4.1. If φr ≤ A < B < ∞, then hA(x) > hB(x) for every x ∈ [φd, B).

Proof. It is sufficient to consider max{φd, B/r} ≤ A < B; in general, A ∈ [B/rn+1, B/rn)

for some n ∈ N, and hA > hB/rn > . . . > hB/r > hB on [φd, B) follows. By (3.12) and (3.13),

the difference hAB , hA − hB is positive on [max{φd, B/r}, B]. If φd ∈ [B/r, B), then the

proof is complete. Otherwise, hAB satisfies

h′AB(y) = −λ0l(y)hAB(ry), φd < y < A,(4.3)

hAB(x) = hAB(R)−
∫ R

x

λ0|λ + ay|−b/a−1|λ + ary|b/ahAB(ry)dy, φd ≤ x ≤ R ≤ A.(4.4)

There exists a positive real number m1 such that fm1(B/r) = hAB(B/r). Since fm1 of

(4.1) is increasing, and hAB is decreasing on [B/r, B], fm1 dominates hAB over [B/r, B] (see

Figure 4(a)). Therefore, a comparison of (4.2) and (4.4) with R = B/r gives

0 ≤ fm1(x) < hAB(x), ∀x ∈ [B/r2, B/r].

If φd ∈ [B/r2, B/r], then the proof is complete. Otherwise, there exists a (positive) real

number m2 > m1 such that fm2(B/r2) = hAB(B/r2) > fm1(B/r2). Since fm2 > fm1 > hAB

on [B/r, B], the comparison of the differential equations in (4.1) and (4.3) gives f ′m2
> h′AB >

0 on [B/r2, B/r]. Because fm2(B/r2) = hAB(B/r2), this implies fm2(x) > hAB(x), for every

x ∈ [B/r2, B/r] (see Figure 4(a)). Therefore, a comparison of (4.2) and (4.4) with R = B/r2

gives

0 ≤ fm2(x) < hAB(x), ∀x ∈ [B/r3, B/r2].

Since φd ∈ [B/rn, B/rn−1] for some n, from a finite induction the proof follows. �

Lemma 4.2. If φd ≤ A < B ≤ φr, then hA(x) < hB(x) for every x ∈ [φd, B). For every

φ ∈ [φd, φr], hφ > 0 on [φd, φ).

Proof. The proof of that hBA , hB − hA > 0 on [φd, B) is similar to that of Lemma 4.1. For

the second part, observe that φd ∈ [φ/rn+1, φ/rn) for some n ∈ N, and hφ/rn ≥ 0. Therefore,

the first part implies hφ > hφ/r > · · · > hφ/rn ≥ 0 on [φd, φ). �
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Figure 4. Illustrations for the proofs of (a) Lemma 4.1 and (b) Lemma 4.4.

The location of φr is unimportant as long as φd < φr < A < B in (a), and

φd < φr < φ in (b).

Lemma 4.3. Let φ ∈ (φr,∞). If hφ(z) = 0 for some z ∈ (φd, φ), then hφ > 0 on [φd, z).

Proof. Let φ ∈ (φr,∞). Suppose that hφ has some zeros in (φd, φ), and let z be the

largest. By (3.12) and (3.13), hA < 0 on [max{A/r, φr}, A) for every A > φr. Since

φr ∈ [φ/rn+1, φ/rn) for some n ∈ N, Lemma 4.1 implies that 0 > hφ/rn > · · · > hφ/r > hφ on

[φr, φ). Therefore, z ∈ (φd, φr). Take any A ∈ [max{φd, z/r}, z). With minor modifications

to the proof of Lemma 4.2, it can be shown that hφ > hA ≥ 0 on [φd, z). �

Lemma 4.4. Let φ ∈ (φr,∞). If hφ(z) = f−1(z) of (4.1) for some z ∈ (φd,∞), then

hφ < f−1 ≤ 0 on [φd, z).

Proof. The function dφ(x) , hφ(x)− f−1(x), x ∈ [φd,∞) satisfies

d′φ(x) = −λ0l(x)dφ(rx)− sgn(λ + ax)|λ + ax|−b/a−1 cαx, x ∈ (φd, φ),

dφ(x) = |λ + ax|−b/a, x ∈ [φ,∞).
(4.5)

Suppose that dφ has some zeros in (φd,∞), and let z be the largest (note that z ∈ (φd, φ)).

Since dφ > 0 on (z,∞), (4.5) implies that d′φ > 0 and dφ < 0 on [z/r, z]. If φd ∈ [z/r, z),

then the proof is complete. Otherwise, (4.5) implies

dφ(x) < dφ(R) +

∫ R

x

λ0l(y)dφ(ry)dy, φd ≤ x < R ≤ z.(4.6)

There exists a negative real number m1 such that fm1(z/r) = dφ(z/r). Since fm1 is decreas-

ing, and dφ is increasing on [z/r, z], we have fm1 < dφ on [z/r, z]. Therefore, (4.6) with
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R = z/r implies (see Figure 4(b))

dφ(x) < fm1(z/r) +

∫ z/r

x

λ0l(z)fm1(rz)dz = fm1(x) ≤ 0, x ∈ [z/r2, z/r].

If φd ∈ [z/r2, z/r), then the proof is complete. Otherwise, there exists a negative real number

m2 < m1 such that fm2(z/r
2) = dφ(z/r

2) < fm1(z/r
2). Since fm2 < fm1 , we have fm2 < dφ

on [z/r, z]. Therefore, (4.5) implies

d′φ(x) ≥ −λ0l(x)dφ(rx) ≥ −bl(x)fm2(rx) = f ′m2
(x), x ∈ [z/r2, z/r].

Since fm2(z/r
2) = dφ(z/r

2), this implies fm2 < dφ on [z/r2, z/r]. Therefore, (4.6) (with

R = z/r2) implies dφ < fm2 ≤ 0 on [z/r3, z/r2]. Since φd ∈ [z/rn, z/rn−1] for some n ∈ N, a

finite induction completes the proof. �

Lemma 4.5. For every

φ ≥ φ ,
r

cα
·
[

b− a

r−(b/a)+1 − 1
+ (b− a− cα) · λ

b
· r−b/a − 1

r−(b/a)+1 − 1

]
> φr

we have hφ < 0 on [φd, φ).

Proof. If hφ(φ/r) ≤ f−1(φ/r) < 0 for some φ ∈ (φr,∞), then hφ < 0 on [φd, φ) by the

lemmas 4.3 and 4.4. Therefore, Lemma 4.1 implies that 0 ≥ hφ > hφ′ on [φd, φ
′) for every

φ′ > φ. By (3.12, 3.13), we have

hφ(φ/r) = −
∫ φ

φ/r

|λ + ax|−b/a−1(cαx− λ)dx = −k(φ)|λ + aφ|−b/a + k(φ/r)|λ + a(φ/r)|−b/a,

where k(φ) , [bcαφ−λ(b−a−cα)]/[b(b−a)]. Therefore, hφ(φ/r) ≤ f−1(φ/r) for some φ > φr

if and only if [1+k(φ/r)]/k(φ) ≤ |λ+aφ|−b/a/|λ+a(φ/r)|−b/a. As φ tends to∞, the function

on the righthand side decreases to r−b/a. Finally, the solution of [1 + k(φ/r)]/k(φ) = r−b/a

yields φ = φ. One can also see from 0 < φd < φr that φ > φr. �

Lemma 4.6. The function I(φ) , hφ(φd), φ ∈ [φr,∞) is strictly decreasing and continuous.

Proof. For any φr ≤ A < B < ∞, the mapping hAB , hA − hB is positive on [φd, A)

by Lemma 4.1. Therefore, I(A) − I(B) = hAB(φd) > 0, i.e., I(·) is strictly decreasing.

Since hAB = −hB ≥ 0 on [A,∞), hAB is nonnegative on [φd,∞); therefore, h′AB(y) =

−λ0l(y)hAB(ry) ≥ 0, y ∈ [φd, A), thanks to (3.12). Hence, hAB is nondecreasing on [φd, A).

If max{φr, B/r} < A < B, then

0 < I(A)− I(B) = hAB(φd) ≤ hAB(A) =

∫ B

A

|λ + ay|−b/a−1(cαy − λ)dy,
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where the last equality follows from (3.12) and (3.16). Since the integral above goes to zero

as B − A decreases to zero, the continuity of I(·) follows. �

Proofs of Proposition 3.2 in Case II and Proposition 3.3. By Lemma 4.6, the func-

tion I(·) introduced in Proposition 3.3 is continuous and strictly decreasing on [φr,∞). Since

I(φ) > 0 for every φ ∈ [φd, φr] by Lemma 4.2, and I(φ) < 0 by Lemma 4.5, the intermediate

value theorem implies that there is unique φ∗ ∈ (φr, φ) such that I(φ∗) = 0. Lemmas 4.3

and 4.4 imply that φ∗ and hφ∗ are the only solutions of (3.12, 3.13) which also satisfy (3.14).

(If φ > φ∗, then hφ(φd) = I(φ) < 0 = f−1(φd), i.e., hφ(·) violates the lower bound f−1(·) in

some neighborhood of φd. If φd < φ < φ∗, then hφ(φd) = I(φ) > 0, i.e., hφ(·) violates the

upper bound (namely, the nonpositivity) in some neighborhood of φd). We shall extend hφ∗

onto R+ by defining it on (0, φd) as the solution of

h′φ∗(y) = −λ0l(y)hφ∗(ry)− sgn(λ + ay)|λ + ay|−b/a−1(cαy − λ), y ∈ (0, φd),(4.7)

where l(y) , sgn(λ + ay)|λ + ay|−b/a−1|λ + ary|b/a as in (3.12). Since hφ∗ ≤ 0 on [φd,∞)

and 0 < φd < φr, (4.7) implies that h′φ∗ ≥ 0 on (0, φd). Because hφ∗(φd) = 0, this yields that

hφ∗ ≤ 0 on (0, φd). Since f−1 ≤ hφ∗ on [φd,∞) where f−1 is given by (4.1), (4.7) also implies

h′φ∗(y) ≤ −λ0l(y)f−1(ry)− sgn(λ + ay)|λ + ay|−b/a−1(cαy − λ)

= −bl(y)f−1(ry)− sgn(λ + ay)|λ + ay|−b/a−1cαy ≤ −bl(y)f−1(ry) = f ′−1(y),

for all y ∈ (0, φd). Since f−1(φd) = hφ∗(φd) = 0, this implies f−1 ≤ hφ∗ on (0, φd). Thus, we

showed

f−1(y) , −|λ + ay|−b/a ≤ hφ∗(y) ≤ 0, ∀ y ∈ R+.(4.8)

The proof of Proposition 3.3, as well as that of Proposition 3.2 in Case II, is now com-

plete since a direct computation using (3.12, 3.13) (with φ = φ∗) and (4.7) shows that the

continuous function

g(y) ,

 |λ + ay|b/ahφ∗(y), y ∈ R+\{φd},

lim
x→φd

|λ + ax|b/ahφ∗(x), y = φd,
(4.9)

which is evidently in C1(R+\{φd, φ
∗}) and bounded in [−1, 0] by (4.8), satisfies (together

with φ∗) the conditions of the verification lemma on page 9 (an application of L’Hospital

rule reveals that g(φd) is finite). �



18 ERHAN BAYRAKTAR AND SAVAS DAYANIK

4.2. Case III: λ1 < λ0. In this case, note that a > 0 and φd < 0. Lemma 4.7 and

its corollary establish the existence and the uniqueness of the solutions ~β of (3.15, 3.16).

Lemmas 4.8, 4.9 and 4.10 are essential for the existence of unique ~β∗ that lies between the

bounds in (3.17). Lemma 4.11 hints that the search for the optimal stopping threshold φ∗

in Propositions 3.2 and 3.4 can be confined into (φr, b/cα].

Lemma 4.7. If f, η and ξ are real-valued functions on R+ such that |f(t)| ≤ k, 0 ≤ t ≤ T

and max0≤s≤t |η(s)| ≤ ξ(t) with
∫ T

0
ξ(s)ds < ∞ for some positive constants k and T , then

u(t) = f(t) +

∫ t

0

η(s)u(rs)ds, t ∈ [0, T ](4.10)

has unique integrable solution u. If f is continuous (resp., continuously differentiable, and

η is continuous), then u is continuous (resp., continuously differentiable). Moreover, if ξ is

bounded, so is u.

Proof. The proof is a slight modification of that of the existence and uniqueness of the

renewal equation (Bellman and Cooke (1963), page 217). �

Corollary 4.1. Equations (3.15, 3.16) have unique bounded and continuously differentiable

solution on [0, T ], for every T > 0.

Proof. We can write (3.15, 3.16) as ~β(x) = f(x) +
∫ x

0
η(y)h(ry)dy, with

f(x) , ~β(0)−
∫ x

0

(λ + ay)−b/a−1(cαx− λ)dy and η(x) , −λ0(λ + ax)−b/a−1(λ + arx)b/a.

Because |η(y)| is decreasing, ξ(x) , max0≤y≤x |η(y)| = |η(0)| = 1/λ is bounded. Since η is

continuous (note that a > 0 if λ1 < λ0), and f is continuously differentiable, the conclusion

follows from Lemma 4.7. �

Lemma 4.8. If γ > β, then ~γ(x) > ~β(x) for x ∈ [0, T ] for every T > 0.

Proof. By means of the family of functions fm in (4.1), we shall prove that hγβ , ~γ − ~β is

positive on [0, T ] for any fixed T > 0. Using (3.15, 3.16), we find that

~′γβ(y) = −λ0l(y)~γβ(ry), y ∈ [0, T ], and ~′γβ(0) = γ − β,(4.11)

where l(y) , (λ+ay)−b/a−1(λ+ray)b/a as in (4.1). If m0 is chosen such that fm0(0) = ~γβ(0),

then (4.1) and (4.11) imply that f ′m0
(0) = −bl(0)fm0(0) = −bl(0)~γβ(0) < −λ0l(0)~γβ(0) =

~′γβ(0). Hence fm0 < ~γβ in some neighborhood of 0. Therefore, there are some m1 > m0 and

ε > 0 such that fm1 > ~γβ > 0 on [0, ε) and fm1(ε) = ~γβ(ε). The proof is complete if T ∈
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(0, ε]. Otherwise, note that f ′m1
(x) = −bl(x)fm1(rx) ≤ −bl(x)~γβ(rx) < −λ0l(x)~γβ(rx) =

~′γβ(x) for every x ∈ (ε, ε/r], and

0 < fm1(x) = fm1(ε) +

∫ x

ε

f ′m1
(y)dy < ~γβ(ε) +

∫ x

ε

~′γβ(y)dy = ~γβ(x), x ∈ (ε, ε/r].

If T ∈ (0, ε/r], then the proof is complete. Otherwise, we choose m2 > m1 such that

fm2(ε/r) = ~γβ(ε/r) > fm1(ε/r), see Figure 5(a). Since fm2 > fm1 , we have fm2 > ~γβ on

[0, ε]. Therefore, f ′m2
(x) = −bl(x)fm2(rx) ≤ −bl(x)~γβ(rx) < −λ0l(x)~γβ(rx) = ~′γβ(x) for

every x ∈ (ε/r, ε/r2], and

0 < fm2(x) = fm2(ε/r)+

∫ x

ε/r

f ′m2
(y)dy < ~γβ(ε/r)+

∫ x

ε/r

~′γβ(y)dy = ~γβ(x), x ∈ (ε/r, ε/r2].

Since T ∈ (ε/rn−1, ε/rn] for some n ∈ N, the proof follows by finite induction. �

Lemma 4.9. ~β(x) is a continuous function of β ∈ R uniformly in x ∈ [0, T ] for every T > 0.

Proof. Let ~γβ , ~γ−~β. By (3.15) and (3.16), ~γ(x) = γ−β−
∫ x

0
λ0l(y)~γβ(ry)dy for every

x ∈ [0, T ]. Since l(x) = (λ + ax)−b/a−1(λ + arx)b/a is decreasing and l(0) = 1/λ, we have

|~γβ(x)| − λ0

rλ

∫ x

0

|~γβ(z)|dz ≤ |γ − β|, x ∈ [0, T ].(4.12)

After multiplying by exp[−λ0x/(rλ)] and taking the integrals of both sides, we obtain∫ x

0
|~γβ(z)|dz ≤ |γ − β| exp[−λ0x/(rλ)]

∫ x

0
exp[λ0z/(rλ)]dz. Therefore, (4.12) implies

|~γβ(x)| ≤ |β − γ|
(

1 + [λ0/(rλ)] exp[λ0/(rλ)])

∫ x

0

exp[λ0z/(rλ)]dz

)
= |γ − β| exp[λ0x/(rλ)] ≤ |γ − β| exp[λ0T/(rλ)], ∀x ∈ [0, T ]. �

Lemma 4.10. Let β ∈ [−λ−b/a, 0]. If ~β(z) = f−1(z) for some z ∈ R+, then ~β(x) <

f−1(x) < 0 for every x ∈ (z, T ] and T > z, where f−1 is as in (4.1) and f−1(0) = −λ−b/a.

Proof. Firstly, let β ∈ (−λ−b/a, 0]. Suppose that dβ(x) , ~β(x) − f−1(x), x ∈ R+ has some

zeros, and let z be the smallest (z > 0). We shall prove that dβ < 0 on (z, T ] for every

T > 0. By (3.15, 3.16) and (4.1),

d′β(x) = −λ0l(x)dβ(rx)− (λ + ax)−b/a−1cαx, x ∈ R+ and dβ(0) = β + λ−b/a.(4.13)

Since dβ > 0 on [0, z), (4.13) implies that dβ is decreasing on [0, z/r]. Hence, dβ < 0 on

(z, z/r]. If T ∈ (z, z/r], then the proof is complete. Otherwise, there exists some m1 < 0 such

that fm1(z/r) = dβ(z/r). Since fm1 is increasing, and dβ is decreasing on [0, z/r], we have
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Figure 5. Illustrations for the proofs of (a) Lemma 4.8, (b) Lemma 4.10 and

(c) Proposition 3.4 on page 21.

dβ ≥ fm1 on [0, z/r]. Therefore, f ′m1
(x) = −bl(x)fm1(rx) ≥ −bl(x)dβ(rx) > −λ0l(x)dβ(rx)−

(λ + ax)−b/a−1cαx = d′β(x) for every x ∈ [z/r, z/r2]. Thus,

0 > fm1(x) = fm1(z/r) +

∫ x

z/r

f ′m1
(y)dy > dβ(z/r) +

∫ x

z/r

d′β(y)dt = dβ(x), x ∈ (z/r, z/r2].

If T ∈ (z/r, z/r2], then the proof is complete. Otherwise, there exists m2 < m1 such that

fm2(z/r
2) = dβ(z/r2) < fm1(z/r

2), see Figure 5(b). Since fm2 < fm1 , we have fm2 < dβ, on

[z, z/r]. By (4.1) and (4.13), f ′m2
(x) = −bl(x)fm2(rx) ≥ −bl(x)dβ(rx) > −λ0l(x)dβ(rx) −

(λ + ax)−b/a−1cαx = d′β(x) for every x ∈ [z/r, z/r2]. Since fm2(z/r
2) = dβ(z/r2), this

implies that fm2 < dβ on [z/r, z/r2). By using (4.1) and (4.13) once again, f ′m2
(x) =

−bl(x)fm2(rx) ≥ −bl(x)dβ(rx) > −λ0l(x)dβ(rx) − (λ + ax)−b/a−1cαx = d′β(x) for every

x ∈ [z/r2, z/r3]. Since fm2(z/r
2) = dβ(z/r2), this implies that 0 > fm2 > dβ on (z/r2, z/r3].

Because T ∈ (z/rn−1, z/rn] for some n ∈ N, a finite induction argument concludes the proof.

If β = −λ−b/a, then dβ(0) = d′β(0+) = 0, and dβ is decreasing on [0, z/r] for some small

z > 0; the rest of the proof follows as above. �
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Lemma 4.11. The function J(β) , maxx∈[0,b/cα] ~β(x), β ∈ [−λ−b/a, 0] is continuous and

strictly increasing. There exists unique β∗ ∈ (−λ−b/a, 0) such that J(β∗) = 0. The maximum

J(β∗) is attained in (φr, b/cα]; at every φ ∈ (φr, b/cα] where it is attained, we have ~β∗(φ) =

~′β∗(φ) = 0.

Proof. Lemmas 4.8 and 4.9 imply that J(·) is strictly increasing and continuous on [−λ−b/a, 0].

On the other hand, J(0) > 0 since ~0(0) = 0 < ~′0(0+), and J(−λ−b/a) ≤ maxx∈[0,b/cα] f−1(x) =

f−1(b/cα) < 0 by Lemma 4.10. By the intermediate value theorem, there exists unique

β∗ ∈ (−λ−b/a, 0) such that 0 = J(β∗) = maxx∈[0,b/cα] ~β∗(x). Since hβ∗(·) is continuous by

Lemma 4.9 and hβ∗(0) = β∗ < 0, the maximum J(β∗) is attained in (0, b/cα]. If it is attained

at some φ ∈ (0, b/cα), then ~β∗(φ) = ~′β∗(φ) = 0 is obvious. Suppose that ~β∗(b/cα) = 0.

Then ~β∗ > f−1 on [0, b/cα] by Lemma 4.10 (otherwise, there exists some z ∈ [0, b/cα) such

that ~β∗(z) = f−1(z), and ~β∗ < f−1 < 0 on [z, b/cα]). By (3.15) and (4.1),

~′β∗(x) = (λ + ax)−b/a−1

[
λ0

~β∗(rx)

f−1(rx)
− (cαx− λ)

]
≤ (λ + ax)−b/a−1(b− cαx) ≤ 0, ∀x ∈ [b/cα, u),

where u , inf{x ∈ R+ : ~β∗(x) ≤ f−1(x)} > b/cα, since both ~β∗ and f−1 are continuous.

However, this implies that maxx∈[0,u) ~β∗(x) = J(β∗) = ~β∗(b/cα) = 0 and ~′β∗(b/cα) = 0.

Finally, let φ0 ∈ (0, b/cα] be the smallest number where J(β∗) is attained. Then ~β(y) < 0

for every y < φ0. If φ0 ≤ φr, then (3.15) implies ~′β∗(φ0) = −(λ + aφ0)
−b/a−1[λ0(λ +

aφ0)
b/a~β∗(rφ0) + cαφ0 − λ] > 0, which contradicts with ~′β∗(φ0) = 0. Thus, φ0 > φr. �

Proofs of Proposition 3.2 in Case III and Proposition 3.4. By Lemma 4.11, the func-

tion J(·) has the properties enlisted in Proposition 3.4. As in the same lemma, let β∗ ∈
(−λ−b/a, 0) and φ∗ ∈ (φr, b/cα] be such that 0 = ~β∗(φ

∗) = J(β∗) , maxx∈[0,b/cα] ~β∗(x); by

the choice of φ∗, we have ~′β∗(φ∗) = 0 and

f−1(x) , −(λ + ay)−b/a < ~β∗(x) ≤ 0, ∀x ∈ [0, φ∗].(4.14)

(If f−1(z) = ~β∗(z) for some z < φ∗, then 0 > f−1 > ~β∗ on [z, φ∗] by Lemma 4.10, which

contradicts with ~β∗(φ
∗) = 0). We shall define

g(y) ,

{
(λ + ay)b/a~β∗(y), y ∈ [0, φ∗),

0, y ∈ [φ∗,∞).
(4.15)

The function g(·) is continuous and continuously differentiable on R+ (since ~β∗(φ
∗) =

~′β∗(φ∗) = 0, g(·) is differentiable at φ∗), and is bounded in [−1, 0] by (4.14). The proofs
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of both propositions will be complete if we show that g(·) and φ∗ satisfy the conditions of

the verification lemma on page 9. Using (3.15) with φ = φ∗, direct computation shows that

g(·) solves (3.9′, 3.10′) and satisfies the inequality (3.11) for every y ∈ [0, φ∗] ∪ [φ∗/r,∞)

(recall that φ∗ > φr). It only remains to show that g(·) satisfies (3.11) for y ∈ (φ∗, φ∗/r).

Equivalently, since

(4.16) 0 ≤ (λ + ay)g′(y)− bg(y) + λ0g(ry) + cαy − λ = λ0g(ry) + cαy − λ

= λ0(λ + ary)b/a~β∗(ry) + cαy − λ ⇐⇒ ~′β∗(y) ≤ 0, ∀ y ∈ (φ∗, φ∗/r)

by the definition of g(·) and (3.15), it is sufficient to prove that ~β∗(·) is decreasing on

[φ∗, φ∗/r]. We shall define

G(y) , (λ + ay)b/a~β∗(y),

k(y) , (λ + ay)−b/a+1G′(y) and s(y) , (λ + ay)−b/a+2G′′(y), ∀ y ∈ R+.
(4.17)

Since ~β∗(φ
∗) = ~′β∗(φ∗) = 0, and φ∗ is a local maximum of ~β∗ , it is also a local maximum

of G(·), and

G(φ∗) = G′(φ∗) = 0 and G′′(φ∗) < 0.(4.18)

Note that g(·) and G(·) coincide on [0, φ∗). Unlike g(·), G(·) satisfies everywhere on y ∈ R+

(λ + ay)G′(y)− bG(y) + λ0G(ry) + cαy − λ = 0,(4.19)

(λ + ay)G′′(y)− (b− a)G′(y) + λ1G
′(ry) + cα = 0,(4.20)

(λ + ay)G′′′(y)− (b− 2a)G′′(y) + λ1rG
′′(ry) = 0,(4.21)

where the last two equations follow from the first by differentiation. After they are multiplied

by (λ+ay)−(b−a)/a and (λ+ay)−(b−2a)/a, respectively, and their terms are rearranged by using

k(·) and s(·) in (4.17), we obtain (4.23) and (4.24) below. In (4.22), we rewrite the dynamics

(3.15) of ~β∗ in terms of G(·):

~′β∗(y) = −(λ + ay)−b/a−1[λ0G(ry) + cαy − λ],(4.22)

k′(y) = −(λ + ay)−b/a[λ1G
′(ry) + cα],(4.23)

s′(y) = −λ1r(λ + ay)−b/a+1G′′(ry) = −λ1r(λ + ay)−b/a+1(λ + ary)b/a−2s(ry).(4.24)

Since ~′β∗(φ∗) = 0, (4.22) implies λ0G(rφ∗) + cαφ∗ − λ = 0. Thus, ~β(·) is decreasing on

[φ∗, φ∗/r] if the mapping y 7→ λ0G(ry) + cαy − λ is increasing on [φ∗, φ∗/r], equivalently, its
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derivative λ1G
′(ry) + cα is positive at every y ∈ [φ∗, φ∗/r]. Therefore, the verification will

be finalized under (4.18) when we show that

if G′(φ) = 0 and G′′(φ) < 0, then G′(y) > −cα/λ1 for every y ∈ [rφ, φ].(4.25)

By the second equality in (4.24), the function s(·) reverts itself to the mean-level y = 0. By

(4.14), −1 ≤ G(·) ≤ 0, and (4.17) imply that s(0) < 0. Let φ̃ , 0, and 0 < φ̃1 < φ̃2 < · · · be

the intersection points of s(·) with y-axis (if there are finitely many of them, then we set the

rest to +∞). Then (4.24) implies that s(·) is increasing (decreasing, resp.) on (φ̃n/r, φ̃n+1/r)

for every even (odd, resp.) n ∈ N, and

φ̃0 , 0 < φ̃1 <
φ̃1

r
< φ̃2 <

φ̃2

r
< φ̃3 <

φ̃3

r
< · · · < φ̃n−1 <

φ̃n−1

r
< φ̃n < · · · .(4.26)

Since s(·) and G′′(·) have the same signs, G′′ is negative (positive, resp.) on (φ̃n, φ̃n+1) for

every even (odd, resp.) n ∈ N. Therefore, G′(·) is decreasing (increasing, resp.) on (φ̃n, φ̃n+1)

for every even (odd, resp.) n ∈ N, see Figure 5(c).

Let φ ∈ R+ be such that G′(φ) = 0 and G′′(φ) < 0. Then φ ∈ (φ̃n, φ̃n+1) for some even

n ∈ N, and G′(y) ≥ G′(φ) = 0 for every y ∈ [φ̃n, φ]. If n = 0, then G′ > 0 on [0, φ) and

(4.25) follows. Suppose n ≥ 2. If G′(·) ≥ −cα/λ1 on [φ̃n−1, φ̃n], then (4.25) holds since

[rφ, φ] ⊆ [rφ̃n, φ] ⊆ [φ̃n−1, φ] by (4.26), and G′ ≥ 0 > −cα/λ1 on [φ̃n, φ]. For the rest, we

suppose that G′(y) = −cα/λ1 for some y ∈ [φ̃n−1, φ̃n]. Since G′(·) is increasing on [φ̃n−1, φ̃n],

it intersects with y = −cα/λ1 and y = 0 exactly once, say at φ′′ and φ′, respectively. Then,

φ̃n−1 ≤ φ′′ < φ′ < φ̃n < φ. We shall prove (4.25) by showing that φ′′ < rφ (indeed, this

implies [rφ, φ] ⊂ [φ′′, φ]; since G′(·) > −cα/λ1 on [φ′′, φ], (4.25) follows).

Observe that k(·) in (4.17) and G′(·) have exactly the same zeros and signs. Thus, k(φ′) =

k(φ) = 0 and k(·) > 0 on (φ′, φ). Therefore, k(·) has at least one local maximum in (φ′, φ).

Hence, there exists at least one y ∈ (φ′, φ) such that (i) k′(y) = 0, (ii) k′(·) > 0 on (y− ε, y),

and (iii) k′(·) < 0 on (y, y + ε) for some ε > 0. Then (4.23) and (4.26) imply that

there exists at least one z ∈ [rφ′, rφ] ⊆ [φ̃n−2, φ̃n]

such that G′(z) = −cα/λ1, and for some ε > 0,

G′(y) < −cα/λ1 for y ∈ (z − ε, z) and G′(y) > −cα/λ1 for y ∈ (z, z + ε).

(4.27)

In the interval [φ̃n−1, φ̃n], φ′′ is the only candidate for z in (4.27). On the other hand, even if

G′(·) intersects with y = −cα/λ1 on [φ̃n−2, φ̃n−1], the intersection point cannot become z in

(4.27) since G′(·) is decreasing on [φ̃n−2, φ̃n−1]; see the dotted curve in Figure 5(c). Hence,

φ′′ must be z in (4.27). Therefore, φ′′ ≤ rφ and (4.25) is proven.
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For the proof of the uniqueness of φ∗, let us pick φ∗ as the smallest of all numbers φ such

that ~β∗(φ) = ~′β∗(φ) = 0, and g(·) be as in (4.15). By (4.18) and (4.25), we have ~′β∗(·) < 0

on (φ∗, φ∗/r), and (4.16) implies that (3.11) holds with strict inequality on (φ∗, φ∗/r). An

application of the chain-rule (see Lemma 5.1) shows that [φ∗, φ∗/r] must be in the optimal

stopping region. Suppose that there exists another φ̂ ∈ R+ such that it is optimal to stop in

[φ̂,∞). Then, we must have φ̂ ≤ φ∗. Since g(y) < 0 on y ∈ [0, φ∗), it is optimal not to stop

in [0, φ∗); therefore φ̂ ≥ φ∗. Thus, φ̂ = φ∗. �
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5. Appendix

5.1. The Bayesian analysis. Let Qu be the probability measure induced on (Ω,FX
∞) by

the finite-dimensional distribution of X of (2.1) given that θ = u ∈ [0,∞]. Then

dQu

dQ∞

∣∣∣∣
FX

t

= 1{u>t} + 1{u≤t}
Lt

Lu

, and Lt ,

(
λ1

λ0

)Xt

e−(λ1−λ0)t, u, t ≥ 0.(5.1)

It is easily checked that Pπ(F ) = πQ0(F ) + (1 − π)
∫∞

0
Qs(F )λe−λsds for every F ∈ FX

∞.

Moreover, the useful identity

Pπ(F ∩ {θ > t}) = (1− π)Qt(F )e−λt, ∀F ∈ FX
t , ∀ t ≥ 0(5.2)

follows from the equality Pπ(F ∩ {θ > t}) =
∫∞

t
Qs(F )Pπ{θ ∈ ds} and that the measure Qs

coincides with Q∞ on FX
t for every s ≥ t. Using the generalized Bayes’ theorem (see, e.g.,

Shiryaev (1996, pp. 230-231), Liptser and Shiryaev (2001, pp. 303-306)), we obtain

Pπ{θ ≤ s|FX
t } =

πLt + (1− π)
[∫ s∧t

0
(Lt/Lu)λe−λudu + e−λt − e−λ(s∨t)

]
πLt + (1− π)

[∫ t

0
(Lt/Lu)λe−λudu + e−λt

] , ∀ s, t ≥ 0,(5.3)
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and

Pπ{θ = 0|FX
t } =

πLt

πLt + (1− π)
[∫ t

0
(Lt/Lu)λe−λudu + e−λt

] , t ≥ 0,(5.4)

Pπ{θ ∈ ds|FX
t } =

(1− π)(Lt/Ls)λe−λsds

πLt + (1− π)
[∫ t

0
(Lt/Lu)λe−λudu + e−λt

] , 0 < s ≤ t.(5.5)

By substituting t for s in (5.3), we obtain

Πt , Pπ{θ ≤ t|FX
t } =

πLt + (1− π)
∫ t

0
(Lt/Lu)λe−λudu

πLt + (1− π)
[∫ t

0
(Lt/Lu)λe−λudu + e−λt

] ,(5.6)

Ψt ,
Πt

1− Πt

= eλtLt

[
π

1− π
+

∫ t

0

1

Lu

λe−λudu

]
, t ≥ 0.(5.7)

Using (5.4) and (5.5), we also calculate

Eπ[1{θ≤t}e
α(t−θ)+ |FX

t ] =
eαt

[
πLt + (1− π)

∫ t

0
(Lt/Lu)λe−(α+λ)udu

]
πLt + (1− π)

[∫ t

0
(Lt/Lu)λe−λudu + e−λt

] ,

and

Φt ,
Eπ[1{θ≤t}e

α(t−θ)+|FX
t ]

1− Πt

= e(α+λ)tLt

[
π

1− π
+

∫ t

0

1

Lu

λe−(α+λ)udu

]
, t ≥ 0.(5.8)

Once noticed that Lt in (5.1) obeys dLt/Lt− = −(λ1 − λ0)dt + (λ1/λ0 − 1)dXt, t ≥ 0 and

L0 = 1, the chain rule gives (2.7) and (2.8) as the dynamics of Ψt in (5.7) and Φt in (5.8),

respectively. Another application of the chain rule to Πt = Ψt/(1 + Ψt) with (2.7) gives the

dynamics of Π as in (2.6).

Proof of (2.5). Let τ be an FX-stopping time. Since

eα(τ−θ)+ − 1 =

∫ (τ−θ)+

0

αeαudu = 1{τ>θ}

∫ τ

θ

αeα(s−θ)ds =

∫ ∞

0

1{τ>s}1{θ≤s}αeα(s−θ)+ds,

the expectation of both sides gives

Eπ[eα(τ−θ)+ − 1] =

∫ ∞

0

Eπ

(
1{τ>s}αEπ[1{θ≤s}e

α(s−θ)+|FX
s ]

)
ds = Eπ

∫ τ

0

(1− Πs)αΦsds,
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because of Fubini’s theorem, that {τ > s} ∈ FX
s for every s ≥ 0 and (2.4). But

(5.9) Pπ{θ > τ} =

∫ ∞

0

Qs{τ < s}Pπ{θ ∈ ds} =

∫ ∞

0

[
1−Qs{τ ≥ s}

]
(1− π)λe−λsds

= 1− π −
∫ ∞

0

λ(1− π)Qs{τ ≥ s}e−λsds = 1− π −
∫ ∞

0

λPπ{τ ≥ s, θ > s}ds

= 1− π −
∫ ∞

0

λEπ

[
1{τ≥s}(1− Πs)

]
ds = 1− π − Eπ

∫ τ

0

λ(1− Πs)ds

where the forth equality follows from (5.2) since {τ ≥ s} ∈ FX
s for every s ≥ 0. Finally, the

sum of (5.9) and the preceding equation gives (2.5). �

Presented here for completeness, the formulas (5.3-5.9) were derived for the first time by

Shiryaev (1973; 1978, Chapter 4) and Beibel (2000).

5.2. The chain-rule and the verification lemma. Needed at the end of this section on

page 9 for the proof of the verification lemma, the lemmas in the remainder are concerned

with the processes Π and Φ̃ of (3.4) on the probability space (Ω,F , Pπ,φ) for every (π, φ) ∈
[0, 1] × R+, see page 8. They remain true when (Π, Φ̃) and Pπ,φ in their statements and in

their proofs are replaced with (Π, Φ) and Pπ, respectively, since (i) the probability measures

Pπ and Pπ,π/(1−π) are the same on (Ω,F), and (ii) the triplet (X, Π, Φ̃) under Pπ,π/(1−π) has

the same finite-dimensional distribution as that of the triplet (Ω, Π, Φ) under Pπ (compare

(3.4) and (2.8)). Finally, observe that the innovations process

X t , Xt −
∫ t

0

[λ0(1− Πs) + λ1Πs]ds, t ≥ 0(5.10)

is an FX-martingale under both Pπ and Pπ,φ for every π ∈ [0, 1] and φ ∈ R+.

Lemma 5.1. Let G : [0, 1]× R+ 7→ R be a continuous and piecewise continuously differen-

tiable function in each coordinate. Then

G(Πt, Φ̃t) = G(Π0, Φ̃0) +

∫ t

0

AG(Πs, Φ̃s)ds + Mt, t ≥ 0,(5.11)

where Mt ,
∫

(0,t]
∆G(Πs−, Φ̃s−)dXs, t ≥ 0 is an FX-local martingale; ∆G(π, φ) , G

(
λ1π/[λ0(1−

π) + λ1π], [λ1/λ0]φ
)
−G(π, φ) for every (π, φ) ∈ [0, 1]× R+, and

AG(π, φ) , ∂πG(π, φ)[λ− (λ1 − λ0)π](1− π)

+ ∂φG(π, φ)[λ + (λ + α− λ1 + λ0)φ] + [λ0(1− π) + λ1π]∆G(π, φ)(5.12)
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at every (π, φ) ∈ (0, 1) × R+ where the partial derivatives ∂πG and ∂φG exist. If G is

bounded, and τ is an FX-stopping time with finite Pπ,φ-expectation, then

Eπ,φG(Π0, Φ̃0) = Eπ,φG(Πτ , Φ̃τ )− Eπ,φ

∫ τ

0

AG(Πs, Φ̃s)ds.(5.13)

Proof. Denote by Πc and Φ̃c the continuous parts of the processes Π and Φ̃. Let

∆Πt =
(λ1 − λ0)Πt−(1− Πt−)

λ0(1− Πt−) + λ1Πt−
and ∆Φ̃t = (λ1/λ0 − 1)Φ̃t−, t > 0.

The processes Π and Φ̃ jump simultaneously with the jump sizes ∆Πt and ∆Φ̃t at every time

t when X jumps. Standard application of the chain-rule with the dynamics of Π and Φ̃ in

(2.6) and (3.4), respectively, gives G(Πt, Φ̃t) = G(Π0, Φ̃0)+
∫

(0,t]
AG(Πs−, Φ̃s−)ds+Mt where

AG and Mt are as above. This proves (5.11). Suppose next that G is bounded, and τ is an

FX-stopping time with finite expectation under Pπ,φ. Since

Eπ,φ

∫ τ

0

|∆G(Πs, Φ̃s)|[λ1Πs + λ0(1− Πs)]ds ≤ sup
p,y

2|G(p, y)|(λ0 ∨ λ1) Eπ,φτ < ∞,

the stopped process {Mt∧τ : t ≥ 0} is a closable FX-martingale under Pπ,φ. Therefore,

Eπ,φMτ = 0. If we replace τ with t and take expectations of both sides in (5.11), then (5.13)

follows. �

Lemma 5.2. Let τφ , inf{t ≥ 0 : Φ̃t ≥ φ} be the first exit time of the process Φ̃ out of the

interval [0, φ], φ ∈ R+. Then Eπ,yτφ is finite for every (π, y) ∈ [0, 1]× R+.

Proof. If y ≥ φ, then Eπ,yτφ = 0. Suppose that 0 ≤ y < φ. By (3.4) and (5.10), we obtain

for every t ∈ R+

(5.14) Φ̃t∧τφ
− Φ̃0 =

∫ t∧τφ

0

[λ + (λ + α− λ1 + λ0)Φ̃s]ds +

∫ t∧τφ

0

(λ1/λ0 − 1)Φ̃s−dXs

=

∫ t∧τφ

0

{
λ + (λ + α− λ1 + λ0)Φ̃s +

(
λ1

λ0

− 1

)
[λ1Πs + λ0(1− Πs)]Φ̃s

}
ds + Mt∧τφ

,

where Mt∧τφ
,

∫ t∧τφ

0
(λ1/λ0 − 1)Φ̃s−dXs is a stopped FX-martingale under Pπ,y since

Eπ,y

∫ t∧τφ

0

∣∣∣∣(λ1

λ0

− 1

)
Φ̃s−

∣∣∣∣ [
λ1Πs + λ0(1− Πs)

]
ds

≤ |λ1 − λ0|φ
λ0

(λ1 ∨ λ0) Eπ,y(t ∧ τφ) < ∞, ∀ t ∈ R+.
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Therefore, Eπ,yMt∧τφ
= 0 for every t ∈ R+. After the last integrand in (5.14) is simplified,

and the expectations of both sides are taken, we obtain

Eπ,yΦ̃t∧τφ
− y = Eπ,y

∫ t∧τφ

0

[
λ +

(
λ + α +

(λ1 − λ0)
2

λ0

Πs

)
Φ̃s

]
ds ≥ λEπ,y(t ∧ τφ).

By (3.4), we have Pφ,y{Φ̃t∧τφ
≤ φ ·max(λ1/λ0, 1)} = 1; therefore, Eπ,y(t∧ τφ) ≤ (Eπ,yΦ̃t∧τφ

−
y)/λ ≤ [φ ·max(λ1/λ0, 1)− y]/λ for every t ∈ R+. When the limit of both sides is taken as

t tends to infinity, the conclusion follows from the monotone convergence theorem. �

Proof of the verification lemma on page 9. Suppose that g : R+ 7→ (−∞, 0] is bounded,

continuous and piecewise continuously differentiable. Let G(π, y) , (1 − π)g(y) for every

(π, y) ∈ [0, 1] × R+. For every π ∈ [0, 1] and y ∈ R+ where g′(y) exists, we have A (1 −
π)g(y) = (1− π)[(λ + ay)g′(y)− bg(y) + λ0g(ry)]. For every FX-stopping time τ with finite

Pπ,y-expectation (see pages 8 and 26), the last part of Lemma 5.1 implies

(5.15) (1− π)g(y) = Eπ,yG(Π0, Φ0)

= Eπ,yG(Πτ , Φτ )− Eπ,y

∫ τ

0

(1− Πs) [(λ + aΦs)g
′(Φs)− bg(Φs) + λ0g(rΦs)] ds

≤ Eπ,y

∫ τ

0

(1− Πs)(cαΦ̃s − λ)ds, (π, y) ∈ [0, 1]× R+,

where the inequality follows from (3.11) and that G is nonpositive. When we take the

infimum of both sides in (5.15) over all FX-stopping times with finite Pπ,y-expectations, we

obtain (1− π)g(y) ≤ Ṽ (π, y) for every (π, y) ∈ [0, 1]× R+.

Suppose that the same function g above is in C(R+) ∩ C1(R+\{φd, φ}) for some real

number φ > φr and solves (3.9′, 3.10′). By Lemma 5.2, the FX-stopping time τφ , inf{t ≥
0 : Φ̃t ≥ φ} has finite Pπ,y-expectation. When τ is replaced with τφ, (5.15) is still true; but,

now with an equality instead of the inequality (thanks to (3.9′) and (3.10′)). Together with

the inequality obtained in the first part, we have

Ṽ (π, y) = (1− π)g(y) = Eπ,y

∫ τφ

0

(1− Πs)(cαΦ̃s − λ)ds, (π, y) ∈ [0, 1]× R+,

and τφ is optimal for (3.5). �
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