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Abstract. A change in the arrival rate of a Poisson process sometimes necessitates imme-

diate action. If the change time is unobservable, then the design of online change detection

procedures becomes important and is known as the Poisson disorder problem. Formulated

and partially solved by Davis [Banach Center Publ., 1:65–72, 1976], the standard Poisson

problem addresses the tradeoff between false alarms and detection delay costs in the most

useful way for applications. In this paper we solve the standard problem completely and

describe efficient numerical methods to calculate the policy parameters.

1. Introduction

Suppose that the rate of a Poisson process X changes from one known value to another at

a random and unobservable time θ, which is nonnegative and has exponential distribution

P{θ > t} = (1 − π)e−λt, t ≥ 0. The classical Poisson disorder problem is to detect the

disorder time θ as quickly as possible. The detection rule is typically a stopping time τ of

the history generated by the process X, and minimizes a suitable measure of the expected

losses due to false alarms on the event {τ < θ} and the detection delay (τ − θ)+, e.g.,

R(1)
τ (π) , P{τ < θ − ε}+ c E(τ − θ)+, R(2)

τ (π) , P{τ < θ}+ c E(τ − θ)+,

R(3)
τ (π) , E(θ − τ)+ + c E(τ − θ)+, R(4)

τ (π) , P{τ < θ}+ c E[eα(τ−θ)+ − 1],
(1.1)

for some positive constants ε, α and c. The first three criteria model the detection delay

cost by a linear function of the delay time and are suitable, e.g., for capturing the cost

of defective merchandise produced by an undetected out-of-control industrial process. The

fourth criterion penalizes the delay time exponentially; especially in financial applications,

it gives a better account for the unrealized revenues due to the lost investment opportunities

over the delay time. The false alarms are also weighted differently; the third criterion
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minimizes the expected total miss, while the other criteria incorporate the frequency of false

alarms (outside the acceptable window (θ − ε, θ] in the case of the first criterion).

All of the criteria in (1.1) are in fact special instances of the so-called standard Poisson

disorder problem; namely, they can be cast in the form

Rτ (π; Φ, k) , γ(π) + β(π) E0

∫ τ

0

e−λt(Φt − k)dt for every stopping time τ of X,(1.2)

for some known constant k > 0, known functions γ, β from [0, 1) into R+, and some suitable

process Φ = {Φt : t ≥ 0} which is adapted to the history of X and plays the rôle of

appropriate “odds-ratio” process. We have denoted by P0 a probability measure which is

equivalent to P on each finite time-interval [0, t], and under which the observed process X

becomes a Poisson process with rate λ0; see (2.4) for a detailed description. Finally, E0

denotes expectation with respect to P0.

Under the original probability measure P and in a form similar to (1.2), the resemblance

of the criteria R(1) and R(3) (also, R(2) as a special case of R(1) with ε = 0) was first noticed

by Davis (1976), who also coined the term “standard” for the Poisson disorder problems

with a criterion admitting his general representation. Using the theory of filtering for point

processes, Davis (1976) partially solved the standard Poisson disorder problem and improved

the partial solution of Galchuk and Rozovskii (1971) for the criterion R(2) in (1.1).

In this paper we provide the complete solution of the standard Poisson disorder problem.

The process Φ in (1.2) turns out to be a piecewise-deterministic Markov process (see, e.g.,

Davis (1993; 1984)). Thus, the minimization of (1.2) over all stopping times τ of the process

X becomes a discounted optimal stopping problem for the Markov process Φ. We formulate

and solve a related differential-delay equation with a free boundary: the optimal detection

rule is to set off the alarm as soon as the process Φ reaches or exceeds a suitable threshold.

We also describe a straightforward and accurate numerical procedure to calculate the critical

threshold and the minimum cost function.

Two special cases R(2) and R(4) in (1.2) have been recently solved by Peskir and Shiryaev

(2002) and Bayraktar and Dayanik (2003), respectively. Peskir and Shiryaev (2002) work

with the posterior probability process Πt , P{θ ≤ t|Xs, 0 ≤ s ≤ t}, t ≥ 0 (instead of

the odds-ratio process Φt , Πt/(1 − Πt)). This increases considerably the mathematical

difficulty, preventing their analysis from reaching its full capacity. Working with the odds-

ratio process Φ instead, Bayraktar and Dayanik (2003) were able to reveal the complete

structure of the solution for the (apparently) more difficult problem with exponential delay

cost: under the original probability measure P, the detection problem with R(4) reduces to
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an optimal stopping problem for a two-dimensional piecewise-deterministic Markov process.

Here, we also show the true one-dimensional nature of that problem by the new formulation

under the auxiliary probability measure P0 under which we have taken the expectation in

(1.2).

In the next section we give a precise description of the model, and formulate an equivalent

optimal stopping problem. In Section 3, we solve the optimal stopping problem and describe

a numerical method to calculate the policy parameters.

2. The problem description

Let (Ω,F , P) be a probability space hosting a counting process X = {Xt, t ≥ 0} and a

random variable θ with the distribution

P{θ = 0} = π and P{θ > t} = (1− π)e−λt, 0 ≤ t < ∞(2.1)

for some known constants π ∈ [0, 1), λ > 0. Let F = {Ft}t≥0 be the natural filtration

Ft = σ(Xs, 0 ≤ s ≤ t) of X, enlarged by P-null sets so as to satisfy the usual conditions, and

consider the larger filtration G = {Gt}t≥0 with Gt , Ft ∨ σ(θ). If θ is known, the process X

is a Poisson process with rate λ0 on the time interval [0, θ] and with rate λ1 on (θ,∞) for

some known positive constants λ0 and λ1. Namely, the process X is a counting process such

that

Xt −
∫ t

0

[
λ01{s<θ} + λ11{s≥θ}

]
ds, t ≥ 0 is a (P, G)-martingale;(2.2)

see, for instance, Brémaud (1981; 1975), Brémaud and Jacod (1977). The crucial feature

here, is that θ is neither known nor observable; only the process X is observable. Our

problem is to find a quickest detection rule for the disorder time θ, which is adapted to the

history F generated by the observed process X. If such a rule exists, then it is typically an

F-stopping time minimizing a suitable error criterion. Before we specify this criterion, we

shall first describe a useful reference probability measure P0 as follows.

The Model. Let us start with a probability space (Ω,F , P0) which supports a Poisson

process X with rate λ0 and an independent random variable θ with the distribution P0{θ =

0} = π and P0{θ > 0} = (1 − π)e−λt, t > 0. Let the natural filtration F of X and its

augmentation G by σ(θ) be defined as above. Expressed in terms of the right-continuous,

G-adapted process h(t) , λ01{t<θ} + λ11{t≥θ}, 0 ≤ t < ∞ (the integrand of (2.2)), the
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(P0, G)-martingale

Zt , exp

{∫ t

0

log

(
h(s)

λ0

)
dXs −

∫ t

0

[h(s)− λ0]ds

}
, t ≥ 0(2.3)

induces a new probability measure P on (Ω,F) which satisfies

dP
dP0

∣∣∣∣
Gt

= Zt = 1{θ>t} + 1{θ≤t}
Lt

Lθ

(2.4)

for every 0 ≤ t < ∞, where

Lt ,

(
λ1

λ0

)Xt

e−(λ1−λ0)t.(2.5)

We take F = σ (∪t≥0 Gt), without loss of generality. Under the new probability measure P,

the process X has the (G-progressively measurable) intensity h(·). This is to say that (2.2)

holds; see, e.g., Brémaud (1981; 1972), Brémaud and Jacod (1977). Since P and P0 coincide

on G0 = σ(θ), we conclude that (2.1) also holds. Therefore, the probability space (Ω,F , P)

and the random elements X and θ have the same properties posited at the beginning of this

section, and we shall assume henceforth that they are as described here.

We shall denote by S the collection of all F-stopping times. Let us also introduce the

posterior probability Πt , P{θ ≤ t|Ft}, t ≥ 0 that the disorder has happened at or before

time t, given all past observations of X, and the generalized odds-ratio processes

Φ
(α)
t ,

E[eα(t−θ)1{θ≤t}|Ft]

1− Πt

, 0 ≤ t < ∞(2.6)

for α ∈ [0,∞). The standard Poisson disorder problem is then to calculate the minimum

Bayes risk

V (π; Φ(α), k) , inf
τ∈S

Rτ (π; Φ(α), k), π ∈ [0, 1)(2.7)

with R as in (1.2), and to find a stopping time τ ∈ S which attains the infimum in (2.7). If

such a stopping time exists, it is called an optimal Bayes detection rule.

Proposition 2.1. For every π ∈ [0, 1) and τ ∈ S, we have R
(i)
τ (π) = Rτ (π; Φ(0), ki), i =

1, 2, 3, and R
(4)
τ (π) = Rτ (π; Φ(α), k4) for every positive α, where k1 = (λ/c)e−ελ, k2 = λ/c,
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k3 = 1/c, k4 = λ/(cα). More precisely, we have

R(1)
τ (π) = (1− π)e−λε + c(1− π) E0

∫ τ

0

e−λt
[
Φ

(0)
t − (λ/c)e−λε

]
dt,

R(3)
τ (π) = (1− π)/λ + c(1− π) E0

∫ τ

0

e−λt
[
Φ

(0)
t − (1/c)

]
dt,

R(4)
τ (π) = (1− π) + cα(1− π) E0

∫ τ

0

e−λt
[
Φ

(α)
t − (λ/(cα))

]
dt, α > 0,

(2.8)

and R(2) is the same as R(1) with ε = 0.

Before supplying the proof, let us first derive the dynamics of the processes Φ(α), α ≥ 0.

By the Bayes rule (see, e.g., Lipster and Shiryaev (2001, Section 7.9)) and the independence

of θ and F under P0, we have

Πt = P{θ ≤ t|Ft} =
E0[Zt1{θ≤t}|Ft]

E0[Zt|Ft]
and 1− Πt =

E0[1{θ>t}|Ft]

E0[Zt|Ft]
=

(1− π)e−λt

E0[Zt|Ft]
(2.9)

for every t ≥ 0. From (2.6), (2.9) and (2.4), it follows

Φ
(α)
t =

E[eα(t−θ)1{θ≤t}|Ft]

1− Πt

=
E0[Zte

α(t−θ)1{θ≤t}|Ft]

(1− Πt)E0[Zt|Ft]
=

eλt

1− π
E0[Zte

α(t−θ)1{θ≤t}|Ft](2.10)

=
e(λ+α)t

1− π

[
πLt + (1− π)

∫ t

0

Lt

Ls

λe−(λ+α)sds

]
= U

(α)
t + V

(α)
t ,

where

U
(α)
t ,

π

1− π
e(λ+α)tLt and V

(α)
t , e(λ+α)tLt

∫ t

0

1

Ls

λe−(λ+α)sds

for every t ≥ 0. The process L = {Lt, t ≥ 0} in (2.4) is a (P0, F)-martingale and is the

unique locally bounded solution of the equation

dLt = [(λ1/λ0)− 1]Lt−(dXt − λ0dt), L0 = 1;

see, e.g., Jacod and Shiryaev (2003, Theorem 4.61, p. 59) and Revuz and Yor (1999, Propo-

sition 4.7, p. 6). By means of the chain-rule, we obtain

dU
(α)
t = (λ + α− λ1 + λ0)U

(α)
t dt + [(λ1/λ0)− 1]U

(α)
t− dXt, U

(α)
0 = π/(1− π),

dV
(α)
t =

(
λ + (λ + α− λ1 + λ0)V

(α)
t

)
dt + [(λ1/λ0)− 1]V

(α)
t− dXt, V

(α)
0 = 0.

Therefore, for every α ≥ 0, the process Φ
(α)
t = U

(α)
t + V

(α)
t , t ≥ 0 satisfies

dΦ
(α)
t =

(
λ + (λ + α− λ1 + λ0)Φ

(α)
t

)
dt + [(λ1/λ0)− 1]Φ

(α)
t− dXt, Φ

(α)
0 = π/(1− π).

(2.11)
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Proof of Proposition 2.1. By setting α = 0 in (2.10), we obtain E0[Zt1{θ≤t}|Ft] = (1 −
π)e−λtΦ

(0)
t , t ≥ 0. Therefore,

E[(τ − θ)+] = E
[
1{τ>θ}

∫ τ

θ

dt

]
= E

∫ ∞

0

1{τ>t}1{θ≤t}dt =

∫ ∞

0

E0[Zt1{τ>t}1{θ≤t}]dt

=

∫ ∞

0

E0[1{τ>t}E0[Zt1{θ≤t}|Ft]]dt = (1− π) E0

∫ τ

0

e−λtΦ
(0)
t dt,(2.12)

for every τ ∈ S. On the other hand, for every ε ≥ 0 and every F-stopping time τ which

takes countably many values, say in {tn, n ∈ N} for distinct tn ∈ R+ ∪ {+∞}, we have

(2.13) P{τ < θ − ε} =
∑

n

P{tn < θ − ε, τ = tn} =
∑

n

E0

[
Ztn1{tn<θ−ε}1{τ=tn}

]
=

∑
n

E0

[
1{θ>tn+ε}1{τ=tn}

]
=

∑
n

(1− π)e−(λ+ε)tn E0[1{τ=tn}]

= (1− π)e−λε E0

∑
n

e−λtn1{τ=tn} = (1− π)e−λε E0

∑
n

[
1−

∫ tn

0

λe−λtdt

]
1{τ=tn}

= (1− π)e−λε − (1− π)λe−λε E0

∫ τ

0

e−λtdt.

The third equation follows from the expression for Zt in (2.4), and the fourth from the

independence of θ and F∞ under P0.

Now an arbitrary F-stopping time τ is the almost-sure limit of a decreasing sequence

{τn}n≥1 of F-stopping times which take countably many values, and the above equality (2.13)

holds for every τn. Since t 7→ 1{t<θ−ε} and t 7→
∫ t

0
e−λsds are bounded and right-continuous,

(2.13) also holds for τ , because of the bounded convergence theorem, after passing to the

limit on both sides.

Multiplying (2.12) by c and summing that with (2.13), we obtain R(1) in (2.8), with

γ(π) = (1 − π)e−λε, β(π) = c(1 − π) and k1 = (λ/c)e−λε in (1.2). Similarly, k2 = λ/c if we

set ε = 0 in R(1) to get R(2) of (1.1). On the other hand, for every F-stopping time τ

E[(θ − τ)+] = E
[
1{τ<θ}

∫ θ

τ

dt

]
= E

∫ ∞

0

1{θ>t}1{τ≤t}dt =

∫ ∞

0

E0

[
Zt1{θ>t}1{τ≤t}

]
dt(2.14)

=

∫ ∞

0

E0

[
1{θ>t}1{τ≤t}

]
dt = (1− π)

∫ ∞

0

e−λt
(
1− E01{τ>t}

)
dt

= (1− π)

[
1

λ
− E0

∫ τ

0

e−λtdt

]
,
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where we have again used the independence of θ and F∞ under P0. Note from (2.10) that

E0[Zte
α(t−θ)1{θ≤t}|Ft] = (1− π)e−λtΦ

(α)
t , t ≥ 0 and

(2.15) E[eα(τ−θ)+ − 1] = α E
[
1{τ>θ}

∫ τ

θ

eα(t−θ)dt

]
= α E

∫ ∞

0

1{τ>t}1{θ≤t}e
α(t−θ)dt

= α

∫ ∞

0

E0[1{τ>t}Zte
α(t−θ)1{θ≤t}]dt = α

∫ ∞

0

E0

[
1{τ>t}E0[Zt1{θ≤t}e

α(t−θ)|Ft]
]
dt

= α(1− π) E0

∫ τ

0

e−λtΦ
(α)
t dt, τ ∈ S, α > 0.

From (2.12) with ε = 0, (2.14) and (2.15), we get R(3) and R(4) as in (2.8), with k3 = 1/c

and k4 = λ/(cα). �

It is clear from (2.11) that the process Φ(α) = {Φ(α)
t , t ≥ 0} is a (piecewise-deterministic)

Markov process. For every bounded, continuous and continuously differentiable function

f : R+ 7→ R, we have

f(Φ
(α)
t )− f(Φ

(α)
0 ) =

∑
0<s≤t

[
f
(
Φ(α)

s

)
− f

(
Φ

(α)
s−

)]
+

∫ t

0

f ′
(
Φ(α)

s

) [
λ + (λ + α− λ1 + λ0)Φ

(α)
s

]
ds

=

∫ t

0

[
f
(
(λ1/λ0)Φ

(α)
s−

)
− f

(
Φ

(α)
s−

)]
(dXs − λ0ds) +

∫ t

0

A(α)f(Φ(α)
s ) ds(2.16)

where

A(α)f(φ) = [λ + (λ + α− λ1 + λ0)φ]f ′(φ) + λ0

[
f
(
(λ1/λ0)φ

)
− f(φ)

]
, φ > 0.(2.17)

Since {Xt − λ0t, t ≥ 0} is a (P0, F)-martingale, we obtain from (2.16) that

E0f(Φ
(α)
t ) = f(Φ

(α)
0 ) + E0

∫ t

0

A(α)(Φ(α)
s )ds, t ≥ 0,

i.e., A(α) in (2.17) is the infinitesimal generator of X under P0, acting on bounded functions

f(·) in C1(R+). Thus, the standard Poisson disorder problem (2.7), (1.2) has been cast as

an optimal stopping problem for the Markov process Φ(α). To solve it, we shall formulate

in the next section a related differential-delay equation involving A(α) in (2.17) with a free

boundary.

3. A free boundary problem and its solution

The problem of (2.6), (1.2) admits a very simple solution for a certain range of parameters,

because of the special properties of the sample-paths of Φ(α). This was first noticed by
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k′ 0

Φ(α)(ω)

0 φd

Φ(α)(ω) Φ(α)(ω)

0k k k

(c) λ1 < λ0 (φd < 0)(b) λ1 > λ0, φd < 0(a) λ1 > λ0, φd > 0

Figure 1. The behavior of the paths of the process Φ(α). The process Φ(α)

jumps upwards (resp., downwards) if λ1 > λ0 (resp., λ1 < λ0). Between jumps,

it always drifts away from the origin if φd < 0, and reverts to φd if φd > 0.

Davis (1976). We recall this solution here, for the sake of completeness. For all future

references, let us record the basic notation:

a , λ + α− λ1 + λ0, b , λ + λ0 > 0, r , λ1/λ0, φd , −λ/a 6= 0.(3.1)

Proposition 3.1 (Case I). Suppose that λ1 ≥ λ0, and either φd < 0 or 0 < k ≤ φd. Then

the stopping rule

τk , inf{t ≥ 0 : Φ
(α)
t ≥ k}(3.2)

is optimal for (2.7).

Let σ0 ≡ 0 and σn , inf{t > σn−1 : Xt −Xt− > 0} be the n-th jump time of X for every

n ∈ N (by convention, inf ∅ = +∞). From (2.11), it is easy to obtain

Φ
(α)
t = φd + [Φ(α)

σn−1
− φd] exp{−(λ/φd)(t− σn−1)}, σn−1 ≤ t < σn,

Φ
(α)
0 ∈ R+ and Φ(α)

σn
= rΦ

(α)
σn−, n ∈ N.

(3.3)

If φd < 0, then the paths of the process Φ(α) always increase between jumps; see Figure 1(b,c).

If φd > 0, then φd is the mean-level to which the process Φ(α) reverts between jumps; see

Figure 1(a). The difference Φ
(α)
t − φd in (3.3) never vanishes before a jump, and Φ

(α)
σn 6= φd

for all n > 0 almost surely. Moreover, Φ(α) has positive (respectively, negative) jumps if

λ1 > λ0 (respectively, λ1 < λ0).

Under the hypotheses of Proposition 3.1, if Φ(α) leaves the interval [0, k], then it does not

return there; see Figure 1(a,b). Therefore, the form of Rτ (π; Φ(α), k) in (1.2) implies that

the F-stopping rule τk of (3.2) is optimal for (2.7).

Other Cases. In the remainder we shall assume either λ1 > λ0, 0 < φd < k (Case II) or

λ1 < λ0 (Case III). Unlike Case I above, the process Φ(α) may now return to the interval

[0, k] with positive probability after every exit; see Figure 1(a) with k′ instead of k, and
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Figure 1(c). However, we shall show that the optimal stopping rule for (2.7) is still of the

form τφ , inf{t ≥ 0 : Φ
(α)
t ≥ φ} for some suitable φ > k. In terms of the auxiliary discounted

optimal stopping problem

U(φ; Φ(α), k) , inf
τ∈S

Eφ
0

∫ τ

0

e−λt(Φ
(α)
t − k) dt, φ ∈ R+,(3.4)

where Eφ
0 is the expectation under P0 given that Φ

(α)
0 = φ ∈ R+, the minimum Bayes risk in

(2.7) can be written as

V (π; Φ(α), k) = γ(π) + β(π) · U
(

π

1− π
; Φ(α), k

)
, π ∈ [0, 1).(3.5)

Since one can always stop immediately, and the process Φ(α) is nonnegative, we have −k/λ ≤
U(φ; Φ(α), k) ≤ 0, φ ∈ R+, i.e., the value function U( · ; Φ(α), k) in (3.4) is bounded.

Lemma 3.1 (Verification Lemma). Let g : R+ 7→ (−∞, 0] be a bounded, continuous and

piecewise continuously differentiable function such that

[λ + ay]g′(y)− bg(y) + λ0g(ry) ≥ −y + k, y ∈ R+(3.6)

whenever g′(y) exists. Then U(y; Φ(α), k) ≥ g(y) for every y ∈ R+.

In addition, if g ∈ C(R+) ∩ C1(R+\{φd, φ}) for some real number φ > k and

[λ + ay]g′(y)− bg(y) + λ0g(ry) = −y + k, y ∈ (0, φd) ∪ (φd, φ),(3.7)

g(y) = 0, y ∈ [φ,∞),(3.8)

then we have U(y; Φ(α), k) = g(y) for every y ∈ R+. The F-stopping time

τφ , inf{t ≥ 0 : Φ
(α)
t ≥ φ}(3.9)

is optimal for (3.4) and (2.7) and has finite P0-expectation.

Proof. By the chain-rule, we have

(3.10) e−λτg(Φ(α)
τ ) = g(Φ

(α)
0 ) +

∫ τ

0

e−λs(A(α) − λ)g(Φ(α)
s )ds

+

∫ τ

0

e−λs[g(rΦ
(α)
s− )− g(Φ

(α)
s− )](dXs − λ0ds), τ ∈ S,

where A(α) is the infinitesimal generator under P0 of Φ(α) in (2.17). Since g(·) is bounded,

the function s 7→ e−λs[g(rΦ
(α)
s− )− g(Φ

(α)
s− )] is absolutely integrable on R+ with respect to the

(P0, F)-compensator s 7→ λ0s of the process X. Therefore, the P0-expectation of the integral
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with respect to Xs − λ0s vanishes. Since all other terms (3.10) are P0-integrable, so is the

Lebesgue integral; especially, it is finite P0-almost surely. Furthermore,

(A(α) − λ)g(y) = [λ + (λ + α− λ1 + λ0)y]g′(y)− λ0g(y) + λ0g((λ1/λ0)y)− λg(y)

= [λ + ay]g′(y)− bg(y) + λ0g(ry),

for every y ∈ R+, see (2.17) and (3.1). After rearranging the terms in (3.10), and taking

P0-expectations, we obtain

(3.11) g(y) = E0[g(Φ
(α)
0 )] = Ey

0

[
e−λτg(Φ(α)

τ )
]
− E0

∫ τ

0

e−λs(A(α) − λ)g(Φ(α)
s )ds

≤ E0

∫ τ

0

e−λs(Φ(α)
s − k)ds, τ ∈ S, y ∈ R+,

since g(·) is nonpositive and (3.6) holds. Namely, g(y) ≤ U(y; Φ(α), k) for every y ∈ R+.

Suppose now that g(·) satisfies (3.7) and (3.8) for some φ > k. Then (3.11) holds with an

equality for the stopping time τφ of (3.9). Therefore, g(y) = U(y; Φ(α), k), y ∈ R+, and the

F-stopping time τφ is optimal for (3.4). If Φ
(α)
0 ≥ φ, then τφ ≡ 0 has finite expectation

obviously. To show the same when Φ
(α)
0 < φ, note first that from (2.11) we have

Φ
(α)
t∧τφ

= Φ
(α)
0 +

∫ t∧τφ

0

[λ + (λ + α)Φ(α)
s ]ds +

∫ t∧τφ

0

[(λ1/λ0)− 1]Φ
(α)
s− (dXs − λ0ds), t ≥ 0,

where τφ is the stopping time in (3.9). The P0-expectation of the second integral vanishes,

since E0

∫ t∧τφ

0
|[(λ1/λ0) − 1]Φ

(α)
s− |λ0ds ≤ (λ0 + λ1)φt < ∞. Because Φ(α) is nonnegative, the

P0-expectation gives

[(λ1/λ0) + 1]φ ≥ E0

(
Φ

(α)
t∧τφ

)
= E0

(
Φ

(α)
0

)
+ E0

∫ t∧τφ

0

[λ + (λ + α)Φ(α)
s ]ds ≥ λ E0(t ∧ τφ), t ≥ 0.

The monotone convergence theorem implies that E0(τφ) ≤ [(λ1/λ0) + 1]φ/λ < ∞. �

Proposition 3.2 (Case II and III). There exist a unique real number φ∗ > k and a unique

function g : R+ 7→ [−k/λ, 0] in C(R+) ∩ C1(R+\{φd, φ
∗}), which satisfy (3.6)–(3.8) with φ∗

instead of φ. The minimum Bayes risk in (2.7) is

V (π; Φ(α), k) = γ(π) + β(π) · g
(

π

1− π

)
, π ∈ [0, 1),

and τφ∗ = {t ≥ 0 : Φ
(α)
t ≥ φ∗} is an optimal Bayes stopping rule.

The proof of the existence and uniqueness of φ∗ and g(·) is similar to that of Proposition

3.2 in Bayraktar and Dayanik (2003); the rest follows from Lemma 3.1 above. The proof of

existence is by direct construction; it is summarized in two propositions below, which also
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yield efficient numerical methods to calculate the minimum Bayes risk and the optimal Bayes

rule. Note that (3.7) is a differential-delay equation of advanced type in Case II (r = λ1/λ0 >

1), and it is a differential-delay equation of retarded type in Case III (r = λ1/λ0 < 1); see,

e.g., Bellman and Cooke (1963, p. 48).

Case II: λ1 > λ0 and 0 < φd < k. For every real number φ > φd, denote by hφ : [φd,∞) 7→
R the unique solution in C([φd,∞)) ∩ C1([φd, φ) ∪ (φ,∞)) of

h′φ(y) = −λ0l(y)hφ(ry)− sgn(λ + ay)|λ + ay|−b/a−1 (y − k) , y ∈ [φd, φ),(3.12)

hφ(y) = 0, y ∈ [φ, +∞).(3.13)

Here the quantity

l(y) , sgn(λ + ay)|λ + ay|−b/a−1|λ + ary|b/a

is well-defined for every y ∈ [φd,∞), since a < 0 and r > 1; see (3.1).

Proposition 3.3 (The characterization of φ∗ and g(·) of Proposition 3.2 in Case II). The

function hφ∗(·) is the only one among all hφ(·) with φ > φd, such that

f−1(y) , −(k/λ)|λ + ay|−b/a ≤ hφ(y) ≤ 0, ∀ y ∈ [φd,∞).(3.14)

By defining hφ∗(·) on (0, φ∗) as the solution of the differential equation (3.12), its extension

onto R+ (denoted also by hφ∗(·)) remains between the same bounds of (3.14) on R+. We

have g(y) = |λ + ay|b/ahφ∗(y) for every y ∈ R+, and

k < φ∗ < φ , (rk/λ)
[
(b− a)/(r−b/a − 1) + (λ/b)

(
b− a− λ/k )] .

The function I(φ) , hφ(φd), φ ∈ [k,∞) is continuous and strictly decreasing, and I(φ∗) = 0.

By means of Proposition 3.3, one can find φ∗ (and hφ∗(·) on [φd,∞)) by a bisection search

in the interval (k, φ): At the beginning, set (φ
0
, φ0) = (k, φ). Then calculate the mid-points

φn of the intervals [φ
n
, φn] for every n ≥ 0; if I(φn) < 0, then set (φ

n+1
, φn+1) = (φ

n
, φn),

otherwise set (φ
n+1

, φn+1) = (φn, φn). Then {φ∗} = ∩n≥0[φn
, φn]. Although the solution

hφ(·) of (3.12, 3.13) is unavailable in closed-form, it can be calculated on [k, φ] accurately by

finite-difference methods. After φ∗ and hφ∗ on [φd,∞) have been found, hφ∗ can be calculated

on [0, φd) from (3.12) by the continuation process (see, e.g., Bellman and Cooke (1963, p.

47)).



12 ERHAN BAYRAKTAR, SAVAS DAYANIK, IOANNIS KARATZAS

Case III: λ1 < λ0. For every real number β, let ~β : R+ 7→ R be the unique continuously

differentiable solution of

~′β(y) = −(λ + ay)−b/a−1
[
λ0(λ + ary)b/a~β(ry) + y − k

]
, y > 0,(3.15)

~β(0) = β.(3.16)

The differential equations in (3.12) and (3.15) are essentially the same (in the latter case,

λ + ay is positive for every y ∈ R+ since a is positive). However, the solution hφ(y) of (3.12)

is unique if it is initially described for all y ∈ [φ, rφ), whereas ~β(0) uniquely determines the

solution ~β(·) of (3.15).

Proposition 3.4 (The characterization of φ∗ and g(·) of Proposition 3.2 in Case III). For

every y ∈ [0, φ∗), we have g(y) = (λ+ay)b/a~β∗(y), where β∗ is the unique number satisfying

both ~β∗(φ
∗) = ~′β∗(φ∗) = 0 and

f−1(y) , −(k/λ)[λ + ay]−b/a ≤ ~β∗(y) ≤ 0, ∀ y ∈ [0, φ∗].(3.17)

Moreover, k < φ∗ < bk/λ and −kλ−b/a−1 < β∗ < 0. The function defined by J(β) ,

maxy∈[0,bk/λ] ~β(y), β ∈ [−kλ−b/a−1, 0] is continuous and strictly increasing, and J(β∗) = 0.

λ1/λ0

Criterion k 1/4 1/3 1/2 2 3 4

Linear, R(1) (ε = 0.1/λ) 6.7863 11.3701 10.2144 8.5541 8.8206 15.5691 25.4968

Linear, R(2) 7.5000 12.6422 11.3458 9.4826 9.7966 17.3116 26.9985

Expected Miss, R(3) 5.0000 8.1969 7.3929 6.2366 6.3858 11.2236 17.5763

Exponential, R(4) (α = 1) 7.5000 11.6232 10.4710 8.9305 7.9989 14.1542 22.9162

Table 1. The critical thresholds φ∗ in the definition of the optimal alarm

times τ ∗ , inf{t ≥ 0 : Φ
(α)
t ≥ φ∗} for the Poisson disorder problem, are

calculated for the criteria in (1.1) for different λ1/λ0 ratios (λ0 = 3, λ = 1.5,

c = 0.20). In the equivalent form (1.2) of those criteria, the k-values are given

by Proposition 2.1, and α = 0 for the first three criteria. In Figures 2 and 3,

the details of our numerical methods are illustrated on the examples in bold-

face.
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One can find β∗ in Proposition 3.4 by bisection search in the interval (β
0
, β0) = (−kλ−b/a−1, 0):

For every n ≥ 0, let βn be the mid-point of (β
n
, βn). If J(βn) < 0, then let (β

n+1
, βn+1) =

(βn, βn), otherwise (β
n+1

, βn+1) = (β
n
, βn). Then {β∗} = ∩n≥0[βn

, βn].

Illustrations. Table 1 gives an idea about the magnitudes of the changes in the optimal

critical thresholds as λ1/λ0, the ratio of the arrival rates of X after and before the disorder,

changes. Note that as |λ1/λ0−1| becomes larger, the thresholds become larger for all criteria;

namely, the continuation regions

[0, φ∗) = {φ : U(φ; Φ(α), k) < 0} = {φ : V (φ/(1 + φ); Φ(α), k) < γ(φ/(1 + φ))}(3.18)

become wider; see (3.4) and (3.5). This is intuitively clear. As the quantity |λ1/λ0 −
1| becomes larger, it is easier to differentiate the pre- and post-disorder behavior of X.

Therefore, the minimum Bayes risks V (π; Φ(α), k) in detecting the disorder time should

decrease uniformly in π ∈ [0, 1) and the continuation regions in (3.18) must become larger.

f−1

hφ∗

hφ4

hφ6

hφ5

hφ3

hφ2 hφ1

φ3

φ∗

φ6

φ5

φ4 φ2 φ1

φd k

-500
1614121086420

200

100

0

-100

-200

-300

-400

18

Figure 2. Bisection search for the critical threshold φ∗ in Case II (see Propo-

sition 3.3): the criterion R(2) in (1.1) with linear detection delay cost (λ0 = 3,

λ1 = 6, λ = 1.5, c = 0.20). The search for φ∗ starts in (k, φ) = (7.500, 27.905)

and continues along the intervals [k, φ1] ⊃ [k, φ2] ⊃ [k, φ3] ⊃ [φ4, φ3] ⊃
[φ5, φ3] ⊃ [φ6, φ3] ⊃ · · · . The mid-points of the intervals are φ1, φ2, . . ., and

the search is narrowed to the lefthand (resp., righthand) half of the interval if

I(φi) , hφi
(φd) is negative (resp., positive). The unique root of I(φ) = 0 in

[φd,∞) is found at φ∗ = 9.7966 · · · after 15 iterations.
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Described after Propositions 3.3 and 3.4, the numerical methods for the calculation of the

critical threshold φ∗ in Case II and III are illustrated on two examples in Figures 2 and 3,

respectively.

β3

β∗

β4
β2

k φ∗ bk/λ

h̄β1

h̄β3

h̄β4

h̄β2

f−1

h̄β2

h̄β∗

f−1

β1

-0.1
0.2 0.30

-1

-1.4

-1.2

-1.6

-1.8

6 1412108420

0.06

0.04

0.02

0

-0.02

-0.04

-0.06

-0.08

0.1

Figure 3. Bisection search for β∗ in Case III (see Proposition 3.4): the ex-

pected total-miss criterion R(3) in (1.1) (λ0 = 3, λ1 = 1.5, λ = 1.5, c = 0.20).

By Proposition 3.4, the critical threshold φ∗ is contained in (k, bk/λ) = (5, 15).

Our search for β∗ starts in [kλ−b/a−1, 0] = [−1.8144, 0] and continues along

the intervals [−1.8144, β1] ⊃ [β2, β1] ⊃ [β2, β3] ⊃ [β4, β3] ⊃ · · · (see the in-

set), where β1, β2, . . . are the mid-points of the intervals. At each iteration,

the search for β∗ continues in the lower (resp., upper) half of the interval if

J(βi) , maxy∈[0,bk/λ] ~βi
(y) is positive (resp., negative). The unique root of

J(β) = 0 in [kλ−b/a−1, 0] is found at β∗ = −1.2253 · · · after 11 iterations, and

J(β∗) is attained at φ∗ = 6.2366 · · · .
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