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1. Introduction. The purpose of this paper is to contribute to the mathematical theory of optimal
multiple stopping, as motivated by the analysis of financial options with multiple exercises of the American
type. It is surprising that despite a simple and intuitively natural formulation, this problem did not attract
in the probability literature the attention it deserves. Instruments with multiple American exercises are
ubiquitous in financial engineering. We find them in the design and analysis of executive stock option
programs (see, for example, Sircar and Xiong [31], Leung and Sircar [24] and the references therein),
in the indentures of many over-the-counter exotic fixed income markets instruments (see, for example,
Meinshausen and Hambly [28] for a Monte Carlo analysis of multiple chooser swaps), or in the energy
markets (see, for example, Jaillet et al. [17] for the numerical analysis of energy swing contracts and
Carmona and Touzi [11] for their mathematical analysis in the case of geometric Brownian motion).

In this paper, we investigate the multiple optimal stopping problem for general linear regular diffusion
processes. Even if geometric Brownian motion can be viewed as an appropriate model for some appli-
cations (e.g., executive stock option programs), it fails to capture important characteristic features of
interest rates and commodities time series, mean-reversion being the most obvious. The interested reader
is referred to Schwartz [29], Jaillet, Ronn, and Tompaidis [17], Barlow [3], Dixit and Pindyck [14] for the
examples. Even if mean-reversion is only documented for the historical statistics of the underlyers, all
the pricing (i.e., risk-neutral) models used by financial engineers account for this property. Therefore,
pricing multi-exercise American-type options under diffusion models beyond geometric Brownian motion
is important. Finally, we stress the fact that our analysis is not limited to the case of the hockey-stick
payoff functions of the call and put options, as it handles general payoff functions.

First, we show as in Carmona and Touzi [11] that, by introducing appropriate Snell envelopes, the
optimal multiple-stopping problem can be reduced to a sequence of ordinary optimal stopping problems
that can be solved iteratively. Our result here is, however, stronger than theirs in several directions.
Carmona and Touzi [11] show it when (i) the payoff process has a.s. continuous sample paths, (ii) its
supremum over the entire horizon has some finite high-order moment, and (iii) it is adapted to a left-
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continuous filtration all of whose martingales must also have continuous sample paths. They impose
those conditions in order to make sure that Snell envelopes have a.s. continuous sample paths and are
left-continuous in expectation. Their first and third conditions disallow jump processes, which we also
come across in the literature as proper models for the underlyers in pricing certain financial options in
energy markets. Moreover, their second condition excludes general payoff functions that are encountered
in the ever-expanding world of complex compounded financial and real options. Since Carmona and Touzi
[11] focus exclusively on pricing multiple-exercise put options (namely, options with bounded terminal
payoff functions), this compromise in their treatment of general optimal multiple-stopping problem is
suitable for their purpose and allows them to avoid technical difficulties, which they call “beyond the
scope of [their] paper”. In this paper, one of our purposes is to price multiple-exercise options with
general payoff processes, and we are able to prove the key result, namely the reduction of general optimal
multiple-stopping problems to a sequence of ordinary optimal stopping problems, for payoff processes (i)
with càdlàg (right-continuous with left-limits) sample paths, (ii) without any conditions on the moments
of the supremum of the payoff process, and (iii) adapted to any filtration satisfying the usual conditions.

Carmona and Touzi [11] show this key reduction result primarily for the infinite-horizon problems,
which immediately extends to finite-horizon problems after the following simple observation: every finite-
horizon problem may be turned into an infinite horizon problem by simply setting the value of the payoff
process identically to zero after the maturity. Here we also limit the discussion to infinite-horizon optimal
multiple-stopping problems, but the same results extend to finite-horizon problems in the same trivial
way. Now that we prove here the key reduction result under more general conditions as described above,
their numerical algorithms for finite horizon problems, based on time discretization and successive runs of
backward-dynamic-programming iterations, is unleashed from the restraints put on the payoff processes
by those authors only to prove the same key reduction result, and this provides the theoretical justification
for applying the same numerical algorithms to finite-horizon problems with much more general payoff
processes.

The remainder of Carmona and Touzi’s [11] work is exclusively on pricing infinite-horizon multiple-
exercise put option for geometric Brownian motion, whereas we deal in this paper with infinite-horizon
multiple-exercise options with general payoff functions for general regular linear diffusions. The bound-
edness of the put option’s terminal payoff function allows them to use the basic reduction result; as
argued above, the limitations of their result limit the application of the same idea to more general (e.g.,
unbounded) payoff functions—even when the underlyer is a geometric Brownian motion. Since the put
option’s payoff function is also decreasing and vanishes for large values of the underlyer, the optimal
strategy is rather obvious (namely, exercise every right—whenever it is allowed—as soon as the under-
lyer is found below a suitable threshold). Therefore, the majority of their remaining work is to verify
the correctness of this guess. For more general payoff functions, it is often difficult to even guess an
optimal exercise strategy, as illustrated by some examples in Dayanik and Karatzas [13] and Dayanik
[12]. Verification of a good guess is also very demanding in general; very popular variational formulation,
also hinted at by Carmona and Touzi [11], typically writes down a series of free-boundary second-order
ordinary differential equations (one for each disconnected continuation region), tries to solve them simul-
taneously, and use various techniques to show that one of the solutions indeed coincides with the value
function of the optimal stopping problem. This procedure requires that one pays close attention to each
special feature of the underlying problem and that special skills and tools (such as viscosity solutions
of differential equations) be used, because the variational methods do not offer constructive algorithms.
Carmona and Touzi [11] manage to avoid this burden of variational formulation and verify the correctness
of their guess rather easily, thanks to very explicit formulas for the Laplace transforms of (geometric)
Brownian motion’s one-sided exit times. For general payoff functions and/or diffusion processes, those
advantages disappear, and one cannot unfortunately go far enough with variational methods, either.

Instead, in this paper we use constructive potential-theoretic solution methods developed by Dayanik
and Karatzas [13] and Dayanik [12] for optimal stopping of linear diffusions. We show how to construct
the value function of an optimal multiple-stopping problem with general payoff function and general
underlying linear diffusion. We describe when optimal multiple-stopping strategies exist and how to find
them. We illustrate the methods on several examples. We show that exercise boundaries of perpetual
call and put options are given by a sequence of points. We analyze several explicit diffusion models for
which we give algorithmic constructions of these exercise boundaries.
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The reduction of optimal multiple-stopping problem to a sequence of ordinary optimal stopping prob-
lems reminds similar approaches implemented in the literature to reduce optimal singular/impulse control
and switching problems to a sequence of optimal stopping problems; see, for example, Karatzas and Shreve
[18, 19], Boetius and Kohlmann [5], Boetius [4], Yushkevich [32, 33], Cairoli and Dalang [8, Chapter 10],
Mandelbaum and Vanderbei [26, 27], Mandelbaum, Shepp, and Vanderbei [25], Carmona and Ludkovski
[9, 10]. The common trait of our paper and these works is in the reinterpretation of dynamic program-
ming equation, which may be described in the following general terms. For a general stochastic control
problem with finite number of control actions, one can identify multiple-stopping problems after writing
down the dynamic-programming equation. The state space of the controlled process can often be divided
into disjoint subsets in which taking a specific control action is optimal. Then the original control prob-
lem may be seen as a sequence of optimal stopping problems, which determine switching times between
different control actions.

We close this introduction summarizing the content of the paper. First we give an overview of the
infinite-horizon optimal stopping problem for general continuous-parameter processes in Section 2. In
Section 3, we formulate the optimal multiple-stopping problem for general continuous-parameter processes
and show that it can be reduced to a sequence of ordinary optimal stopping problems. Then we specialize
to standard Markov processes in Section 4 and describe the solution in terms of excessive functions. We
revisit the same problem for one-dimensional time-homogeneous diffusions in Section 5 and illustrate the
methods on examples in Section 6.

2. Optimal stopping theory: a short review. As we introduce the notation used throughout
the paper, we summarize the main results of Karatzas and Shreve [21, Appendix D] on optimal stopping
for a continuous-parameter process. Let {Y (t),Ft; 0 ≤ t ≤ T} be a nonnegative process with right-
continuous paths and Y (T ) ≤ limt↑T Y (t) a.s., defined on a probability space (Ω,F ,P), and adapted
to a filtration F , {Ft}0≤t≤T that satisfies the usual conditions. We shall assume that F(0) contains
the sets of probability zero or one. The time horizon T ∈ (0,+∞] is a constant. If T = +∞, then
F∞ , σ(∪0≤t<+∞Ft) and Y (+∞) , limt→+∞ Y (t). Let S be the collection of F–stopping times with
values in [0, T ], and Sσ , {τ ∈ S; τ ≥ σ} for every σ ∈ S. The classical optimal stopping problem is to
compute

Z1(0) , sup
τ∈S

E{Y (τ)}

and to find τ∗ ∈ S at which the above supremum is attained, if such a stopping time exists. For each
stopping time ν ∈ S we introduce the random variable:

Z1(ν) , ess supτ∈Sν
E{Y (τ)|Fν}.

Under the assumption that Z1(0) is finite, the following results hold:

Proposition 2.1 The process {Z1(t); 0 ≤ t ≤ T} has a modification {Zr
1(t); 0 ≤ t ≤ T} that is a

supermartingale with càdlàg paths. Moreover, Zr
1(τ) = Z1(τ) a.s. for every τ ∈ S.

Let {Xi(t); 0 ≤ t ≤ T}, i = 1, 2 be two arbitrary processes. One says that the process X1 dominates
the process X2 if P{X1(t) ≥ X2(t) for every 0 ≤ t ≤ T} = 1. This notion is needed to guarantee the
uniqueness of the process Zr

1(·) identified in Proposition 2.1; see Proposition 2.2 below. It is called the
Snell envelope of {Y (t); 0 ≤ t ≤ T}.

Proposition 2.2 The process Zr
1(·) dominates Y (·), and if X(·) is another càdlàg supermartingale dom-

inating Y (·), then X(·) also dominates Zr
1(·).

Lemma 2.1 Let σ ∈ S and (σk)k≥1 ⊂ Sσ be such that σk ↓ σ almost surely. Then∫
A

Zr
1(σ)dP = lim

k→∞

∫
A

Zr
1(σk)dP a.s., A ∈ Fσ.

Proof. Fix any A ∈ Fσ. Since Zr
1(·) has right-continuous paths, Fatou’s lemma implies∫

A
Zr

1(σ)dP ≤ lim
∫

A
Zr

1(σk)dP. On the other hand,
∫

A
Zr

1(σ)dP ≥ lim
∫

A
Zr

1(σk)dP by optional sam-
pling, since Zr(·) is a nonnegative F–supermartingale. �

Proposition 2.3 A stopping time τ∗ is optimal if and only if (i) Zr
1(τ∗) = Y (τ∗) a.s. and (ii) the

stopped supermartingale {Zr(t ∧ τ∗); 0 ≤ t ≤ T} is a martingale.
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3. Multiple-stopping problem. In the remainder we introduce and study perpetual optimal
multiple-stopping problems; namely, we set T = +∞. Let δ > 0 be a given constant and let us de-
fine Sn

σ , {(τ1, . . . , τn); τ1 ∈ Sσ; τi ∈ Sτi−1+δ, i = 2, . . . , n}, n ≥ 1 for every stopping time σ ∈ S,
and

Zn(0) , sup
(τ1,...,τn)∈Sn

0

E[Y (τ1) + · · ·+ Y (τn)], n ≥ 1. (1)

The number Zn(0) is the maximum expected payoff of a multiple-stopping option if it gives to the holder
n ≥ 1 rights to mark the underlying reward process, and if the holder is not allowed to mark more than
once within any time-window of size less than δ. The constant δ > 0 is sometimes called a “refracting
time”. For example in swing options, a refracting time is the minimum time a seller needs in order to
fulfill an unscheduled delivery of additional commodity and is usually determined by the technological
constraints on the production facilities or transmission networks; see, for example, Jaillet, Ronn, and
Tompaidis [17], Carmona and Touzi [11].

The optimal multiple-stopping problem is to find the maximum expected reward Zn(0), and an optimal
exercise strategy (τ1, . . . , τn) ∈ Sn

0 that attains the supremum in (1), if one exists. We shall show that
Zn(0) can be calculated by solving n optimal stopping problems sequentially. Let us introduce

Z0(σ) ≡ 0, and Zn(σ) , ess sup(τ1,...,τn)∈Sn
σ

E
{ n∑

i=1

Y (τi)
∣∣∣Fσ

}
, σ ∈ S. (2)

We will assume that Z1(0) is finite. Since, as it is easily seen, Zn(0) ≤ nZ1(0), every Zn(0), n ≥ 1 will
also be finite.

Lemma 3.1 For every σ ∈ S, the family T ,
{
E[
∑n

i=1 Y (τi)|Fσ]; (τ1, . . . , τn) ∈ Sn
σ

}
is directed upwards,

and there exists a sequence {(τk
1 , . . . , τ

k
n)}k≥1 ⊂ Sn

σ such that Zn(σ) = limk→∞ ↑ E[
∑n

i=1 Y (τk
i )|Fσ]

almost surely.

Proof. For (τ1, . . . , τn) and (σ1, . . . , σn) in Sn
σ , define the event A ,

{
E[
∑n

i=1 Y (τi)|Fσ] ≥
E[
∑n

i=1 Y (σi)|Fσ]
}
, and the stopping times νi , τi1A + σi1Ω\A, i = 1, . . . , n. Then (ν1, . . . , νn) ∈ Sn

σ ,
and

E
[ n∑

i=1

Y (νi)|Fσ

]
= max

(
E
[ n∑

i=1

Y (τi)|Fσ

]
,E
[ n∑

i=1

Y (σi)|Fσ

])
.

Hence, T is directed upwards, and the second part follows from the properties of an essential supremum;
see, e.g., Karatzas and Shreve [21, Appendix A]. �

Lemma 3.2 If n ≥ 0, τ ∈ S, and σ ∈ Sτ , then E{Zn(σ)|Fτ} ≤ Zn(τ) almost surely.

Proof. Let {(τk
1 , . . . , τ

k
n)}k≥1 ⊂ Sn

σ be as in Lemma 3.1. Then we have E{Zn(σ)|Fτ} =
limk→∞ E

{∑n
i=1 Y (τk

i )
∣∣Fτ

}
≤ Zn(τ) almost surely by the monotone convergence theorem for condi-

tional expectations. �

Proposition 3.1 For every σ ∈ S and n ≥ 0, we have

Zn+1(σ) = ess supτ∈Sσ
E
{
Y (τ) + E[Zn(τ + δ)|Fτ ]

∣∣∣Fσ

}
a.s. (3)

Proof. Fix τ1 ∈ Sσ. By Lemma 3.1, there exists a sequence {(τk
2 , . . . , τ

k
n+1)}k≥1 in Sn

τ1+δ such
that Zn(τ1 + δ) = limk→∞ ↑ E{

∑n+1
i=2 Y (τk

i )|F(τ1 + δ)} almost surely. For every k ≥ 1, we have
(τ1, τk

2 , . . . , τ
k
n+1) ∈ Sn+1

σ , and by the monotone convergence theorem,

Zn+1(σ) ≥ lim
k→∞

E
{
Y (τ1) +

n+1∑
i=2

Y (τk
i )
∣∣∣Fσ

}
= E

{
Y (τ1) + lim

k→∞
E
{ n+1∑

i=2

Y (τk
i )
∣∣F(τ1 + δ)

}∣∣∣Fσ

}
= E

{
Y (τ1) + Zn(τ1 + δ)

∣∣∣Fσ

}
= E

{
Y (τ1) + E[Zn(τ1 + δ)|F(τ1)]

∣∣∣Fσ

}
.
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Since τ1 ∈ Sσ is arbitrary, this implies that Zn+1(σ) is greater than or equal to the right-hand side of (3)
almost surely. On the other hand, for every (τ1, . . . , τn+1) ∈ Sn+1

σ , we have τ1 ∈ Sσ and (τ2, . . . , τn+1) ∈
Sn

τ1+δ, and

E
{
Y (τ1) +

n+1∑
i=2

Y (τi)
∣∣∣Fσ

}
= E

{
Y (τ1) + E

{ n+1∑
i=2

Y (τi)
∣∣Fτ1+δ

}∣∣∣Fσ

}
≤ E

{
Y (τ1) + Zn(τ1 + δ)

∣∣∣Fσ

}
= E

{
Y (τ1) + E{Zn(τ1 + δ)|Fτ1}

∣∣∣Fσ

}
≤ ess supτ∈Sσ

E
{
Y (τ) + E[Zn(τ + δ)|Fτ ]

∣∣∣Fσ

}
,

which proves the opposite inequality. �

Let us now introduce the random variables

Zn(t) , E [Zn(t+ δ)|Ft] , t ≥ 0, n ≥ 0. (4)

Suppose that, for some k ≥ 0, {Zk(t); t ≥ 0} has an adapted càdlàg modification Z
r

k(·), and that
E{Zk(τ + δ)|Fτ} = Z

r

k(τ) a.s. for every τ ∈ S. Then it follows from Proposition 3.1 that Zk+1(σ) =
ess supτ∈Sσ

E
{
Y (τ) + Z

r

k(τ)
∣∣∣Fσ

}
a.s., or

Zk+1(σ) = ess supτ∈Sσ
E
{
Yk+1(τ)

∣∣∣Fσ

}
a.s., σ ∈ S, (5)

where the payoff process is Yk+1(t) , Y (t) + Z
r

k(t), t ≥ 0. Since Yk+1(·) is a nonnegative F-adapted
process with right-continuous sample paths, Proposition 2.1 implies that the Snell envelope Zr

k+1(·) of
the process {Yk+1(t); t ≥ 0} exists, and Zk+1(σ) = Zr

k+1(σ) a.s. for every σ ∈ S.

Using the Snell envelope Zr
k+1(·), we can show that Zk+1(·) has an adapted càdlàg modification Z

r

k+1(·)
such that E{Zk+1(τ + δ)|Fτ} = Z

r

k+1(τ) a.s. for every τ ∈ S. We then proceed in the same manner as
before. In the meantime, since Z0(·) ≡ 0 is itself the Snell envelope of Y0(·) ≡ 0, we can take k = 0
at the beginning of the previous paragraph and characterize Zn(·) for every n ≥ 0 in terms of the Snell
envelopes of a sequence of reward processes.

Lemma 3.3 The process {Zn(t),Ft; t ≥ 0}, n ≥ 0 of (4) is a supermartingale.

Proof. For 0 ≤ s ≤ t, E{Zn(t)|Fs} = E{Zn(t + δ)|Fs} = E
{
E{Zn(t + δ)|Fs+δ}

∣∣Fs

}
≤ E{Zn(s +

δ)|Fs} = Zn(s) by Lemma 3.2. �

Proposition 3.2 For every n ≥ 0, Zn(·) of (4) has an adapted càdlàg modification Z
r

n(·), and E{Zn(τ+
δ)|Fτ} = Z

r

n(τ) a.s. for every τ ∈ S. Furthermore,

Zn+1(σ) = ess supτ∈Sσ
E
{
Yn+1(τ)

∣∣∣Fσ

}
a.s. ∀σ ∈ S, (6)

where Yn+1(t) , Y (t) + Z
r

n(t), t ≥ 0 is an F-adapted càdlàg process.

Remark 3.1 Proposition 2.1 implies that, for n ≥ 0 the Snell envelope Zr
n(·) of the process {Yn(t); t ≥ 0}

exists, and

Zn(σ) = Zr
n(σ) a.s. ∀σ ∈ S. (7)

Moreover, E{Zr
n(τ + δ)|Fτ} = Z

r

n(τ) a.s. for every τ ∈ S.

Proof of Proposition 3.2. Since Z0(·) ≡ 0, we can take Z
r

0(·) ≡ 0. Moreover, Y1(t) = Y (t), t ≥ 0
is F-adapted with right-continuous sample paths, and the claims hold for n = 0.

Let us assume that the proposition holds for n − 1 and prove it for n. By hypothesis, Z
r

n−1 exists.
Therefore, Yn(t) , Y (t) + Z

r

n−1(t) is adapted to F and has right-continuous sample paths. By Remark
3.1, the Snell envelope Zr

n(·) of Yn(·) exists, and

E{Zn(t)} = E{Zn(t+ δ)} = E{Zr
n(t+ δ)}, t ≥ 0. (8)
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For every (tk)k≥1 ⊂ R such that tk ↓ t, let σ ≡ t and σk ≡ tk + δ and A = Ω in Lemma 2.1. From (8), we
obtain limk→∞ E{Zn(tk)} = limk→∞ E{Zr

n(tk + δ)} = E{Zr
n(t+ δ)} = E{Zn(t)}; namely, t 7→ E{Zn(t)}

is right-continuous. Since {Zn(t); t ≥ 0} is also a supermartingale by Lemma 3.3, Zn(·) has an F-adapted
càdlàg modification Z

r

n(·); see Karatzas and Shreve [20, Theorem 3.13].

The process {Zr

n(t); t ≥ 0} is a supermartingale with càdlàg paths. Thus, for every σ ∈ S and for
every sequence (σk)k≥1 ⊂ Sσ such that σk ↓ σ, one can check as in Lemma 2.1 that∫

A

Z
r

n(σ)dP = lim
k→∞

∫
A

Z
r

n(σk)dP a.s., A ∈ Fσ. (9)

For every k ≥ 1 and t ∈ R, define δk(0) , 0 and δk(t) , ki/2k if k(i − 1)/2k < t ≤ ki/2k for some
i ≥ 1. For every stopping time σ ∈ S, σk , δk(σ) is a stopping time that takes countably many distinct
values, and σk ↓ σ almost surely. Thus∫

A

Z
r

n(σk)dP =
∫

A

E{Zn(σk + δ)|Fσk
}dP

=
∫

A

Zn(σk + δ)dP =
∫

A

Zr
n(σk + δ)dP a.s., A ∈ Fσ, (10)

since P
(
Z

r

n(t) = E{Zn(t + δ)|Ft}
)

= 1 for every t ≥ 0 and (7) holds. By taking the limits of both sides
in (10), we obtain ∫

A

Z
r

n(σ)dP =
∫

A

Zr
n(σ + δ)dP =

∫
A

Zn(σ + δ)dP a.s., A ∈ Fσ, (11)

following from (9), Lemma 2.1, and (7). Finally, (11) implies Z
r

n(σ) = E{Zn(σ + δ)|Fσ} almost surely.
The remainder follows from Proposition 3.1. �

4. Markovian case. Let X = (X(t),Ft,Px) be a standard Markov process on a semicompact state
space (E, E). Let h : E 7→ [0,+∞) be a measurable C0-continuous function; i.e., limt↓0 h(X(t)) = h(X(0))
a.s., and let β denote the risk free interest rate. The reward process Y (t) , e−βth(X(t)), t ≥ 0 of the
previous section is nonnegative F-adapted and right-continuous, and the value functions Vn are defined
on the state space by

Vn(x) , sup
(τ1,...,τn)∈Sn

0

Ex

{
n∑

i=1

e−βτih(X(τi))

}
, x ∈ E, n ≥ 1. (12)

In this section, we characterize Vn(·) of (12) in terms of the β-excessive functions of the Markov process.
Recall that a measurable function f : E 7→ (−∞,+∞] is said to be β-excessive for X, if for every x ∈ E

f(x) ≥ Ex{e−βtf(X(t))}, t ≥ 0 and f(x) = lim
t↓0

Ex{e−βtf(X(t))}. (13)

The following results are well-known; see, e.g., Shiryaev [30, pp.116–117] and Fakeev [15]:

E.1. A nonnegative β-excessive function is C0-continuous.
E.2. If f(·) is a finite β-excessive function, then e−βtf(X(t)), t ≥ 0 is a càdlàg F-adapted super-

martingale.
E.3. If g : E 7→ [0,+∞) is measurable and C0-continuous, then the smallest β-excessive majorant of

g(·) exists.
E.4. If g(·) is the same as in E.3, then V (x) , supτ∈S Ex{e−βτg(X(τ))}, x ∈ E is the smallest

β-excessive majorant of g(·). For every t ≥ 0,

ess supτ∈St
Ex

{
e−βτg(X(τ))

∣∣Ft

}
= e−βtV (X(t)), Px-a.s.

If V is finite, then {e−βtV (X(t))}t≥0 is the Snell envelope of {e−βtg(X(t))}t≥0.

Proposition 4.1 Suppose V1 is finite. Let V0 ≡ 0, and define for every n ≥ 1

gn(x) , Ex

{
e−βδVn(X(δ))

}
and hn+1(x) , h(x) + gn(x), x ∈ E. (14)

Then Vn is the smallest β-excessive majorant of hn for every n ≥ 1, and for t ≥ 0

ess sup(τ1,...,τn)∈Sn
t

Ex

{∑n
i=1 e

−βτih(X(τi))
∣∣Ft

}
= e−βtVn(X(t)), Px-a.s. (15)
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Proof. The proposition is true for V1 by E.4. We shall assume that it is true for n, and prove it for
n+ 1 by using Proposition 3.2.

Let Zn and Zn be as in (2) and (4), respectively. By induction hypothesis and (15), we have Zn(t) =
e−βtVn(X(t)) a.s. for every t ≥ 0. Therefore,

Zn(t) = Ex{Zn(t+ δ)|Ft} = Ex{e−β(t+δ)Vn(X(t+ δ))|Ft} = e−βtgn(X(t)), a.s.

for every t ≥ 0. By Proposition 3.2, Vn+1(x) = supτ∈S0
Ex{Yn+1(τ)}, where

Yn+1(t) = Y (t) + Zn(t) = e−βt(h+ gn)(X(t)) a.s., t ≥ 0. (16)

If we can show that gn is C0-continuous, then h + gn will be a nonnegative C0-continuous function,
and its smallest β-excessive majorant will exist by E.3. Then E.4 will imply that Vn+1 is the smallest
β-excessive majorant of h+ gn, and

e−βtVn+1(X(t)) = ess supτ∈St
Ex{e−βτ (h+ gn)(X(τ))|Ft} by E.4

= ess supτ∈St
Ex{Yn+1(τ))|Ft} by (16)

= Zn+1(t) by (6)

= ess sup(τ1,...,τn+1)∈Sn+1
t

Ex

{∑n+1
i=1 e

−βτih(X(τi))
∣∣∣Ft

}
by (2)

Px-a.s. for every t ≥ 0, which proves (15) for n+ 1.

We claim that gn is nonnegative and β-excessive. The C0-continuity of gn will then follow from E.1.
It is nonnegative since h, and therefore Vn, is nonnegative. Because Vn ≤ nV1 and V1 is finite, Vn is
finite. By induction hypothesis, Vn is a finite β-excessive function. By E.2, e−βtVn(X(t)) is a càdlàg
supermartingale. Therefore, t 7→ Ex{e−βtVn(X(t))} is right-continuous, and

lim
t↓0

Ex{e−βtgn(X(t))} = lim
t↓0

Ex{e−β(t+δ)Vn(X(t+ δ))} = gn(x).

Finally, Ex{e−βtgn(X(t))} = Ex{e−β(t+δ)Vn(X(t + δ))} ≤ Ex{e−βδVn(X(δ))} = gn(x). Hence, gn is
β-excessive. �

5. The case of regular linear diffusions. In the sequel we suppose that the process X of Section
4 is a time-homogeneous regular linear diffusion with dynamics

dX(t) = µ(X(t))dt+ σ(X(t))dB(t), t ≥ 0,

where B is a standard Brownian motion on R, and F = {Ft}t≥0 is the augmentation of the natural
filtration of X that satisfies the usual conditions. We shall assume that the state space of X is an interval
I = (a, b) for some −∞ ≤ a < b ≤ +∞, and that the boundaries a and b are natural (other boundary
types can be handled similarly; see Dayanik and Karatzas [13] and Dayanik [12]). Let τy be the first
hitting time of y ∈ I by X, and let c ∈ I be a fixed point of the state space. For every β ≥ 0 we set

ψ(x) ,

{
Ex{e−βτc1{τc<∞}}, x ≤ c

1/Ec{e−βτx1{τx<∞}}, x > c

}
, ϕ(x) ,

{
1/Ec{e−βτx1{τx<∞}}, x ≤ c

Ex{e−βτc1{τc<∞}}, x > c

}
, (17)

and

F (x) =
ψ(x)
ϕ(x)

, x ∈ I. (18)

Then F (·) is continuous and strictly increasing, F (a+) = 0 and F (b−) = +∞ for every β > 0; see, e.g.,
Itô and McKean [16], Karlin and Taylor [22]. In this section, we shall redefine

h(X(τ)) = 0 on {τ = +∞}. (19)

If h(·) is the payoff function of an American-type option, then (19) implies that no payment is re-
ceived unless the option is exercised. Therefore, (19) is more natural in finance applications than setting
h(X(τ)) = limt→∞ h(X(t)) on {τ = ∞}. However, the results of previous sections are still valid under
(19), and β-excessive functions are easily characterized in terms of the functions F and ϕ.

Proposition 5.1 A measurable function U : I 7→ [0,+∞) is β-excessive for X if and only if (U/ϕ)◦F−1

is concave on [0,+∞), for every β ≥ 0.
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Proof. If U is nonnegative, finite, and β-excessive, then E.2 and optional sampling imply that
U(x) ≥ Ex{e−βτU(X(τ))} for all τ ∈ S and x ∈ I. Therefore, the concavity of (U/ϕ) ◦F−1 follows from
Dayanik and Karatzas [13, Proposition 5.9].

If (U/ϕ) ◦ F−1 is concave, then U is continuous, and U(x) ≥ Ex{e−βτU(X(τ))} for every τ ∈ S and
x ∈ I by the same proposition cited above. Therefore, e−βtU(X(t)) is a càdlàg supermartingale, and
t 7→ Ex{e−βtU(X(t))} is right-continuous, and (13) follows. �

Proposition 5.2 All the Vn’s are finite if and only if

`a , lim
x↓a

h+(x)
ϕ(x)

< +∞ and `b , lim
x↑b

h+(x)
ψ(x)

< +∞. (20)

Moreover, if (i) (20) holds, and (ii) hn is as in Proposition 4.1, and (iii) Wn is the smallest nonnegative
concave majorant of Hn , (hn/ϕ) ◦ F−1 on [0,+∞), then

Vn(x) = ϕ(x)Wn(F (x)), x ∈ I, n ≥ 1. (21)

Proof. The finiteness of Vn follows from Proposition 5.10 and V1 ≤ Vn ≤ nV1, n ≥ 1, and the rest
from Proposition 5.12 in Dayanik and Karatzas [13]. �

In the remainder of this section, we assume that (20) holds. By Propositions 5.1 and 5.2, Vn(·) and
gn(·) are finite and continuous, and if

Γn , {x ∈ I : Vn(x) = hn(x)} and σn , inf{t ≥ 0 : X(t) ∈ Γn}, (22)

then Γn is closed, and σn is a stopping time for every n ≥ 1. By Proposition 4.1,

Vn(x) = sup
τ∈S

Ex{e−βτhn(X(τ))}, x ∈ I. (23)

If (23) has an optimal stopping time, then σn is also optimal for the same problem. In fact, Dayanik and
Karatzas [13, Proposition 5.13 and 5.14] showed the following:

Proposition 5.3 Fix any n ≥ 1. The stopping time σn of (22) is optimal for (23), if and only if either

`(n)
a , lim

x↓a

h+
n (x)
ϕ(x)

= 0 and `
(n)
b , lim

x↑b

h+
n (x)
ψ(x)

= 0, (24)

or (i) if `(n)
a > 0, then there is no r ∈ I such that (a, r) ⊆ I\Γn, and (ii) if `(n)

b > 0, then there is no
l ∈ I such that (l, b) ⊆ I\Γn.

Proposition 5.4 Suppose that the stopping time σn of (22) is optimal for (23) for every n = 1, . . . ,m.
Let τ (1)

1 , σ1, and introduce for every n ≥ 2, the stopping times

τ
(n)
1 , σn, and τ

(n)
i , τ

(n)
i−1 + δ + σn−i+1 ◦ θτ

(n)
i−1+δ

, i = 2, . . . , n, (25)

where θ is the time-shift operator. Then the stopping strategy (τ (n)
1 , . . . , τ

(n)
n ) ∈ Sn is optimal for the

multiple-stopping problem (12) for every n = 1, . . . ,m.

Proof. We will prove the proposition by induction on n. For n = 1, V1(x) = Ex{e−βσ1h1(Xσ1)} =
Ex{e−βτ

(1)
1 h(X

τ
(1)
1

)} and τ (1)
1 ∈ S1 is indeed optimal.

Let us assume that (τ (n)
1 , . . . , τ

(n)
n ) is optimal for (12) for some 1 ≤ n ≤ m− 1 and prove the same for

n+ 1. Since τ (n+1)
1 = σn+1 is optimal for (23) for n+ 1,

Vn+1(x) = Ex{e−βτ
(n+1)
1 hn+1(Xτ

(n+1)
1

)} = Ex{e−βτ
(n+1)
1 (h+ gn)(X

τ
(n+1)
1

)}

= Ex{e−βτ
(n+1)
1 h(X

τ
(n+1)
1

)}+ Ex{e−β(τ
(n+1)
1 +δ)Vn(X

τ
(n+1)
1 +δ

)}

= Ex{e−βτ
(n+1)
1 h(X

τ
(n+1)
1

)}+ Ex

{
e−β(τ

(n+1)
1 +δ)EX

τ
(n+1)
1 +δ

∑n
i=1e

−βτ
(n)
i h(X

τ
(n)
i

)
}

= Ex{e−βτ
(n+1)
1 h(X

τ
(n+1)
1

)}+ Ex

{∑n
i=1e

−βρ
(n+1)
i h(X

ρ
(n+1)
i

)
}
,
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where ρ(n+1)
i , τ

(n+1)
1 + δ+ τ

(n)
i ◦ θ

τ
(n+1)
1 +δ

, i = 1, . . . , n. The proof of the induction step will follow once
we show that

ρ
(n+1)
i = τ

(n+1)
i+1 , i = 1, . . . , n. (26)

Note that ρ(n+1)
1 , τ

(n+1)
1 + δ+ σn ◦ θτ

(n+1)
1 +δ

= τ
(n+1)
2 , and (26) holds for i = 1. Suppose (26) is true

for 1 ≤ i ≤ n− 1, and prove the same for i+ 1. We have

ρ
(n+1)
i+1 , τ

(n+1)
1 + δ + τ

(n)
i+1 ◦ θτ

(n+1)
1 +δ

= τ
(n+1)
1 + δ +

(
τ

(n)
i + δ + σn−i ◦ θτ

(n)
i +δ

)
◦ θ

τ
(n+1)
1 +δ

(27)

by the definition (25) of τ (n)
i+1. Since ρ(n+1)

i , τ
(n+1)
1 + δ + τ

(n)
i ◦ θ

τ
(n+1)
1 +δ

= τ
(n+1)
i+1 by the induction

hypothesis, it follows

(τ (n)
i + δ) ◦ θ

τ
(n+1)
1 +δ

= τ
(n)
i ◦ θ

τ
(n+1)
1 +δ

+ δ = τ
(n+1)
i+1 − τ

(n+1)
1 ,

and, since (Y ◦ θσ) ◦ θτ = Y ◦ θτ+σ◦θτ
for every random variable Y and stopping times σ and τ , we have(

σn−i ◦ θτ
(n)
i +δ

)
◦ θ

τ
(n+1)
1 +δ

= σn−i ◦ θτ
(n+1)
i+1 +δ

.

By plugging the last two equalities back into (27), we obtain

ρ
(n+1)
i+1 = τ

(n+1)
1 + δ +

(
τ

(n+1)
i+1 − τ

(n+1)
1 + σn−i ◦ θτ

(n+1)
i+1 +δ

)
= τ

(n+1)
i+1 + δ + σn−i ◦ θτ

(n+1)
i+1 +δ

= τ
(n+1)
i+2

which completes the proof of both induction hypotheses. �

Corollary 5.1 If both `a and `b of (20) are zero, then (24) holds, and (τ (n)
1 , . . . , τ

(n)
n ) is optimal for

the multiple-stopping problem (12) for every n ≥ 1.

Proof. If we establish (24), the rest follows from Propositions 5.3 and 5.4. Since h ≤ hn = h+gn−1 ≤
h+ Vn−1 ≤ (n+ 1)V1, and the mapping x 7→ x+ is increasing h+ ≤ h+

n ≤ (n+ 1)V1.

Dayanik and Karatzas [13, Proposition 5.10] prove that limx↓a(V1/ϕ)(x) = `a and limx↑b(V1/ψ)(x) =
`b. From the previous inequalities, it follows `a ≤ `

(n)
a = limx↓a ≤ (n + 1)`a and `b ≤ `

(n)
b = limx↑b ≤

(n+ 1)`b. Since `a = `b = 0, (24) follows. �

6. Examples. This final section is devoted to a detailed analysis of a set of natural examples for
which explicit computations can be performed.

6.1 Brownian motion. Let X be one-dimensional standard Brownian motion on I = R, the reward
function be h(x) , x+ for x ∈ I, and fix β > 0.

The functions ψ(·) and ϕ(·) of (17) are the unique (up to a scalar multiple) increasing and decreasing
solutions of (1/2)u′′ = βu, respectively. We take ψ(x) = ex

√
2β and ϕ(x) = e−x

√
2β , x ∈ R so that

F (x) ,
ψ(x)
ϕ(x)

= e2x
√

2β , x ∈ R.

The boundaries ±∞ are natural, and F (−∞) = 0 and F (+∞) = +∞. Clearly, `−∞ and `+∞ of (20) are
zero. Therefore, all the Vn’s of (12) are finite by Proposition 5.2, and the multiple stopping strategies
(τ (n)

1 , . . . , τ
(n)
n ) of (25) are optimal by Corollary 5.1. Hence, the optimal multiple-stopping problem (12)

reduces to the optimal stopping problem (23).

6.1.1 (n = 1). By Proposition 5.2, we have V1(x) = ϕW1(F (x)), x ∈ R, where W1(·) is the smallest
nonnegative concave majorant of

H1(y) , (h1/ϕ)(F−1(y)) =
(ln y)+

√
y

2
√

2β
, y ∈ [0,+∞),
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(c)

0

h(x) = x+

0 10 1

H1

L1

W1

H1

z1 = e2z1 = e2

G1

z2

W2

L2
H2

(a) (b)

Figure 1: (Brownian motion). The sketches of (a) the reward function h, (b) the function H1 and its
smallest nonnegative concave majorant W1, (c) H2 = H1 + G1 and its smallest nonnegative concave
majorant W2.

which vanishes on [0, 1) and is nonnegative strictly concave and increasing on [1,+∞); see Figure 1(b).
Since limy→+∞H ′

1(y) = 0, there is a unique number z1 > 1 such that

H1(z1)/z1 = H ′
1(z1). (28)

In fact z1 = e2, and W1(·) coincides with L1(y) , yH ′
1(z1) on [0, z1] and with H1(·) on [z1,+∞). Now,

let x1 , F−1(z1) = 1/
√

2β. Then

V1(x) = ϕ(x)W1(F (x)) =

{
ex
√

2β−1/
√

2β, x ≤ x1,

x, x ≥ x1.

Since Γ1 = {x ∈ R : V1(x) = h1(x)} = F−1
(
{y ≥ 0 : W1(y) = H1(y)}

)
= [x1,+∞), the optimal stopping

time of (22) is σ1 = inf{t ≥ 0 : X(t) ≥ x1}.

6.1.2 (n = 2). We start by first finding the smallest nonnegative concave majorant W2 of H2 ,
(h2/ϕ) ◦ F−1, where h2 = h+ g1 and g1(x) = Ex{e−βδV1(X(δ))}, x ∈ R.

If G1(y) , (g1/ϕ)(F−1(y)) for every y ≥ 0, then H2 = H1 + G1. Since g1 is nonnegative, finite, and
β-excessive, the function G1 is concave by Proposition 5.1. Because G1 is also nonnegative, its concavity
implies that the right-derivative of G1(y) is nonnegative everywhere (otherwise, G1 < 0 on [y0,+∞)
for some y0 ≥ 0); therefore, G1 is also nondecreasing. Finally, 0 ≤ G1 ≤ W1 and limy↓0W1(y) =
limy↓0H1(y) = 0. Thus, limy↓0G1(y) = 0.

As shown in Figure 1(c), H2 is concave both on [0, 1] and [1,+∞). Since G1 and H1 are concave
on [1,+∞) and G1 ≤ H1, we must have 0 ≤ limy→∞G′1(y) ≤ limy→∞H ′

1(y) (otherwise, G1 > H1 on
[y1,+∞) for some y1 ≥ 0). Since the latter is zero, limy→∞G′1(y) = 0. Hence, limy→∞H ′

2(y) = 0, and
there is unique z2 > 1 such that

H2(z2)/z2 = H ′
2(z2). (29)

It is then clear, as also seen from Figure 1(c), that the smallest nonnegative concave majorant W2 of H2

is the same as the straight line L2(y) = yH ′
2(z2) on [0, z2], and the same as H2 on [z2,+∞). If we define

x2 , F−1(z2), then

V2(x) = ϕ(x)W2(F (x)) =

{
h2(x2)e−(x2−x)

√
2β , x ≤ x2,

h2(x), x > x2.
(30)

It is also easy to see that Γ2 = [x2,+∞) and σ2 = inf{t ≥ 0 : X(t) ≥ x2}.

Next we prove that x2 ≤ x1. Note that

d

dy

(
Hn(y)
y

)
=

1
y

(
H ′

n(y)− Hn(y)
y

)
, y > 1, n = 1, 2. (31)
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Since Hn are concave on [1,+∞), the right-hand side of (31) is positive (negative) for 1 < y < zn (y > zn)
and equals zero at y = zn, thanks to (28) and (29). Hence, zn is the global maximum on [1,+∞) of
y 7→ Hn(y)/y, which is increasing (decreasing) on [1, zn] ([zn,+∞)) for n = 1, 2. We have

H2(z1)
z1

=
H1(z1)
z1

+
G1(z1)
z1

= H ′
1(z1) +

G1(z1)
z1

≥ H ′
1(z1) +G′1(z1) = H ′

2(z1),

where the inequality follows from the concavity of G1 and G(0+) = 0. Hence, H2 is decreasing at y = z1,
and therefore, z2 ≤ z1. Since F is increasing, it follows that x2 = F−1(z2) ≤ F−1(z1) = x1.

6.1.3 (General n). Similarly, Hn = (hn/ϕ)◦F−1 can be shown to be concave on [0, 1] and [1,+∞);
and limy→+∞H ′

n(y) = 0. There exists unique zn > 1 such that

Hn(zn)/zn = H ′
n(zn).

The smallest nonnegative concave majorant Wn of Hn on [0,+∞) coincides with the straight-line Ln(y) =
yH ′

n(zn) on [0, zn], and with Hn on [zn,+∞). If xn , F−1(zn), then

Vn(x) = ϕ(x)Wn(F (x)) =

{
e−(xn−x)

√
2βhn(xn), x ≤ xn,

hn(x), x > xn,
(32)

and σn = inf{t ≥ 0 : X(t) ≥ xn} in (25).

The mapping y 7→ Hn(y)/y is increasing on [1, zn], and decreasing on [zn,+∞); and zn > 1 is its
maximizer. We can show as above that 1 < zn ≤ z1 = e2. These facts can be used to compute xn

numerically.

6.2 Geometric Brownian motion. Suppose that X is a geometric Brownian motion in I =
(0,+∞) with dynamics dX(t) = X(t)[βdt + σdB(t)], t ≥ 0, where β and σ are positive constants.
Let the reward function in (12) be h(x) = (K − x)+, x > 0 for some constant K > 0.

The functions in (17) are unique (up to positive multipliers) increasing and decreasing solutions of the
ordinary differential equation (σ2/2)x2u′′(x) + βxu′(x) = βu(x) for x > 0, where the right-hand side is
the infinitesimal generator of X applied to a smooth function u. We let ψ(x) = x and ϕ(x) = x−c, where
c , 2β/σ2; thus

F (x) ,
ψ(x)
ϕ(x)

= x1+c, x > 0.

Note that F (0+) = 0, F (+∞) = +∞; namely, both 0 and +∞ are natural boundaries for X. One can
also check that both `0 and `∞ of (20) are zero. Hence, all Vn’s are finite, and (τ (n)

1 , . . . , τ
(n)
n ) of (25) is

an optimal multiple-stopping strategy for every n ≥ 1, thanks to Proposition 5.2 and Corollary 5.1.

6.2.1 (n=1). By Proposition 5.2, we have V1(x) = ϕ(x)W1(F (x)) for every x > 0, where W1 is the
smallest nonnegative concave majorant of

H1(y) , (h/ϕ)(F−1(y)) =
(
Kyc/(1+c) − y

)+

, y > 0.

It can be shown that H1(0) , H1(0+) = 0. The mapping H1 is strictly concave on [0,K1+c], vanishes
on [K1+c,+∞), and has global maximum at z1 , [cK/(1 + c)]1+c ∈ (0,K1+c). Therefore, its smallest
nonnegative concave majorant W1 coincides with H1 on [0, z1] and is equal to the constant H1(z1) on
[z1,+∞); see Figure 2(b). If we define x1 , F−1(z1) = cK/(1 + c), then

V1(x) = ϕ(x)W1(F (x)) =

{
K − x, 0 < x ≤ x1,

(x1/x)2r/σ2
(K − x1), x > x1.

Since Γ1 = F−1((0, z1]) = (0, x1], we have σ1 = inf{t ≥ 0 : X(t) ≤ x1}.

6.2.2 (n=2). By Proposition 5.4, we have V2(x) = ϕ(x)W2(F (x)), where W2 is the smallest nonneg-
ative concave majorant of H2 = H1+G1, and G1 , (g1/ϕ)◦F−1. Since g1 is nonnegative and β-excessive,
the functionG1 is nonnegative and concave by Proposition 5.1; therefore, it is also nondecreasing. Because
G1 ≤W1, we also have G1(+∞) ≤W1(z1) and G1(0+) = 0; see Figure 2(c).
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W1

K

h(x) = (K − x)+

0 K1+c0 z1

H1(z1)

K1+c0

W2
H2(z2)

G1
H1H1

z2

(a) (b) (c)

z1

H2 W1K

Figure 2: (Geometric Brownian motion). The sketches of (a) the reward function h, (b) the function
H1 and its smallest nonnegative concave majorant W1, (c) H2 = H1 + G1 and its smallest nonnegative
concave majorant W2.

Now observe that H2 is the sum of two concave functions on [0,K1+c] and [K1+c,+∞); therefore, it is
itself concave on both intervals. We have H2(0+) = 0. The function H2 coincides with G1 on [K1+c,+∞)
and has unique global maximum at some z2 ∈ (0,K1+c). Therefore, W2 is the same as H2 on [0, z2] and
is equal to the constant H2(z2) on [z2,+∞). If x2 , F−1(z2), then σ2 = inf{t ≥ 0 : X(t) ≤ x2} and

V2(x) = ϕ(x)W2(F (x)) =

{
h2(x), 0 < x < x2,

(x2/x)
2β/σ2

h2(x2), x ≥ x2.

Next let us show that x1 ≤ x2 < K. Since zn is unique global maximizer of Hn for n = 1 and n = 2,
we have

0 ≤ H2(z2)−H2(z1) = −(H1(z1)−H1(z2)) + (G1(z2)−G1(z1)),

which implies G1(z2) − G1(z1) ≥ H1(z1) − H1(z2) ≥ 0. Since G1 is nondecreasing, we must have
z1 ≤ z2 < K1+c. Because F is increasing, the inequalities x1 ≤ x2 < K follow.

One can check that the same results hold for general n. Namely, Hn is concave on [0,K1+c] and
[K1+c,+∞). It coincides on [K1+c,+∞) with the bounded, nonnegative, nondecreasing, and concave
function Gn−1 , (gn−1/ϕ) ◦ F−1, and we have Hn(0+) = 0. Therefore, Hn has a global maximum zn,
which is located in (0,K1+c); in fact, z1 ≤ zn < K1+c. The smallest nonnegative concave majorant
Wn of Hn coincides with Hn on [0, zn] and is equal to the constant Hn(zn) on [zn,+∞). If we define
xn , F−1(zn), then σn = inf{t ≥ 0 : X(t) ≤ xn} is the nth stopping time in (25), and

Vn(x) = ϕ(x)Wn(F (x)) =

{
hn(x), 0 < x < xn,

(xn/x)
2β/σ2

hn(xn), x ≥ xn.

6.3 Ornstein-Uhlenbeck process. Let X be the diffusion process in R with dynamics dXt =
k(m −Xt)dt + σdBt, t ≥ 0, where k > 0, σ > 0, and m ∈ R are constants. Let the reward function in
(12) be h(x) = (ex − L)+, x ∈ R.

We shall denote by ψ(·) and ϕ(·) the functions in (17) for X, and by ψ̃(·) and ϕ̃(·) those for the process
Zt , (Xt −m)/σ, t ≥ 0, which satisfies dZt = −kZt + dBt, t ≥ 0. For every x ∈ R,

ψ̃(x) = ekx2/2D−β/k(−x
√

2k) and ϕ̃(x) = ekx2/2D−β/k(x
√

2k), (33)

and ψ(x) = ψ̃((x−m)/σ) and ϕ(x) = ϕ̃((x−m)/σ), where Dν(·) is the parabolic cylinder function; see
Borodin and Salminen [6, Appendices 1.24 and 2.9]. The boundaries ±∞ are natural for X. By using
the relation

Dν(z) = 2−ν/2e−z2/4Hν(z/
√

2), z ∈ R (34)
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Figure 3: (Ornstein-Uhlenbeck process). The sketches of (a) the reward function h, (b) the function
H1 and its smallest nonnegative concave majorant W1, (c) H2 = H1 + G1 and its smallest nonnegative
concave majorant W2. In the figure, ξ is shown to be larger than lnL.

in terms of Hermite function Hν(·) of degree ν and its integral representation

Hν(z) =
1

Γ(−ν)

∫ ∞

0

e−t2−2tzt−ν−1dt, Re ν < 0 (35)

(see, for example, Lebedev [23, pp. 284, 290]), one can check that both limits in (20) are zero. By
Proposition 5.2 and Corollary 5.1, the value function Vn(·) in (12) is finite, and the strategy (τ1, . . . , τn)
of (25) is optimal for every n ≥ 1.

6.3.1 (n=1). This case, namely, pricing perpetual American call option on an asset with price
process eXt , t ≥ 0, has been recently studied by Cadenillas, Elliott, and Léger [7] by using variational
inequalities. Let F (x) , ψ(x)/ϕ(x) for every x ∈ R. Since the reward function h(·) is increasing, the
function H1(y) , (h/ϕ)(F−1(y)), y ∈ (0,+∞) is also increasing. Dayanik and Karatzas [13, Section 6]
show that H ′′(y) and [(A − β)h](F−1(y)) have the same sign at every y where h is twice-differentiable.
Here, (A − β)h(x) = ex[(σ2/2) + km − β − kx] + βL for x > lnL. Hence, there exists some ξ > 0
such that H(·) is convex on [0, F (ξ ∨ lnL)] and concave on [F (ξ ∨ lnL),+∞); see Figure 3(b). It can
also be checked that H ′(+∞) = 0 by using (34), (35) and the identity H′

ν(z) = 2νHν−1(z), z ∈ R; see
Lebedev [23, p. 289], Borodin and Salminen [6, Appendix 2.9]. Therefore, there exists unique z1 > F (L)
such that H ′(z1) , H(z1)/z1. The smallest nonnegative concave majorant W1(·) of H1(·) on [0,∞)
coincides with the straight line L1(y) , (y/z1)H1(z1), y ≥ 0 on [0, z1], and with H1(·) on [z1,+∞). If
x1 , F−1(z1), then the relation V1(x) = ϕ(x)W1(F (x)), x ∈ R gives

V1(x) =


(ex1 − L) e

k
2

[
( x−m

σ )2−( x1−m
σ )2

] D−β/k

(
−x−m

σ

√
2k
)

D−β/k

(
−x1−m

σ

√
2k
) , x < x1,

ex − L, x ≥ x1.

(36)

The stopping time σ1 = inf{t ≥ 0 : Xt > x1} is the first exit time from (0, x1].

6.3.2 (n ≥ 2). The analysis is similar to that in previous examples; compare, for example, Figures
4 and 3. The nth value function Vn in (12) is the same as the function in (36) except that x1 is replaced
with xn , F−1(zn) for every n ≥ 1, and σn = inf{t ≥ 0 : Xt > xn} in (25), where zn is the unique
solution of H ′

n(y) = Hn(y)/y, y ≥ 0. The critical value zn is the unique maximum of y 7→ Hn(y)/y and
is contained in (F (lnL), z1). It can be calculated numerically.

6.4 Another mean reverting diffusion. Let X be a diffusion process in (0,+∞) with dynamics

dXt = µXt(α−Xt)dt+ σXtdBt, t ≥ 0, (37)

and h(x) , (x−K)+ for every x > 0 in (12), where µ, α, σ and K are positive constants. The process
has been studied widely in irreversible investment and harvesting problems; see, for example, Dixit and
Pindyck [14], Alvarez and Shepp [2].
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The functions ψ(·) and ϕ(·) in (17) are the increasing and decreasing fundamental solutions of
(1/2)σ2x2u′′(x) + µx(α− x)u′(x)− βu(x) = 0, respectively. Denote by

M(a, b, x) ,
∞∑

k=0

(a)k

(b)k

xn

n!
, (a)k , a(a+ 1) · · · (a+ k − 1), (a)0 = 1, (38)

U(a, b, x) ,
π

sinπb

{
M(a, b, x)

Γ(1 + a− b)Γ(b)
− x1−bM(1 + a− b, 2− b, x)

Γ(a)Γ(2− b)

}
(39)

the confluent hypergeometric functions of the first and second kind, respectively, which are two linearly
independent solutions for the Kummer equation xw′′(x) + (b − x)w′(x) − ax = 0 for arbitrary positive
constants a and b; see, for example, Abramowitz and Stegun [1, Chapter 13]. Then

ψ(x) , (cx)θ+
M(θ+, a+, cx), and ϕ(x) , (cx)θ+

U(θ+, a+, cx), x > 0,

and

F (x) ,
ψ(x)
ϕ(x)

=
M(θ+, a+, cx)
U(θ+, a+, cx)

, x > 0,

where c , 2µσ2, a± = 2θ± + (2µα/σ2), and

θ± ,

(
1
2
− µα

σ2

)
±

√(
1
2
− µα

σ2

)
+

2β
σ2
, θ− < 0 < θ+

are the roots of the equation (1/2)σ2θ(θ − 1) + µαθ − β = 0; see Dayanik and Karatzas [13]. Since
ψ(+∞) = ϕ(−∞) = +∞, the boundaries 0 and +∞ are natural. Both limits in (20) are zero. By
Proposition 5.2, all the Vn’s are finite, and (τ (n)

1 , . . . , τ
(n)
n ) of (25) is optimal for every n ≥ 1 because of

Corollary 5.1.

6.4.1 (n=1). Dayanik and Karatzas [13, Section 6.10] show that the function H1 = (h/ϕ) ◦ F−1 is
increasing, convex on [0, F (K ∨ ξ)], and concave on [F (K ∨ ξ),+∞) for some ξ > 0, and H ′(+∞) = 0;
see Figure 4. Therefore, H(y)/y = H ′(y) has unique solution—call it z1, and the smallest nonnegative
concave majorant W1 of H1 coincides with the straight-line L1(y) = (y/z1)H(z1) on [0, z1], and with H1

on [z1,+∞). If we set x1 , F−1(z1) > K, then

V1(x) = ϕ(x)W1(F (x)) =


(
x

x1

)θ+

M(θ+, a+, cx)
M(θ+, a+, cx1)

(x1 −K), 0 < x < x1,

x−K, x > x1.

(40)

F (L)00

H1

L1

W1

H1

G1

W2

L2
H2

(a) (b) (c)

0

h(x) = (x−K)+

z1 z1F (ξ) z2F (ξ)L F (L)

Figure 4: (Mean-reverting process). The sketches of (a) the reward function h, (b) the function H1 and
its smallest nonnegative concave majorant W1, (c) H2 = H1 + G1 and its smallest nonnegative concave
majorant W2. In the figure, ξ is shown to be larger than K.
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6.4.2 (n ≥ 2). The fundamental properties of the functions W1 and H1 are essentially the same as
those in the first example; compare the graphs in Figures 4 and 1. Therefore, the analysis is the same as
that in Section 6.1.2 and 6.1.3 after obvious changes, such as, instead of (30) and (32), we have

Vn(x) = ϕ(x)Wn(F (x)) =


(
x

xn

)θ+

M(θ+, a+, cx)
M(θ+, a+, cxn)

hn(xn), 0 < x < xn,

hn(x), x > xn

(41)

for n ≥ 2. Finally, the nth stopping time σn = inf{t ≥ 0 : Xt ≥ xn} in (25) is the first hitting time of
X to [xn,+∞). Moreover, xn = F−1(zn); the number zn is the unique maximum of y 7→ Hn(y)/y and is
contained in (K,x1). Therefore, zn and xn can be calculated numerically.
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