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Abstract. Suppose that a Wiener process gains a known drift rate at some unobservable disorder

time with some zero-modified exponential distribution. The process is observed only at known

fixed discrete time epochs, which may not always be spaced in equal distances. The problem is to

detect the disorder time as quickly as possible by an alarm which depends only on the observations

of Wiener process at those discrete time epochs. We show that Bayes optimal alarm times which

minimize expected total cost of frequent false alarms and detection delay time always exist. Optimal

alarms may in general sound between observation times and when the space-time process of the

odds that disorder happened in the past hits a set with a nontrivial boundary. The optimal stopping

boundary is piecewise-continuous and explodes as time approaches from left to each observation

time. On each observation interval, if the boundary is not strictly increasing everywhere, then

it firstly decreases and then increases. It is strictly monotone wherever it does not vanish. Its

decreasing portion always coincides with some explicit function. We develop numerical algorithms

to calculate nearly-optimal detection algorithms and their Bayes risks, and illustrate their use on

numerical examples. The solution of Wiener disorder problem with discretely spaced observation

times will help reduce risks and costs associated with disease outbreak and production quality

control, where the observations are often collected and/or inspected periodically.

1. Introduction

In Shiryaev’s (1963; 1978) classical Bayesian formulation of Wiener disorder problem, a Wiener

process gains a constant nonzero known drift rate at some unknown unobserved random time with

zero-modified exponential distribution. The objective is to detect the disorder time as soon as after

it occurs by means of a stopping time of the continuously monitored Wiener process. The solution

of Wiener disorder problem is important, because quickest detection of disease outbreak from the

number of emergency room visits, machine failures from the measurements of incompliant finished

products, sudden shifts in the riskiness and profitability of investment instruments can save lives,

reduce maintenance and scrap costs, cut financial losses or enhance financial gains, respectively.

In this paper, we revisit Wiener disorder problem, but assume that Wiener process is observed

only at fixed known discrete time epochs, which may be separated from each other with unequal

distances. In disease outbreak monitoring and production quality control problems, the observations

are typically gathered and inspected at the end of shifts, which may sometimes be spaced out in time

at different distances from each other because of noon and night breaks, long weekends or national

and religious holidays. Even though the observations are now being taken only at discrete time

epochs, an alarm may be set at any time—at observation times or any time between observation
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times. Our goal is to solve the continuous-time Bayesian quickest detection problem while the

information become available at discrete time epochs.

More precisely, suppose that a Wiener process X = {Xt; t ≥ 0} gains a known drift rate µ 6= 0

at some unknown random time Θ, which either equals zero with some known probability p ∈ [0, 1)

or has exponential distribution with some known mean 1/λ with probability 1 − p. The process

X is observed at fixed known time epochs 0 = t0 < t1 < . . ., and we want to detect the disorder

time Θ as quickly as possible, in the sense that the expected total cost of frequent false alarms

and detection delay time is minimized, by setting alarm at some real-valued stopping time τ of the

history F = (Ft)t≥0 of observations, where

F0 = {∅,Ω} and Ft = σ{Xtn ; tn ≤ t, n ≥ 0} for every t ≥ 0.(1.1)

We prove that a quickest detection rule always exists. We show that optimal alarms do not

always sound at some observation times. One should therefore remain alert at all times for an

alarm which may sound at some time strictly between two observations. We also describe how to

calculate a nearly-optimal change detection rule.

Because the times between observations may in general be different, the Markov sufficient statistic

for the quickest detection problem is the space-time process {(Φt, t); t ≥ 0} of the conditional odds

Φt at time t of that the disorder happened in the past given the past observations Ft; see (2.2)

for the precise definition. As shown in Appendix A.1, the conditional odds-ratio process can be

calculated recursively by

Φt =


ϕ(t− tn−1,Φtn−1), if t ∈ [tn−1, tn) for some n ≥ 1,


(

∆tn,Φtn−1 ,
∆Xn√

∆tn

)
, if t = tn for some n ≥ 1,

(1.2)

where ∆t` = t` − t`−1 and ∆X` = Xt` −Xt`−1
for every ` ≥ 1, ϕ(t, φ) = eλt(φ + 1) − 1 for every

t ≥ 0 and φ ≥ 0, and ∆t > 0, φ ≥ 0, z ∈ R

(∆t, φ, z) = exp
{
µz
√

∆t+
(
λ− µ2

2

)
∆t
}
φ+

∫ ∆t

0
λ exp

{(
λ+

µz√
∆t

)
u− µ2u2

2∆t

}
du.

If an alarm has not yet been raised until time t ≥ 0, then an optimal alarm time

σ0(t) = inf
{
s ≥ t;

∞∑
n=0

1[tn,tn+1)(s)Φtn ≥ φ0(s)
}
, t ≥ 0

is the first time s ≥ t, when the conditional odds-ratio Φtn calculated at the last observation time tn

(n ≥ 0 such that tn ≤ s < tn+1) exceeds the optimal stopping boundary φ0(s). For every n ≥ 0, the

optimal stopping boundary φ0(s), s ∈ [tn, tn+1) between the nth and (n + 1)st observation times

is continuous and increases to infinity as s ↗ tn+1; see Figure 1 for a typical optimal stopping

boundary. If the boundary is not strictly increasing, then it firstly decreases and then increases. It

is strictly monotone wherever it does not vanish. Therefore, it is never optimal to stop as the next

observation time nears. If the optimal stopping boundary is strictly increasing and it is not optimal

to raise alarm at the last observation, then the same remains true at least until the next observation

time. Otherwise an alarm may sound at some time strictly between the last and next observations.

In Figure 1, if an alarm has not been raised before times t1, t3, or t4, then optimal alarm may sound

at some time strictly inside the intervals [t1, t2), [t3, t4), or [t4, t5), respectively. We also show that
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Φt1

φ0(s)

s

λ
c

Φt0

s 7→ e−λ(s−tn)(1 + λ
c )− 1

n = 1

t4 t5 t60 = t0 t1 s2s1 t2 t3

n = 3 n = 4

Figure 1. A typical optimal stopping boundary s 7→ φ0(s). Shaded is the optimal stopping

region. Suppose that an alarm has not been raised before time t ∈ [tn, tn+1) for some n ≥ 0. If

[t, tn+1) ∩ {s ∈ [tn, tn+1); Φtn ≥ φ0(s)} is not empty, then it is optimal to stop at the first time

s ∈ [t, tn+1) when Φtn ≥ φ0(s). Otherwise, it is optimal to wait at least until next observation time

tn+1. Suppose that Φt0 and Φt1 realized as on the figure. It is then optimal to stop at times s1 and

t, respectively, for every t ∈ [0, s1] and t ∈ [s1, s2]. If t ∈ (s2, t2), then it is optimal to wait at least

until time t2 and act optimally after Φt2 is observed.

the strictly decreasing portion of s 7→ φ0(s) always coincides with s 7→ e−λ(s−tn)(1 +λ/c)− 1, while

the strictly increasing part has to be calculated numerically.

Continuous-time quickest change detection problems with discretely spaced observation times

have recently started to receive attention. Brown and Zacks (2006) studied Bayesian formulation

of detecting a change in the arrival of a Poisson process monitored at discrete time epochs, derived

one- and two-step ahead stopping rules, and gave conditions under which those myopic stopping

rules are optimal. Brown (2008) revisited the same problem, but also assumed that the the arrival

rates before and after change are unknown, and developed one- and two-step look-ahead stopping

rules, and illustrated their effectiveness on numerical examples. Sezer (2009) has recently solved

Bayesian and variational formulations of Wiener disorder problem when the disorder is caused by

one of the shocks, which arrive according to an observable Poisson process independent of the

Wiener process. The classical Bayesian and variational formulations of Wiener disorder problem

were given and solved by Shiryaev (1963; 1978). Wiener disorder problem with finite horizon was

solved by Gapeev and Peskir (2006). Hadjiliadis (2005) and Hadjiliadis and Moustakides (2005)

developed optimal and asymptotically optimal CUSUM rules for Wiener disorder problems with

multiple alternatives. The optimality of the CUSUM algorithm was established under Lorden’s

criterion by Moustakides (1986) in discrete time and by Shiryaev (1996) and Beibel (1996) for the

Wiener process. Asymptotic optimality of Shiryaev’s procedure in continuous-time models were

proved by Baron and Tartakovsky (2006). Quickest change detection problems were reviewed in

the monographs of Basseville and Nikiforov (1993), Peskir and Shiryaev (2006), and Poor and

Hadjiliadis (2009).

Let us also mention two important alternative formulations, the variational formulation and

the generalized Bayesian formulation of the Wiener disorder problem with observations at fixed

discrete time epochs. In the variational problem, one fixes the probability of false alarm and wants
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to minimize the expected detection delay cost. The Bayesian formulation in (2.1) can be seen as

the Langrange relaxation of the variational formulation. Particularly, the Bayes optimal alarm time

is optimal also for the variational formulation if the false alarm probability of the Bayes optimal

alarm time exactly matches the requirement. We shall see later that the explicit characterization

of the Bayes optimal alarm times allows one to easily calculate their false alarm probabilities,

and by a straightforward search over a suitable grid of unit delay time cost c and the observation

times t1 < t2 < . . ., one can also solve the variational formulation in practice. For the classical

Wiener disorder problem, the variational formulation and its solution by means of the Bayesian

formulation were studied by Shiryaev (1963; 1978). As the required false alarm probability tends

to zero and under some general conditions, Baron and Tartakovsky (2006) and Tartakovsky and

Veeravalli (2004) established simple and explicit forms of optimal alarm times for both Bayesian

and variational formulations of disorder problems in discrete and continuous times. In the future,

we plan to investigate if the asymptotic analysis can be fruitfully extended to Wiener disorder

problem with observations at fixed discrete time epochs.

In the generalized Bayesian formulation, instead of an exponentially distributed prior distribu-

tion, an uninformed prior distribution is assumed for the unknown and unobserved disorder time.

The objective is to find a stopping time τ ∈ S which minimizes∫ ∞
0

E[(τ −Θ)+ | Θ = t]dt− cE[τ | Θ =∞]

for some constant c > 0, or alternatively
∫∞

0 E[(τ − Θ)+ | Θ = t]dt subject to the additional

constraint E[τ | Θ =∞] ≥ γ for some prespecified γ > 0. Shiryaev (1963; 2002) and Feinberg and

Shiryaev (2006) studied both formulations for the classical Wiener disorder problem, and we plan

to investigate them for the case of discretely spaced observations in the future.

We conclude the introduction with an outline of the paper and its main results. In Section 2,

we start by describing the problem, which is then expressed as an optimal stopping problem of the

Markov sufficient statistic, space-time process {(Φt, t); t ≥ 0} of conditional odds-ratio Φ. The pro-

cess Φ = {Φt, t ≥ 0} is a continuous-time stochastic process with RCLL sample paths jumping only

at deterministic observation times tn, n ≥ 0. Therefore, the solution of the optimal stopping prob-

lem depends on the explicit characterization of Theorem 3.2 of admissible stopping times, which is

of independent interest and should also be useful for stochastic dynamic optimization problems in

general. In Section 4, suitable dynamic programming operators are introduced, and the solution of

optimal stopping problem is described at observation times. Theorem 4.3 shows how to construct

ε-optimal stopping rules for every ε ≥ 0 for the optimal stopping problems truncated at observation

times, the value functions of which also coincide with successive approximations of the value func-

tion of the original infinite-horizon optimal stopping problem. Theorem 4.6 shows that successive

approximations converge uniformly at known exponential rates, which are used for efficient numer-

ical solution methods described later in Section 7. Between the observation times, the solution of

the optimal stopping problem turns out to depend on nontrivial optimal stopping boundaries, the

existence and properties of which are established in Sections 5 and 6, respectively. Theorem 5.1

describes the explicit construction of ε-optimal stopping times for every ε ≥ 0. Theorems 5.4 and

5.7 respectively present for truncated and infinite-horizon problems alternative ε-optimal stopping
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times which can be characterized as the first hitting times of the space-time processes to suitable

sets, whose nontrivial boundaries are characterized explicitly by Theorem 6.10. A numerical algo-

rithm to calculate ε-optimal stopping rules is described in Figure 3 and illustrated on examples in

Section 7. Section 8 describes how the false alarm probabilities of Bayes optimal alarm times can be

accurately calculated. The relation between variational and Bayesian formulations is revisited, and

a practical solution for the variational formulation is described and then illustrated on an example.

Long proofs are deferred to the appendix.

2. Problem description

On some probability space (Ω,F ,P), suppose that X = {Xt; t ≥ 0} is a Wiener process whose

zero drift changes to some known constant µ 6= 0 at some unknown statistically independent time

Θ, which has zero-modified exponential distribution P{Θ = 0} = p and P{Θ > t} = (1− p)e−λt for

every t ≥ 0 for some known constants p ∈ [0, 1) and λ > 0.

Let 0 = t0 < t1 < t2 < . . . < tn < . . . be an infinite sequence of fixed real numbers, along which

the process X may be observed as long as it is desired before an alarm τ is raised to declare that

the drift of process X has changed. For each stopping rule τ of the history F = (Ft)t≥0 in (1.1)

of observations, we define its Bayes risk as the sum Rτ (p) = P{τ < Θ} + cE[(τ − Θ)+] p ∈ [0, 1)

of false alarm probability P{τ < Θ} and the expected detection delay penalty cE[(τ − Θ)+]. The

problem is (i) to calculate the minimum Bayes risk

R(p) := inf
τ∈S

Rτ (p), p ∈ [0, 1),(2.1)

where the infimum is taken over the collection S of all stopping times of the filtration F, and (ii)

to find a stopping time in S which attains the infimum, if such a stopping time exists. If we define

Lt(u, x0, x1, . . .) =
∏

`≥1: t`≤t

1√
2π(t` − t`−1)

exp

{
[x` − x`−1 − µ(t` − (t`−1 ∨ u))+]2

2(t` − t`−1)

}
, u ≥ 0, t ≥ 0,

then we have P {Xt` ∈ dx` for every ` ≥ 1 and t` ≤ t | Θ} = Lt(Θ, x0, x1, . . .)
∏
`≥1: t`≤t dx` for ev-

ery t ≥ 0, and the conditional likelihood of the observations Xt0 , Xt1 , . . . given Θ = u is

Lt(u) := Lt(u,Xt0 , Xt1 , . . .)

=
∏

`≥1: t`≤t

1√
2π(t` − t`−1)

exp

{
[Xt` −Xt`−1

− µ(t` − (t`−1 ∨ u))+]2

2(t` − t`−1)

}
, u ≥ 0, t ≥ 0.

Model. Let (Ω,F ,P∞) be a probability space hosting a random variable Θ with zero-modified

exponential distribution P∞{Θ = 0} = p and P∞{Θ > t} = (1 − p)e−λt for every t ≥ 0, and an

independent Wiener process X. Therefore, P∞ {Xt` ∈ dx` for every ` ≥ 1 and t` ≤ t | Θ} equals

Lt(∞, x0, x1, . . .)
∏

`≥1: t`≤t
dx` =

∏
`≥1: t`≤t

1√
2π(t` − t`−1)

exp

{
[x` − x`−1]2

2(t` − t`−1)

}
dx` for all t ≥ 0.

Let F be the filtration in (1.1) obtained by observing process X at fixed times 0 = t0 < t1 < t2 < . . .,

and denote by G = (Gt)t≥0 the augmentation of the filtration F by the information about Θ; i.e.,

Gt = Ft ∨ σ(Θ) for every t ≥ 0, and define P on G∞ locally along the filtration G by means of
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dP
dP∞

∣∣∣∣
Gt

= Zt(Θ) :=
Lt(Θ)

Lt(∞)

= exp

{ ∞∑
`=1

1{t`≤t}

[
(Xt` −Xt`−1

)µ[t` − (Θ ∨ t`−1)]+

t` − t`−1
− µ2([t` − (Θ ∨ t`−1)]+)2

2(t` − t`−1)

]}
, t ≥ 0.

Under P, the random variables Xt`−Xt`−1
, ` ≥ 1 are, given Θ, conditionally independent Gaussian

random variables with mean µ[t` − (Θ ∨ t`−1)]+ and variance t` − t`−1 for every ` ≥ 1. Because

Z0(Θ) = 1, probability measures P and P0 are identical on G0 = σ(Θ), and P{Θ ∈ B} = P∞{Θ ∈
B}; therefore, Θ has also zero-modified exponential distribution with the same parameters p and

λ under P. Thus, P has the same properties as the probability measure in the description of the

original problem. In the remainder, we will work with P constructed as above.

Let us define the conditional odds-ratio process

Φt :=
P{Θ ≤ t | Ft}
P{Θ > t | Ft}

=
E∞[Zt(Θ)1{Θ≤t} | Ft]
E∞[Zt(Θ)1{Θ>t} | Ft]

=
E∞[Zt(Θ)1{Θ≤t} | Ft]

(1− p)e−λt
, t ≥ 0,(2.2)

where the second equality follows from Bayes theorem and the third equality from

E∞[Zt(Θ)1{Θ>t} | Ft] = P∞{Θ > t | Ft} = P∞{Θ > t} = (1− p)e−λt, t ≥ 0,(2.3)

because, on the event {Θ > t}, we have [t` − (Θ ∨ t`−1)]+ = (t` − Θ)+ = 0 for every ` ≥ 1 and

t` < t, and therefore,

Zt(Θ)1{Θ>t} = 1{Θ>t} P∞-almost surely.(2.4)

In the appendix, we prove that the conditional odds-ratio process Φ = {Φt; t ≥ 0} has the dy-

namics (1.2). Because for every n ≥ 1 and tn−1 ≤ s < tn, we have Fs ≡ Ftn−1 = σ{Xt1 , . . . , Xtn−1},
and ∆Xn = Xtn − Xtn−1 is independent of Ftn−1 under P∞, the dynamics in (1.2) ensure that

E∞[f(Φt, t) | Fs] = E∞[f(Φt, t) | Ftn−1 ] = E∞[f(Φt, t) | Φtn−1 , tn−1] = E∞[f(Φt, t) | Φs, s] for every

t > s and bounded Borel measurable function f : [0,∞)×R 7→ R, and the process {(Φt, t),Ft; t ≥ 0}
is a (piecewise-deterministic strong) Markov process under P∞. Proposition 2.1 below shows that

the sequential detection problem reduces to a discounted optimal stopping problem with running

cost φ 7→ φ− λ/c for the conditional odds-ratio process Φ.

Proposition 2.1. The Bayes risk equals Rτ (p) = 1 − p + (1 − p)cE∞
[∫ τ

0 e
−λt (Φt − λ

c

)
dt
]

for

every p ∈ [0, 1) and τ ∈ S. The minimum Bayes risk equals R(p) = 1 − p + (1 − p)cV (p/(1 − p))
for every p ∈ [0, 1), where V (·) is the value function of the optimal stopping problem

V (φ) = inf
τ∈S

Eφ∞
[∫ τ

0
e−λt

(
Φt −

λ

c

)
dt

]
, φ ≥ 0(2.5)

for piecewise-deterministic strong Markov space-time process {(Φt, t); t ≥ 0} of conditional odds-

ratio process Φ, and Eφ∞ is the expectation with respect to Pφ∞, which is P∞ s.t. Φ0 = φ a.s.

The proof is similar to that of Bayraktar et al.’s (2005) Proposition 2.1. In the remainder, we

solve the optimal stopping problem in (2.5). The solution method reduces the continuous-time

optimal stopping problem to a discrete-time optimal stopping problem by means of suitable single-

jump operators, which take advantage of the special structure of admissible stopping times. The

solution is presented in Sections 4 and 5 after jump operators are introduced. In the next section,

we first characterize the stopping times in the collection S.
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3. The characterization of admissible stopping times

Recall that every admissible stopping time τ ∈ S is a stopping time of observation filtration F =

(Ft)t≥0 defined by (1.1). The main result of this section is Theorem 3.2 and implies that every stop-

ping time τ ∈ S is essentially a discrete random variable, and the original optimal stopping problem

can essentially be solved in discrete time. Let Fτ = {A ∈ F ; A ∩ {τ ≤ t} ∈ Ft for every t ≥ 0} and

Hτ := σ
(
Xtk1{tk≤τ}, 1{tk>τ}; k ≥ 0

)
generated by those observations Xt0 , Xt1 , . . . before time τ .

Proposition 3.1. We have Fτ = Hτ for every τ ∈ S.

Proof. (k) Clear. (j) Fix any A ∈ Fτ and write 1A =
∑∞

k=0 1A1{tk≤τ<tk+1}+1A1{τ=+∞}. For every

k ≥ 0, A ∩ {tk ≤ τ < tk+1} = {tk ≤ τ} ∩
⋃∞
n=1

[
A ∩

{
τ ≤ tk+1 − 1

n

}]
belongs to Ftk because {tk ≤

τ} ∈ Ftk and A ∩
{
τ ≤ tk+1 − 1

n

}
∈ Ftk+1−1/n = Ftk . Then there is a Borel function fk : Rk+1

+ 7→
{0, 1} such that 1A1{tk≤τ<tk+1} = fk(Xt0 , . . . , Xtk)1{tk≤τ<tk+1} for every k ≥ 0, which isHτ -mble be-

cause fk(Xt0 , . . . , Xtk)1{tk≤τ<tk+1} = fk(Xt01{t0≤τ}, . . . , Xtk1{tk≤τ})1{tk≤τ}1{tk+1>τ} is measurable

with respect to σ
(
Xt`1{t`≤τ}, 1{t`>τ}; ` = 0, 1, . . . , k + 1

)
⊆ Hτ . Similarly, 1A1{τ=+∞} ∈ Hτ . �

Theorem 3.2. Let τ be an F = (Ft)t≥0-stopping time. Then there is a nonnegative Ftn-measurable

random variable Rn for every n ≥ 0 such that

(i) τ1{tn≤τ<tn+1} = (tn +Rn)1{tn≤τ<tn+1},

(ii) (τ ∧ tn+1)1{tn≤τ} = [(tn +Rn) ∧ tn+1]1{tn≤τ},

(iii) {τ ≥ tn+1} = {R0 ≥ t1, t1 +R1 ≥ t2, . . . , tn +Rn ≥ tn+1},

(iv) {tn ≤ τ < tn+1} = {R0 ≥ t1, t1 +R1 ≥ t2, . . . , tn−1 +Rn−1 ≥ tn, tn +Rn < tn+1}.

Let N := inf{n ≥ 0; tn +Rn < tn+1}. Then N is an (Ftn)n≥0-stopping time, and

(v) τ = (tN +RN )1{N<∞} +∞ · 1{N=+∞}.

Proof. Let τ be an (Ft)t≥0-stopping time. Since τ ∈ Fτ = Hτ , there is a Borel function f

such that τ = f(Xt01{t0≤τ}, 1{t0>τ}, Xt11{t1≤τ}, 1{t1>τ}, . . . , Xtn1{tn≤τ}, 1{tn>τ}, . . .). For all n ≥ 0,

τ1{tn≤τ<tn+1} = f(Xt0 , 0, Xt1 , 0, . . . , Xtn , 0, 0, 1, 0, 1 . . .)1{tn≤τ<tn+1} = [tn +Rn]1{tn≤τ<tn+1} and

(τ ∧ tn+1)1{tn≤τ} = τ1{tn≤τ<tn+1} + tn+11{τ≥tn+1} = [(tn +Rn) ∧ tn+1]1{tn≤τ}

in terms of Ftn-mble Rn := [f(Xt0 , 0, Xt1 , 0, . . . , Xtn , 0, 0, 1, 0, 1 . . .)−tn]1{tn≤τ<tn+1}+∞·1{τ≥tn+1}.

Then τ1{tn≤τ<tn+1} = (tn+Rn)1{tn≤τ<tn+1}, and (i) and (ii) follow. By (i), {tn ≤ τ < tn+1} = {tn ≤
τ < tn+1, τ = tn +Rn} ⊆ {tn ≤ τ}∩{tn +Rn < tn+1}, and since Rn ≥ tn+1− tn on {τ ≥ tn+1}, we

have the converse inclusion {tn ≤ τ}∩{tn+Rn < tn+1} = {tn ≤ τ}∩{tn+Rn < tn+1}∩{τ < tn+1} ⊆
{tn ≤ τ} ∩ {τ < tn+1} ≡ {tn ≤ τ < tn+1}. Hence, {tn ≤ τ < tn+1} = {tn ≤ τ} ∩ {tn +Rn < tn+1},
which proves the first equality in (iv). As a consequence, {τ < t1} = {t0 ≤ τ < t1} = {t0 ≤
τ} ∩ {R0 < t1} = {R0 < t1}. Therefore, {τ ≥ t1} = {R0 ≥ t1}, and (iii) holds for n = 0. Suppose

that (iii) holds for some n ≥ 0. Then by the first equality of (iv) (after n is replaced with n+ 1)

{τ ≥ tn+2} = {τ ≥ tn+1} \ {τ ≥ tn+1, τ < tn+2} = {τ ≥ tn+1} \ {τ ≥ tn+1, tn+1 +Rn+1 < tn+2}

= {τ ≥ tn+1} ∩ {tn+1 +Rn+1 ≥ tn+2} = {R0 ≥ t1, . . . , tn +Rn ≥ tn+1, tn+1 +Rn+1 ≥ tn+2},
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which proves (iii). The first equality in (iv) and (iii) give that {tn ≤ τ < tn+1} = {τ ≥ tn} ∩ {tn +

Rn < tn+1} = {R0 ≥ t1, . . . , tn−1 +Rn−1 ≥ tn} ∩ {tn +Rn < tn+1}, which proves (iv).

Since Rn ∈ Ftn for all n ≥ 0, N = inf{n ≥ 0; tn +Rn < tn+1} is an (Ftn)n≥0-stopping time, and

{N = n} = {R0 ≥ t1, . . . , tn−1 +Rn−1 ≥ tn, tn +Rn < tn+1} = {tn ≤ τ < tn+1} and {N = +∞} =

{R0 ≥ t1, t1 +R1 ≥ t2, . . .} = {τ = +∞} by (iv), which imply τ =
∑∞

n=0 τ1{tn≤τ<tn+1}+τ1{τ=∞} =∑∞
n=0(tn+Rn)1{N=n}+∞·1{N=∞} = (tN +RN )1{N<∞}+∞·1{N=∞} by (i). This proves (v). �

The next proposition shows that (v) of Theorem 3.2 also has a converse.

Proposition 3.3. For each n ≥ 0, let Rn be an a.s. nonnegative Ftn-mble r.v. Define N := inf{n ≥
0; tn +Rn < tn+1} and τ := (tN +RN )1{N<∞}+∞· 1{N=+∞}. Then τ is a (Ft)t≥0-stopping time.

Proof. Fix t ≥ 0. Then tm ≤ t < tm+1 for some m ≥ 0. Since Rn ∈ Ftn for n ≥ 0, {τ ≤ t} =

{N <∞, tN +RN ≤ t} =
⋃m−1
n=0 {t0 +R0 ≥ t1, . . . , tn−1 +Rn−1 ≥ tn, tn +Rn ≤ tn+1}

⋃
{t0 +R0 ≥

t1, . . . , tm−1 +Rm−1 ≥ tm, tm +Rm ≤ t} ∈ Ftm ≡ Ft, and τ is an (Ft)t≥0-stopping time. �

4. The solution at observation times

Let ϕ(·, ·) and (·, ·, ·) be as in (1.2) and define for every bounded function w : R+ 7→ R operators

(Jyw)(∆t, φ) := inf
r≥y

(Jw)(∆t, φ, y, r), ∆t > 0, φ ≥ 0, 0 ≤ y ≤ ∆t,(4.1)

(Jw)(∆t, φ, y, r) :=

∫ r∧∆t

y
e−λt

(
ϕ(t, φ)− λ

c

)
dt+ 1[∆t,∞)(r)e

−λ∆t(Kw)(∆t, φ), r ≥ y,(4.2)

(Kw)(∆t, φ) :=

∫ ∞
−∞

w((∆t, φ, z))
exp{−z2/2}√

2π
dz.(4.3)

Let us pretend that we have not raised an alarm until tn. Suppose also that we are told the value

w(φ) of the optimal policy if Φ has not been stopped until time tn+1 and equals φ at time tn+1.

Given history Ftn of observations until time tn, we want to know if stopping before tn+1 or waiting

at least until tn+1 is the best. If τ is an (Ft)t≥0-stopping time such that τ ≥ tn (P∞-a.s.), then

optimality principle suggests that the conditional expected total remaining cost given Ftn equals

E∞
[ ∫ τ∧tn+1

tn

e−λ(t−tn)
(

Φt −
λ

c

)
dt+ 1{τ≥tn+1}e

−λ∆tn+1w(Φtn+1)
∣∣∣Ftn]

in time-tn monetary units. On the one hand, by Theorem 3.2 (ii) and (iii), there is a nonnegative

Ftn-mble r.v. Rn such that P∞-a.s. τ∧tn+1 = (tn+Rn)∧tn+1 and {τ ≥ tn+1} = {tn+Rn ≥ tn+1},
since τ ≥ tn (P∞-a.s.). On the other hand, the dynamics in (1.2) of Φ imply Φt = ϕ(t− tn,Φtn) for

every tn ≤ t < tn+1 and Φtn+1 = (∆tn+1,Φtn ,
∆Xn+1√

∆tn+1
). Therefore, the conditional expected total

remaining cost given Ftn can be rewritten as

∫ (tn+Rn)∧tn+1

tn

e−λ(t−tn)
(
ϕ(t− tn,Φtn)− λ

c

)
dt
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+ 1{tn+Rn≥tn+1}e
−λ∆tn+1E∞

[
w
(

(

∆tn+1, φ,
∆Xn+1√

∆tn+1

))]∣∣∣
φ=Φtn

=

∫ Rn∧∆tn+1

0
e−λt

(
ϕ(t,Φtn)− λ

c

)
dt+ 1[∆tn+1,∞)(Rn)e−λ∆tn+1(Kw)(∆tn+1,Φtn)

= (Jw)(∆tn+1,Φtn , 0, Rn),

because Rn and Φn are Ftn-measurable, and ∆Xn+1/
√

∆tn+1 has standard Gaussian distribution

independent of Ftn = σ(Xt0 , . . . , Xtn) under P∞. Thus, the minimum conditional expected total

remaining cost given Ftn is obtained by taking the infimum over the collection of all (Ft)t≥0-stopping

times τ such that τ ≥ tn (P∞-a.s.), or equivalently, over all Ftn-measurable nonnegative r.v.’s Rn:

ess inf
τ∈S:τ≥tn a.s.

E∞
[ ∫ τ∧tn+1

tn

e−λ(t−tn)
(

Φt −
λ

c

)
dt+ 1{τ≥tn+1}e

−λ∆tn+1w
(

Φtn+1

)∣∣∣Ftn]
= ess inf

0≤Rn∈Ftn
(Jw)(∆tn+1,Φtn , 0, Rn) =

[
inf
r≥0

(Jw)(∆tn+1, φ, 0, r)
]∣∣∣
φ=Φtn

= (J0w)(∆tn+1,Φtn).

Thus, (J0w)(∆t, φ) can be thought as a dynamic programming operator (namely, J0) applied to

a continuation function w(·) in order to determine the best decision, based only on the currently

available information φ, before ∆t, at which time new information arrives.

Let us define optimal stopping problems

γn := ess inf
τ∈Sn

E∞
[ ∫ τ

tn

e−λ(t−tn)
(

Φt −
λ

c

)
dt
∣∣∣Ftn],

γ(m)
n := ess inf

τ∈Sn
E∞
[ ∫ τ∧tm

tn

e−λ(t−tn)
(

Φt −
λ

c

)
dt
∣∣∣Ftn](4.4)

obtained from the original problem in (2.5) by allowing stopping only in [tn,∞) and [tn, tm], re-

spectively, based on observation history Ftn until time tn for some 0 ≤ n ≤ m, where

Sn := {τ ∈ S; τ ≥ tn, P∞-a.s.}, n ≥ 0 (S0 ≡ S)

is the collection of all F-stopping times which are P∞-a.s. greater than or equal to tn, n ≥ 0. By

Proposition 4.2, for each n ≥ 0, γn can be pathwise approximated well by the elements in the tail

of the sequence (γ
(m)
n )m≥n, and by Theorem 4.3 each γ

(m)
n coincides P∞-a.s. with v

(m)
n (Φtn), where

v(m)
m (φ) = 0 for every φ ≥ 0 and m ≥ 0,

v(m)
n (φ) =

(
J0v

(m)
n+1

)
(∆tn+1, φ) for every φ ≥ 0 and 0 ≤ n ≤ m− 1,

(4.5)

and (v
(m)
n (Φtn))m≥n gives pathwise a sequence of successive approximations to γn for every n ≥ 0.

For the proof of all of the major results in the remainder, we will need Lemma 4.1 about important

properties of dynamic programming operator J•, and its proof is in the appendix.

Lemma 4.1. For every ∆t > 0 and 0 ≤ y ≤ ∆t, the followings are true.

(i) If w(·) is bounded and w(·) ≥ −1/c, then −1/c ≤ eλy(Jyw)(∆t, ·) ≤ 0. If w(·) is also

nondecreasing, concave, and continuous, then so is (Jyw)(∆t, ·), and there exists some

finite φ(∆t, y) such that (Jyw)(∆t, φ) = 0 for every φ ≥ φ(∆t, y).

(ii) If w1(·) and w2(·) are bounded and w1(·) ≤ w2(·), then (Jyw1)(∆t, ·) ≤ (Jyw2)(∆t, ·).
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(iii) If w3(·) and w4(·) are bounded, then

sup
φ≥0
|(Jyw3)(∆t, φ)− (Jyw4)(∆t, φ)| ≤ e−λ∆t sup

φ≥0
|w3(φ)− w4(φ)|.

(iv) If w(·) is bounded and nonpositive, then for every ∆t > 0, φ ≥ 0, and 0 ≤ y ≤ ∆t,

y 7→ (Jyw)(∆t, φ) = inf
r≥y

(Jw)(∆t, φ, y, r) = min
r∈[y,∆t]

(Jw)(∆t, φ, y, r)(4.6)

is continuous, and infimum is attained since r 7→ (Jw)(∆t, φ, y, r) is lower semi-continuous.

(v) If for some 0 ≤ y0 < y1 ≤ ∆t and φ ≥ 0, we have (Jyw)(∆t, φ) < 0 for every y0 ≤ y ≤ y1,

then (Jyw)(∆t, φ) =
∫ z
y e
−λu(ϕ(u, φ)− λ

c )du+ (Jzw)(∆t, φ) y0 ≤ y ≤ z ≤ y1 .

Proposition 4.2. For every fixed n ≥ 0, the sequence (γ
(m)
n )m≥n converges P∞-a.s. to γn as

m→∞. More precisely, P∞-a.s. 0 ≤ γ(m)
n − γn ≤ (1/c) e−λ(tm−tn) for every 0 ≤ n ≤ m.

Proof. Fix 0 ≤ n ≤ m. For all τ ∈ Sn, τ ∧ tm ∈ Sn and γn ≤ E∞[
∫ τ∧tm
tn

e−λ(t−tn)(Φt − λ
c )dt | Ftn ].

Then P∞-a.s. γn ≤ γ(m)
n . But Eφ∞[

∫ τ
tn
e−λ(t−tn)(Φt−λ

c )dt|Ftn ] ≥ Eφ∞[
∫ τ∧tm
tn

e−λ(t−tn)(Φt−λ
c )dt|Ftn ]−

λ
c

∫∞
tm
e−λ(t−tn)dt ≥ γ(m)

n − 1
c e
−λ(tm−tn). Taking the infimum over τ ∈ Sn completes the proof. �

Theorem 4.3. For every 0 ≤ n ≤ m, we have

(i) γ(m)
n = v(m)

n (Φtn), P∞-a.s.,

(ii) ν(m)
n := inf

τ∈Sn
E∞
[ ∫ τ∧tm

tn

e−λ(t−tn)
(

Φt −
λ

c

)
dt
]

= E∞γ(m)
n .

For every ε ≥ 0, let R
(m)
m,ε ≡ 0 and R

(m)
n,ε ≡ R

(m)
n,ε (∆tn+1,Φtn) be a nonnegative real number such

that (Jv
(m)
n+1)(∆tn+1,Φtn , 0, R

(m)
n,ε ) ≤ (J0v

(m)
n+1)(∆tn+1,Φtn) + ε for every 0 ≤ n ≤ m − 1. Then for

every 0 ≤ n ≤ m, R
(m)
n,ε is a nonnegative Ftn-measurable random variable, and

τ (m)
n,ε :=

 tn +R
(m)
n,ε/2, if R

(m)
n,ε/2 < ∆tn+1

τ
(m)
n+1,ε/2, if R

(m)
n,ε/2 ≥ ∆tn+1

 ∈ Sn
is ε-optimal in the sense that

(iii) γ(m)
n + ε ≥ E∞

[ ∫ τ
(m)
n,ε ∧tm

tn

e−λ(t−tn)
(

Φt −
λ

c

)
dt
∣∣∣Ftn], P∞-a.s.,

(iv) ν(m)
n + ε ≥ E∞

[ ∫ τ
(m)
n,ε ∧tm

tn

e−λ(t−tn)
(

Φt −
λ

c

)
dt
]
.

Proof of Theorem 4.3. Note that γ
(m)
m = 0 (P∞-a.s.), v

(m)
m (Φtm) = ν

(m)
m = 0, and τ

(m)
m,ε = tm.

Therefore, the theorem holds for n = m. Suppose now that the theorem holds for some 0 < n ≤ m,

and let us prove that it also holds when n is replaced with n− 1.

(i) Fix any stopping time τ ∈ Sn−1. By Theorem 3.2 (ii) there is a nonnegative Ftn−1-measurable

r.v. Rn−1 such that τ ∧ tn = (tn−1 + Rn−1) ∧ tn, and the dynamics in (1.2) of Φ implies that

Φt = ϕ(t−tn−1,Φtn−1) for every tn−1 ≤ t < tn. Therefore, E∞[
∫ τ∧tm
tn−1

e−λ(t−tn−1)(Φt− λ
c )dt|Ftn−1 ] =

E∞
[ ∫ τ∧tn

tn−1

e−λ(t−tn−1)(Φt −
λ

c
)dt+ 1{τ≥tn}e

−λ∆tnE∞
{∫ (τ∨tn)∧tm

tn

e−λ(t−tn)(Φt −
λ

c
)dt
∣∣∣Ftn}∣∣∣Ftn−1

]
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≥ E∞
[ ∫ τ∧tn

tn−1

e−λ(t−tn−1)
(

Φt −
λ

c

)
dt+ 1{τ≥tn}e

−λ∆tnv(m)
n (Φtn)

∣∣∣Ftn−1

]
,

because (τ∨tn) ∈ Sn, and E∞{
∫ (τ∨tn)∧tm
tn

e−λ(t−tn)(Φt− λ
c )dt|Ftn} ≥ γ

(m)
n = v

(m)
n (Φtn) by induction

hypothesis. By Theorem 3.2 (ii) and (iii), there is a nonnegative Ftn−1-mble r.v.Rn−1 such that P∞-

a.s. τ∧tn = (tn−1+Rn−1)∧tn and {τ ≥ tn} = {t0+R0 ≥ t1, . . . , tn−1+Rn−1 ≥ tn} = {tn−1+Rn−1 ≥
tn} because τ ∈ Sn−1 implies P∞-a.s. Ω = {τ ≥ tn−1} = {t0 + R0 ≥ t1, . . . , tn−2 + Rn−2 ≥ tn−1}.
Since Φtn = (∆tn,Φtn−1 ,

∆Xn√
∆tn

) by (1.2), E∞[
∫ τ∧tm
tn−1

e−λ(t−tn−1)(Φt − λ
c )dt

∣∣∣Ftn−1 ] =∫ Rn−1∧∆tn

0
e−λt

(
ϕ(t,Φtn−1)− λ

c

)
dt+ 1{Rn−1≥∆tn}e

−λ∆tnE∞
[
v(m)
n

(

(

∆tn, φ,
∆Xn√

∆tn

))]∣∣∣
φ=Φtn−1

= (Jv(m)
n )(∆tn,Φtn−1 , 0, Rn−1) ≥ (J0v

(m)
n )(∆tn,Φtn−1) = v

(m)
n−1(Φtn−1),(4.7)

because Rn−1 and Φtn−1 are Ftn−1-mble, and ∆Xn/
√

∆tn has standard Gaussian distribution in-

dependent of Ftn−1 = σ(Xt0 , Xt1 , . . . , Xtn−1) under P∞. Taking the essential infimum of both sides

over τ ∈ Sn−1 gives that P∞-a.s. γ
(m)
n−1 ≥ v

(m)
n−1(Φtn−1). To show the reverse inequality, recall that

τ
(m)
n−1,ε :=

 tn−1 +R
(m)
n−1,ε/2, if R

(m)
n−1,ε/2 < ∆tn,

τ
(m)
n,ε/2, if R

(m)
n−1,ε/2 ≥ ∆tn

is in Sn−1, where R
(m)
n−1,ε/2 ≥ 0 is such that (Jv

(m)
n )(∆tn,Φtn−1 , 0, R

(m)
n−1,ε/2) ≤ (J0v

(m)
n )(∆tn,Φtn−1)+

ε/2. Moreover, τ
(m)
n−1,ε∧ tn = (tn−1 +R

(m)
n−1,ε/2)∧ tn and {τ (m)

n−1,ε ≥ tn} = {R(m)
n−1,ε/2 ≥ ∆tn}, on which

τ
(m)
n−1,ε = τ

(m)
n,ε/2 ∈ Sn. Then γ

(m)
n−1 ≤ E∞[

∫ τ (m)
n−1,ε∧tm

tn−1
e−λ(t−tn−1)(Φt − λ

c )dt|Ftn−1 ] =

∫ (tn−1+R
(m)
n−1,ε/2

)∧tn

tn−1

e−λ(t−tn−1)
(
ϕ(t− tn−1,Φtn−1)− λ

c

)
dt

+ 1{R(m)
n−1,ε/2

≥∆tn}
e−λ∆tnE∞

[
E∞
{∫ τ

(m)
n,ε/2

∧tm

tn

e−λ(t−tn)
(

Φt −
λ

c

)
dt
∣∣∣Ftn}∣∣∣Ftn−1

]
≤
∫ R

(m)
n−1,ε/2

∧∆tn

0
e−λt

(
ϕ(t,Φtn−1)− λ

c

)
dt+ 1[∆tn,∞)(R

(m)
n−1,ε/2)e−λ∆tnE∞

[
v(m)
n (Φtn)

∣∣∣Ftn−1

]
+
ε

2
,

where E∞{
∫ τ (m)

n,ε/2
∧tm

tn e−λ(t−tn)
(
Φt − λ

c

)
dt | Ftn} ≤ γ

(m)
n + ε/2 = v

(m)
n (Φtn) + ε/2 by induction

hypothesis. Since Φtn = (∆tn,Φtn−1 ,
∆Xn√

∆tn
) by (1.2), and Φtn−1 and R

(m)
n−1,ε/2 are Ftn−1-mble,

γ
(m)
n−1 ≤

∫ R
(m)
n−1,ε/2

∧∆tn

0
e−λt

(
ϕ(t,Φtn−1)− λ

c

)
dt

+ 1[∆tn,∞)

(
R

(m)
n−1,ε/2

)
e−λ∆tnE∞

[
v(m)
n

(

(

∆tn, φ,
∆Xn√

∆tn

))]∣∣∣
φ=Φtn−1

+
ε

2

=

∫ R
(m)
n−1,ε/2

∧∆tn

0
e−λt

(
ϕ(t,Φtn−1)− λ

c

)
dt+ 1[∆tn,∞)(R

(m)
n−1,ε/2)e−λ∆tn(Kv(m)

n )(∆tn,Φtn−1) +
ε

2

= (Jv(m)
n )(∆tn,Φtn−1 , 0, R

(m)
n−1,ε/2) +

ε

2
< (J0v

(m)
n )(∆tn,Φtn−1) + ε = v

(m)
n−1(Φtn−1) + ε.

Because ε ≥ 0 is arbitrary, we conclude that γ
(m)
n−1 = v

(m)
n−1(Φtn−1), which proves (i) for n− 1.
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In the meantime, E∞[
∫ τ (m)

n−1,ε∧tm
tn−1

e−λ(t−tn−1)(Φt − λ
c )dt|Ftn−1 ] ≤ v(m)

n−1(Φtn−1) + ε = γ
(m)
n−1 + ε, and

taking expectations proves (iii) and (iv) for (n− 1) and that stopping time τ
(m)
n−1,ε is ε-optimal.

(ii) Let us finally prove (ii) for n − 1. By (iv) that we have just established for (n − 1),

we obtain ν
(m)
n−1 ≤ E∞[

∫ τ (m)
n−1,ε∧tm

tn−1
e−λ(t−tn−1)(Φt − λ

c )dt] ≤ E∞γ
(m)
n−1 + ε, and because ε ≥ 0 is

arbitrary, we get ν
(m)
n−1 ≤ E∞γ

(m)
n−1. For reverse inequality, take expectations in (4.7) and obtain

E∞[
∫ τ∧tm
tn−1

e−λ(t−tn−1)(Φt − λ
c )dt | Ftn−1 ] ≥ E∞[v

(m)
n−1(Φtn−1)] = E∞γ

(m)
n−1 for all τ ∈ Sn−1. Taking

infimums over τ ∈ Sn−1 gives ν
(m)
n−1 ≥ E∞γ

(m)
n−1, which proves (ii) for n− 1, and the theorem. �

The next corollary follows immediately from Proposition 4.2 and Theorem 4.3 and shows that

the value function V (φ) in (2.5) can be approximated successively by the elements of the sequence

(v
(m)
0 (φ))n≥0. The explicit uniform bound on the approximation error allows one to determine the

least number of iterations sufficient to obtain any given level of accuracy.

Corollary 4.4. The value function V (·) of the original optimal stopping problem in (2.5) can be

found in the limit by V (Φ0) = γ0 = limm→∞ γ
(m)
0 = limm→∞ v

(m)
0 (Φ0), where the convergence

is uniform in Φ0. More precisely, we have 0 ≤ V (φ) − v(m)
0 (φ) ≤ 1

c e
−λtm for every φ ≥ 0 and

m ≥ 0. For every ε > 0, let M(ε) := min
{
m ≥ 0; tm ≥ 1

λ ln 1
cε

}
. Then the (Ft)t≥0-stopping time

τ
(M(ε/2))
0,ε/2 ∧ tM(ε/2) ∈ S0 is ε-optimal for the problem in (2.5); namely,

0 ≤ V (φ)− Eφ∞
[ ∫ τ

(M(ε/2))
0,ε/2

∧tM(ε/2)

0
e−λt

(
Φt −

λ

c

)
dt
]
≤ ε for every φ ≥ 0.

Proposition 4.5 shows that, for every 0 ≤ n ≤ m and ε > 0, the ε-optimal stopping rule τ
(m)
n,ε of

Theorem 4.3 admits a simple characterization of the same form as in the general characterization

of all (Ft)t≥0-stopping rules described by Theorem 3.2 and Proposition 3.3.

Proposition 4.5. For every 0 ≤ n ≤ m − 1 and ε ≥ 0, let τ
(m)
n,ε and R

(m)
n,ε be as in Theorem 4.3.

Define N
(m)
n,ε = min{n ≤ k ≤ m; R

(m)

k,ε/2k+1−n < ∆tk+1}. Then N
(m)
n,ε is an {n, n+ 1, . . . ,m}-valued

(Ftk)k≥0-stopping time, {tk ≤ τ
(m)
n,ε < tk+1} = {N (m)

n,ε = k}, and

τ (m)
n,ε = t

N
(m)
n,ε

+R
(m)

N
(m)
n,ε ,ε/2

N
(m)
n,ε +1−n

=
(
tk +R

(m)

k,ε/2k+1−n

)∣∣∣
k=N

(m)
n,ε

.

Proof. Since τ
(m)
n,ε = τ

(m)
n+1,ε/2 on {τ (m)

n,ε ≥ tn+1} = {R(m)
n,ε/2 ≥ ∆tn+1}, we have {τ (m)

n,ε ≥ tk} =

{R(m)
n,ε/2 ≥ ∆tn+1} ∩

⋂k
i=n+2{τ

(m)
n+1,ε/2 ≥ ti} = . . . =

⋂k−1
`=n{R

(m)

`,ε/2`+1−n ≥ ∆t`+1}, for n + 1 ≤ k ≤ m

and {tk ≤ τ
(m)
n,ε < tk+1} =

⋂k−1
`=n{R

(m)

`,ε/2`+1−n ≥ ∆t`+1} \
⋂k
`=n{R

(m)

`,ε/2`+1−n ≥ ∆t`+1} = {N (m)
n,ε = k}

for n ≤ k ≤ m−1; τ
(m)
n,ε = tk+R

(m)

k,ε/2k+1−n on {tk ≤ τ
(m)
n,ε < tk+1} = {N (m)

n,ε = k} for n ≤ k ≤ m. �

Theorem 4.6 generalizes Corollary 4.4. The theorem shows that the minimum conditional ex-

pected remaining Bayes risk at tn given the past observations Ftn equals P∞-a.s. γn = vn(Φtn),

where vn(·) is the limit of its successive approximations (v
(m)
n (·))m≥0 as m → ∞. Because the

convergence turns out to be uniform, the error in the approximation of vn(φ) by v
(m)
0 (φ) can be

made arbitrarily small simultaneously for every φ ≥ 0 if m ≥ 0 is chosen sufficiently large.
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Theorem 4.6. For every n ≥ 0 and φ ≥ 0, the sequence (v
(m)
n (φ))m≥0 is decreasing, and the

pointwise limit vn(φ) := limm→∞ v
(m)
n (φ) exists and is uniform in φ ≥ 0. More precisely,

sup
φ≥0
|vn(φ)− v(m)

n (φ)| ≤ 1

c
e−λ(tm−tn) for every 0 ≤ n ≤ m.

The functions v
(m)
n (·), 0 ≤ m ≤ n and vn(·), n ≥ 0 are nondecreasing, concave, continuous, and

bounded between −1/c and 0. Moreover, for every n ≥ 0, we have vn(·) = (J0vn+1)(∆tn+1, ·), and

γn = vn(Φtn), P∞-a.s. and νn := inf
τ∈Sn

E∞
[ ∫ τ

tn

e−λ(t−tn)
(

Φt −
λ

c

)
dt
]

= E∞γn.

For every n ≥ 0 and ε > 0, let Mn(ε) := min
{
m ≥ n; tm − tn ≥ 1

λ ln 1
cε

}
. Then the (Ft)t≥0-

stopping time τ
(Mn(ε/2))
n,ε/2 ∧ tMn(ε/2) ∈ Sn, defined as in Theorem 4.3, is ε-optimal for the problem

infτ∈Sn Rτ (p) = 1− p+ (1− p)cE∞[
∫ tn

0 e−λt(Φt− λ
c )dt+ e−λtnγn] of the minimum Bayes risk if an

alarm has not yet been raised before time tn; namely,

γn + ε > E∞
[ ∫ τ

(Mn(ε/2))
n,ε/2

∧tMn(ε/2)

tn

e−λ(t−tn)
(

Φt −
λ

c

)
dt
∣∣∣Ftn].

Proof. For every m ≥ 0, because v
(m)
m (·) ≡ 0 ∈ [−1/c, 0] is bounded, nondecreasing, concave,

and continuous, Lemma 4.1 (i) implies that v
(m)
n (·) is bounded between −1/c and 0, nondecreasing,

concave, and continuous for every 0 ≤ n ≤ m. Moreover, for every n ≥ 0, the sequence (v
(m)
n (·))m≥n

is decreasing. To see this, note that for every m < p we have v
(p)
m (·) ≤ 0 ≡ v

(m)
m (·). Suppose

v
(p)
n (·) ≤ v

(m)
n (·) for some 0 < n ≤ m. Then by Lemma 4.1 (ii) v

(p)
n−1(·) = (J0v

(p)
n )(∆tn, ·) ≤

(J0v
(m)
n )(∆tn, ·) = v

(m)
n−1(·), and an induction on 0 ≤ n ≤ m proves that v

(p)
n (·) ≤ v

(m)
n (·) for every

0 ≤ n ≤ m ≤ p. Thus, the limit vn(φ) := limm→∞ v
(m)
n (φ) exists for every φ ≥ 0 and is bounded

between −1/c and 0, nondecreasing, and concave. For all 0 ≤ n ≤ m ≤ p, by Lemma 4.1 (iii)

sup
φ≥0
|vn(φ)− v(m)

n (φ)| ≤ sup
φ≥0
|v(p)
n (φ)− v(m)

n (φ)| = sup
φ≥0
|(J0v

(p)
n+1)(∆tn+1, φ)− (J0v

(m)
n+1)(∆tn+1, φ)|

≤ e−λ∆tn+1 sup
φ≥0
|v(p)
n+1(φ)− v(m)

n+1(φ)| = e−λ(tm−tn) sup
φ≥0
|v(p)
m (φ)| ≤ 1

c
e−λ(tm−tn).

Hence, the sequence (v
(m)
n (φ))m≥n of continuous functions converges as m→∞ to vn(φ) uniformly

in φ ≥ 0, and vn(·) is also continuous for all n ≥ 0. Moreover, vn(·) = (J0vn+1)(∆tn+1, ·) for

all n ≥ 0, since vn(φ) = infm≥n(J0v
(m)
n+1)(∆tn+1, φ) = infm≥n infr≥0 (Jv

(m)
n+1)(∆tn+1, φ, 0, r) =

infr≥0 infm≥n (Jv
(m)
n+1)(∆tn+1, φ, 0, r) = infr≥0 (Jvn+1)(∆tn+1, φ, 0, r) = (J0vn+1)(∆tn+1, φ), by

the bounded convergence. Finally, by Proposition 4.2 and Theorem 4.3, γn = limm→∞ v
(m)
n (Φtn) =

vn(Φtn). For 0 ≤ n ≤ m and τ ∈ Sn, we have τ∧tm ∈ Sn and νn ≤ E∞[
∫ τ∧tm
tn

e−λ(t−tn)
(
Φt − λ

c

)
dt],

and taking the infimums gives νn ≤ ν(m)
n = E∞γ

(m)
n by Theorem 4.3. Taking limits as m→∞ gives

νn ≤ E∞γn since γ
(m)
n → γn as m→∞, P∞-a.s. uniformly across sample-paths by Proposition 4.2.

For the reverse, γn ≤ E∞[
∫ τ
tn
e−λ(t−tn)

(
Φt − λ

c

)
dt | Ftn ] for all τ ∈ Sn, and taking expectations and

infimum over τ ∈ Sn gives E∞γn ≤ infτ∈Sn E∞[
∫ τ
tn
e−λ(t−tn)

(
Φt − λ

c

)
dt] = νn, and νn = E∞γn.

According to the first parts of Proposition 2.1 and Theorem 4.6, if an alarm has not yet been

raised before time tn, then infτ∈Sn Rτ (p) = 1 − p + (1 − p)cE∞[
∫ tn

0 e−λt(Φt − λ
c )dt + e−λtnγn].
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Theorem 4.3 (iii) with m = Mn(ε/2) implies

E∞
[ ∫ τ

(Mn(ε/2))
n,ε/2

∧tMn(ε/2)

tn

e−λ(t−tn)
(

Φt −
λ

c

)
dt
∣∣∣Ftn] ≤ γ(Mn(ε/2))

n +
ε

2

= v(Mn(ε/2))
n (Φtn) +

ε

2
< vn(Φtn) +

ε

2
+
ε

2
= γn + ε. �

5. The solution between observation times

If detection alarm has not been raised until time t ≥ 0, then one faces optimal stopping problems

γ(t) := ess inf
τ∈S(t)

E∞
[ ∫ τ

t
e−λ(u−t)

(
Φu −

λ

c

)
du
∣∣∣Ft], t ≥ 0,

γ(m)(t) := ess inf
τ∈S(t)

E∞
[ ∫ τ∧tm

t
e−λ(u−t)

(
Φu −

λ

c

)
du
∣∣∣Ft], t ≥ 0, m ≥ 0,

(5.1)

where S(t) = {τ ∈ S; τ ≥ t,P∞-a.s.}. Note that Sn, γ
(m)
n , and γn of Section 4 are the same as,

respectively, S(tn), γ(m)(tn), and γ(tn) for every 0 ≤ n ≤ m. Theorem 5.1 below shows how the

solution and ε-optimal stopping rules between observation times can be easily identified after they

are first found at observation times as described in Section 4.

Theorem 5.1. For every 0 ≤ n < m and tn ≤ t < tn+1, we have

(i) γ(m)(t) = eλ(t−tn)(Jt−tnv
(m)
n+1)(∆tn+1,Φtn), P∞-a.s.,

(ii) ν(m)(t) := inf
τ∈S(t)

E∞
[ ∫ τ∧tm

t
e−λ(u−t)

(
Φu −

λ

c

)
du
]

= E∞γ(m)(t),

where (v
(m)
n (·))0≤n≤m are the successive approximations calculated by (4.5). For every m ≥ 0 and

0 ≤ t ≤ tm, we have P∞-a.s. −1/c ≤ γ(m)(t) ≤ 0, and −1/c ≤ ν(m)(t) ≤ 0.

For every ε ≥ 0, m ≥ 0, and 0 ≤ t ≤ tm, let R
(m)
ε (t) ≡ 0 and R

(m)
ε (t) ≡ R(m)

ε (t,∆tn+1,Φtn) be a

real number greater than or equal to t− tn such that

(Jv
(m)
n+1)(∆tn+1,Φtn , t− tn, R(m)

ε (t)) ≤ (Jt−tnv
(m)
n+1)(∆tn+1,Φtn) + ε · e−λ(t−tn),

if tn ≤ t < tn+1 for some 0 ≤ n < m. For every ε ≥ 0, R
(m)
ε (t) is a nonnegative r.v., which is Ftm

measurable if t = tm and Ft ≡ Ftn measurable if tn ≤ t < tn+1 for some 0 ≤ n < m. Moreover,

τ (m)
ε (t) :=

 tn +R
(m)
ε/2 (t), if R

(m)
ε/2 (t) < ∆tn+1

τ
(m)
n+1,ε/2, if R

(m)
ε/2 (t) ≥ ∆tn+1

 ∈ S(t)

is ε-optimal in the sense that, if tn ≤ t < tn+1 for some 0 ≤ n < m, then

(iii) γ(m)(t) + ε ≥ E∞
[ ∫ τ

(m)
ε (t)∧tm

t
e−λ(u−t)

(
Φu −

λ

c

)
du
∣∣∣Ft], P∞-a.s.,

(iv) ν(m)(t) + ε ≥ E∞
[ ∫ τ

(m)
ε (t)∧tm

tn

e−λ(u−t)
(

Φu −
λ

c

)
du
]
.

R
(m)
n,ε and τ

(m)
n,ε of Theorem 4.3 are the same as R

(m)
ε (tn) and τ

(m)
ε (tn) for all 0 ≤ n ≤ m, ε > 0.
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The proof of Theorem 5.1 is similar to that of Theorem 4.3 and is omitted. As expected from

Proposition 4.2 and Theorem 4.6, γ(t) is P∞-a.s. limit of γ(m)(t) as m → ∞ and is related to

vn(·), if tn ≤ t < tn+1 for some n, through the dynamic programming operator J•. For each

t ≥ 0, the convergence is uniform across the sample path realizations, and the explicit bound on

the approximation error helps one determine ε-stopping times.

Proposition 5.2. For every fixed n ≥ 0 and tn ≤ t < tn+1, the sequence (γ(m)(t))m>n converges

P∞-a.s. to γ(t) as m → ∞. More precisely, P∞-a.s. 0 ≤ γ(m)(t) − γ(t) ≤ 1
c e
−λ(tm−tn) for every

0 ≤ n < m and tn ≤ t < tn+1. For every n ≥ 0 and tn ≤ t < tn+1,

γ(t) = eλ(t−tn)(Jt−tnvn+1)(∆tn+1,Φtn), P∞-a.s.,

ν(t) := inf
τ∈S(t)

E∞
[ ∫ τ

t
e−λ(u−t)

(
Φu −

λ

c

)
du
]

= E∞γ(t).

If Mn(ε) is defined for every ε > 0 and n ≥ 0 as in Theorem 4.6, then for every tn ≤ t < tn+1 the

F-stopping time τ
(Mn(ε/2))
ε/2 (t) ∧ tMn(ε/2) ∈ S(t) defined as in Theorem 5.1 is ε-optimal for

inf
τ∈S(t)

Rτ (p) = 1− p+ (1− p)c E∞
[ ∫ t

0
e−λu

(
Φu −

λ

c

)
du+ e−λtγ(t)

]
(5.2)

of the minimum Bayes risk if an alarm has not been raised before time t; namely,

γ(t) + ε > E∞
[ ∫ τ

(Mn(ε/2))
ε/2

(t)∧tMn(ε/2)

t
e−λ(u−t)

(
Φu −

λ

c

)
du
∣∣∣Ft].

Proof. Fix n ≥ 0 and tn ≤ t < tn+1. For every τ ∈ S(t) and m > n, we have τ ∧ tm ∈ S(t)

and γ(t) ≤ E∞[
∫ τ∧tm
t e−λ(u−t) (Φu − λ

c

)
du | Ft]. Hence, P∞-a.s. γ(t) ≤ γ(m)(t). We also have

E∞[
∫ τ
t e
−λ(u−t)(Φu− λ

c )du|Ft] ≥ E∞[
∫ τ∧tm
t e−λ(u−t)(Φu− λ

c )du|Ft]− 1
c

∫∞
tm
λe−λ(u−t)du ≥ γ(m)(t)−

1
c e
−λ(tm−t) ≥ γ(m)(t)− 1

c e
−λ(tm−tn). Taking essential infimums over τ ∈ S(t) gives the first inequal-

ity of the proposition, which shows that γ(m)(t) converges uniformly and P∞-a.s. to γ(t) as m→∞.

By Theorem 5.1 (i), P∞-a.s. γ(t) = limm→∞ γ
(m)(t) = limm→∞ e

λ(t−tn)(Jt−tnv
(m)
n+1)(∆tn+1,Φtn) =

eλ(t−tn)(Jt−tnvn+1)(∆tn+1,Φtn) by the bounded convergence and Theorem 4.6. Since for every

τ ∈ S(t), we have γ(t) ≤ E∞
[∫ τ
t e
−λ(u−t) (Φu − λ

c

)
du
∣∣Ft], taking expectations and infimums over

τ ∈ S(t) gives E∞γ(t) ≤ ν(t). Since (γ(m)(t))m≥0 converges uniformly to γ(t) as m→∞, we have

E∞γ(t) = limm→∞ E∞γ(m)(t) = limm→∞ ν
(m)(t) ≥ ν(t) by Theorem 4.6 (ii). This proves (ii).

By the first parts of Proposition 2.1 and Theorem 4.6, if an alarm has not yet been raised before

tn, then minimum expected risk becomes infτ∈Sn Rτ (p) = 1− p+ (1− p)cE∞[
∫ t

0 e
−λu(Φu− λ

c )du+

e−λtγ(t)]. Theorem 5.1 (iii) with m = Mn(ε/2) implies that E∞[
∫ τ (Mn(ε/2))

ε/2
(t)∧tMn(ε/2)

t e−λ(u−t)(Φu−
λ
c )du|Ft] ≤ γ(Mn(ε/2))(t) + ε

2 < γ(t) + ε
2 + ε

2 = γ(t) + ε, where the last inequality follows from the

first part of the proposition. Taking expectations gives the last inequality of the proposition. �

Remark 5.3. We can write more compactly that P∞-a.s.

γ(t) =

∞∑
n=0

1[tn,tn+1)(t)e
λ(t−tn)(Jt−tnvn+1)(∆tn+1,Φtn), t ≥ 0,

γ(m)(t) =

m−1∑
n=0

1[tn,tn+1)(t)e
λ(t−tn)(Jt−tnv

(m)
n+1)(∆tn+1,Φtn), 0 ≤ t < tm, m ≥ 1.

(5.3)
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For every 0 ≤ n ≤ m, because the functions vn+1(·) and v
(m)
n+1(·) are bounded and nonpositive,

the mappings t 7→ (Jt−tnvn+1)(∆tn+1,Φtn) and t 7→ (Jt−tnv
(m)
n+1)(∆tn+1,Φtn) are continuous on the

interval t ∈ [tn, tn+1] by Lemma 4.1 (iv). Therefore, the processes in (5.3) are RCLL versions of

{γ(t); t ≥ 0} and {γ(m)(t); 0 ≤ t ≤ tm}, m ≥ 1, and we work with those in the remainder.

The next theorem introduces alternative ε-optimal stopping rules, which will later be character-

ized as simple first hitting times of process Φ to suitable regions.

Theorem 5.4. The stopping times

σ(m)
ε (t) := inf{s ≥ t; γ(m)(s) ≥ −ε}, ε ≥ 0, 0 ≤ t ≤ tm, m ≥ 1(5.4)

belong to S(t), are P∞-a.s. less than or equal to tm, and are ε-optimal in the sense that γ(m)(t)+ε ≥
E∞[

∫ σ(m)
ε (t)∧tm

t e−λ(u−t)(Φu − λ
c )du|Ft]. Particularly, σ

(m)
0 (t), 0 ≤ t ≤ tm, m ≥ 1 are optimal in

the sense that γ(m)(t) = E∞[
∫ σ(m)

0 (t)∧tm
t e−λ(u−t)(Φu − λ

c )du|Ft].

For the proof of Theorem 5.4, we need the following proposition and its corollary, which are

proved in the appendix.

Proposition 5.5. For every m ≥ 1, let M (m)(t) :=
∫ t

0 e
−λu(Φu − λ

c )du + e−λtγ(m)(t) for every

0 ≤ t ≤ tm. Then M (m)(t) is integrable for every 0 ≤ t ≤ tm under P∞, and E∞[M (m)(τ ∧
σ

(m)
ε (t))] = E∞[M (m)(t)] for every m ≥ 1, 0 ≤ t ≤ tm, τ ∈ S(t), and ε ≥ 0.

Corollary 5.6. The stopped process {M (m)(s ∧ σ(m)
ε (t)),Fs; t ≤ s ≤ tm} is a RCLL martingale

under P∞ for every m ≥ 1, 0 ≤ t ≤ tm, and ε ≥ 0.

Proof of Theorem 5.4. Because γ(m)(tm) ≡ 0, we have t ≤ σ
(m)
ε (t) ≤ tm for every m ≥ 1,

0 ≤ t ≤ tm, and ε ≥ 0. Moreover, optional sampling theorem and Corollary 5.6 imply that∫ t
0 e
−λu(Φu − λ

c )du + e−λtγ(m)(t) = M (m)(t) = E∞[M (m)(σ
(m)
ε (t)) | Ft] = E∞[

∫ σ(m)
ε (t)

0 e−λu(Φu −
λ
c )du+e−λσ

(m)
ε (t)γ(m)(σ

(m)
ε (t))| Ft], which leads to γ(m)(t) ≥ E∞[

∫ σ(m)
ε (t)

t e−λ(u−t)(Φu− λ
c )du| Ft]−ε,

since γ(m)(σ
(m)
ε (t)) ≥ −ε and σ

(m)
ε (t) − t ≥ 0. Finally, taking the expectations of both sides and

Theorem 5.1 (ii) give ν(m)(t) = E∞γ(m)(t) ≥ E∞[
∫ σ(m)

ε (t)
t e−λ(u−t)(Φu − λ

c )du]− ε. �

The stopping time σε(t) := inf{s ≥ t; γ(s) ≥ −ε} is ε-optimal in infinite-horizon for all ε ≥
0, t ≥ 0 by Theorem 5.7, Proposition 5.8, and Corollary 5.9, whose very similar proofs are omitted.

Theorem 5.7. The stopping times

σε(t) := inf{s ≥ t; γ(s) ≥ −ε}, ε ≥ 0, t ≥ 0(5.5)

belong to S(t) and are ε-optimal in the sense that γ(t) + ε ≥ E∞[
∫ σε(t)
t e−λ(u−t)(Φu − λ

c )du|Ft].
Particularly, σ0(t), t ≥ 0 are optimal; namely, γ(t) = E∞[

∫ σ0(t)
t e−λ(u−t)(Φu − λ

c )du|Ft], t ≥ 0.

Proposition 5.8. M(t) :=
∫ t

0 e
−λu(Φu − λ

c )du + e−λtγ(t) is integrable for every t ≥ 0 under P∞,

and E∞[M(tm ∧ τ ∧ σε(t))] = E∞[M(t)] for every m ≥ 0, 0 ≤ t ≤ tm, τ ∈ S(t), and ε ≥ 0.

Corollary 5.9. {M(s∧σε(t)),Fs; s ≥ t} is a RCLL martingale under P∞ for all t ≥ 0, and ε ≥ 0.
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The process γ(·) = limm→∞ γ
(m)(·) can be obtained only in the limit, and optimal stopping times

σ0(t) of Theorem 5.7 are impractical. We can use successive approximations γ(m)(·) to define, in

light of Proposition 5.2 and Theorem 5.4, practical ε-optimal stopping rules of Proposition 5.10.

Proposition 5.10. If Mn(ε) is defined for all ε > 0 and n ≥ 0 as in Theorem 4.6, then for all

tn ≤ t < tn+1 the F-stopping time σ
(Mn(ε/2))
ε/2 (t) ∈ S(t) defined as in Theorem 5.4 is ε-optimal for

the problem of the minimum Bayes risk in (5.2) if an alarm was not raised before time t; namely,

γ(t) + ε > E∞
[ ∫ σ

(Mn(ε/2))
ε/2

(t)∧tMn(ε/2)

t
e−λ(u−t)

(
Φu −

λ

c

)
du
∣∣∣Ft].

6. The structure of ε-optimal stopping rules

Here, we shall characterize ε-optimal stopping time σ
(m)
ε (t) of (5.4) for arbitrary but fixed m ≥ 1,

ε ≥ 0, 0 ≤ t ≤ tm and ε-optimal stopping time σε(t) of (5.5) for arbitrary but fixed ε ≥ 0 and

t ≥ 0. Remark 5.3 implies that γ(m)(s) = eλ(s−t`)(Js−t`v
(m)
`+1)(∆t`+1,Φt`) for every 0 ≤ ` ≤ m − 1,

s ∈ [t`, t`+1) and γ(s) = eλ(s−t`)(Js−t`v`+1)(∆t`+1,Φt`) for ` ≥ 0, t ≥ 0. Then

(6.1)
γ(m)(s) ≥ −ε ⇔ (Js−t`v

(m)
`+1)(∆t`+1,Φt`) ≥ −εe

−λ(s−t`), s ∈ [t`, t`+1), 0 ≤ ` < m,

γ(s) ≥ −ε ⇔ (Js−t`v`+1)(∆t`+1,Φt`) ≥ −εe
−λ(s−t`), s ∈ [t`, t`+1), ` ≥ 0.

By Theorem 4.6, φ 7→ v
(m)
`+1(φ) and φ 7→ v`+1(φ) are nondecreasing, concave, continuous, bounded

between −1/c and 0. Then (Js−t`v
(m)
`+1)(∆t`+1, φ) = 0 ≥ −εe−λ(s−t`) and (Js−t`v`+1)(∆t`+1, φ) =

0 ≥ −εe−λ(s−t`) for every large φ ≥ 0 by Lemma 4.1 (i), and the sets {φ ≥ 0; (Js−t`v
(m)
`+1)(∆t`+1, φ) ≥

−εe−λ(s−t`)} and {φ ≥ 0; (Js−t`v`+1)(∆t`+1, φ) ≥ −εe−λ(s−t`)} are not empty. Therefore,

φ(m)
ε (s) :=

m−1∑
`=0

1[t`,t`+1)(s) inf{φ ≥ 0; (Js−t`v
(m)
`+1)(∆t`+1, φ) ≥ −εe−λ(s−t`)}, s ∈ [0, tm],

φε(s) :=
∞∑
`=0

1[t`,t`+1)(s) inf{φ ≥ 0; (Js−t`v`+1)(∆t`+1, φ) ≥ −εe−λ(s−t`)}, s ≥ 0

(6.2)

are finite. Because φ 7→ (Js−t`v
(m)
`+1)(∆t`+1, φ) and φ 7→ (Js−t`v`+1)(∆t`+1, φ) are continuous,

we have (Js−t`v
(m)
`+1)(∆t`+1, φ

(m)
ε (s)) ≥ −εe−λ(s−t`) and (Js−t`v`+1)(∆t`+1, φε(s)) ≥ −εe−λ(s−t`) if

s ∈ [t`, t`+1) for some ` ≥ 0. Moreover, (6.1) becomes

γ(m)(s) ≥ −ε ⇔ Φt` ≥ φ
(m)
ε (s), s ∈ [t`, t`+1), 0 ≤ ` ≤ m− 1,

γ(s) ≥ −ε ⇔ Φt` ≥ φε(s), s ∈ [t`, t`+1), ` ≥ 0,

which imply that ε-optimal stopping rules σ
(m)
ε (t) in (5.4) and σε(t) in (5.5) can be written as

σ(m)
ε (t) = min

{
t ≤ s ≤ tm;

m−1∑
`=0

1[t`,t`+1)(s)Φt` ≥ φ
(m)
ε (s)

}
, 0 ≤ t ≤ tm,

σε(t) = min
{
s ≥ t;

∞∑
`=0

1[t`,t`+1)(s)Φt` ≥ φε(s)
}
, t ≥ 0.

(6.3)
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Proposition 6.1. For every m ≥ 1, ε ≥ 0, and 0 ≤ s ≤ tm, the sequence (φ
(m)
ε (s))m≥1 is

increasing. Moreover, φε(s) = limm→∞ ↑ φ(m)
ε (s) for every ε ≥ 0 and s ≥ 0.

Proof of Proposition 6.1. Since (v
(m)
` )m≥1 is a decreasing sequence, which converges uniformly to

v` for ` ≥ 0, we have φ
(k)
ε (s) ≤ φ

(m)
ε (s) ≤ φε(s) for 0 ≤ k ≤ m − 1 and t` ≤ s < t`+1. Hence,

(φ
(m)
ε (s))m≥1 is increasing, and limm→∞ φ

(m)
ε (s) ≤ φε(s) for ε ≥ 0, s ≥ 0. For the reverse inequality,

(Js−t`v`+1)(∆t`+1, limm→∞ φ
(m)
ε (s)) = limk→∞(Js−t`v

(k)
`+1)(∆t`+1, limm→∞ φ

(m)
ε (s)) by dominated

convergence. Since φ 7→ (Js−t`v
(k)
`+1)(∆t`+1, φ) is increasing and limm→∞ φ

(m)
ε (s) ≥ φ

(k)
ε (s), the

righthand side is greater than or equal to limk→∞(Js−t`v
(k)
`+1)(∆t`+1, φ

(k)
ε (s)) ≥ −εe−λ(s−t`), and

φε(s) ≤ limm→∞ φ
(m)
ε (s). This proves that φε(s) = limm→∞ φ

(m)
ε (s). �

Next we characterize optimal stopping boundaries φ
(m)
0 (s), s ≥ 0 for all m ≥ 0 and φ0(s), s ≥ 0.

For all fixed ` ≥ 0 and m > `, we show that lims↑t`+1
φ

(m)
0 (s) = lims↑t`+1

φ0(s) = +∞. Moreover,

s 7→ φ
(m)
0 (s) and s 7→ φ0(s) on s ∈ [t`, t`+1) either strictly increase or first decrease and then

increase; in the latter case, they are strictly monotone wherever they do not vanish.

Assumption 6.2. Let ∆t > 0 be a finite real number and w : R+ 7→ R be a continuous concave

nondecreasing function, which is between −1/c and 0, but does not identically vanish.

By Theorem 4.6, v
(m)
` (·), 0 < ` ≤ m− 1 and v`(·), ` > 0 satisfy Assumption 6.2. Define

φ(∆t, y, w) = inf {φ ≥ 0; (Jyw)(∆t, φ) ≥ 0} , 0 ≤ y < ∆t.

Then φ
(m)
0 (s) = φ(∆t`+1, s − t`, v

(m)
`+1) for s ∈ [t`, t`+1), 0 ≤ ` ≤ m − 1 and φ0(s) = φ(∆t`+1, s −

t`, v`+1) for s ∈ [t`, t`+1) and ` ≥ 0, and the analysis of y 7→ φ(∆t, y, w) on y ∈ [0,∆t) applies to

optimal stopping boundaries s 7→ φ
(m)
0 (s), m > ` and s 7→ φ0(s) on s ∈ [t`, t`+1) for ` ≥ 0.

Proposition 6.3. Let ∆t > 0 and w : R+ 7→ R be as in Assumption 6.2. Then, for every φ ≥ 0

and 0 ≤ y < ∆t, we have (Jyw)(∆t, φ) ≥ 0 if and only if
φ ≥ e−λy

(
1 +

λ

c

)
− 1

(1 + φ)(∆t− y)−
(

1

λ
+

1

c

)
(e−λy − e−λ∆t) + e−λ∆t(Kw)(∆t, φ) ≥ 0

 .(6.4)

Therefore, for every 0 ≤ y < ∆t, the critical boundary φ(∆t, y, w) equals inf{φ ≥ [e−λy(1 +
λ
c ) − 1]+; (1 + φ)(∆t − y) −

(
1
λ + 1

c

)
(e−λy − e−λ∆t) + e−λ∆t(Kw)(∆t, φ) ≥ 0}, and φ(∆, y) ≤

φ(∆t, y, w) ≤ φ(∆t, y), where φ(∆t, y) = [e−λy(1 + λ
c ) − 1]+ and φ(∆t, y) = max{[e−λy(1 + λ

c ) −
1]+, ( 1

λ + 1
c )
e−λy−e−λ∆t

∆t−y + 1
c
e−λ∆t

∆t−y − 1}.

Remark 6.4. One can find φ(∆t, y, w) by a binary search on
[
φ(∆t, y), φ(∆t, y)

]
for y ∈ [0,∆t).

Proof of Proposition 6.3. 0 ≤ (Jyw)(∆t, φ) implies that (i)
∫ r
y e
−λu(ϕ(u, φ) − λ

c )du ≥ 0 for every

y ≤ r < ∆t and (ii) 0 ≤
∫ ∆t
y e−λu(ϕ(u, φ) − λ

c )du + e−λ∆t(Kw)(∆t, φ) = (1 + φ)(∆t − y) −
( 1
λ + 1

c )(e
−λy−e−λ∆t

) + e−λ∆t(Kw)(∆t, φ). Dividing both sides of (i) by r − y and letting r ↓ y
give φ ≥ e−λy(1 + λ

c ) − 1, and the inequalities in (6.4) must hold. If φ satisfies (6.4), then since

u 7→ ϕ(u, φ) ≥ λ/c is increasing,
∫ r
y e
−λu(ϕ(u, φ)− λ

c )du ≥ 0 for every y ≤ r < ∆t. Together with



WIENER DISORDER PROBLEM WITH OBSERVATIONS AT FIXED DISCRETE TIME EPOCHS 19

(ii), we conclude (Jyw)(∆t, φ) ≥ 0. The equivalent form of φ(∆t, y, w) follows from (6.4). The

lower bound φ(∆t, y) on φ(∆t, y, w) follows from alternative form. Note that since w(·) ≥ −1/c,

φ(∆t, y, w) ≤ inf{φ ≥ [e−λy(1+ λ
c )−1]+; (φ+1)(∆t−y)−( 1

λ+ 1
c )e
−λy+ 1

λe
−λ∆t ≥ 0} = φ(∆t, y). �

Lemma 6.5. Let ∆t > 0 and w(·) be as in Assumption 6.2. Then (Kw)(∆t, φ) < 0 for φ ≥ 0.

Proof. Recall that (∆t, φ, z) in (4.3) is given by (1.2), and lim|z|→∞,µz>0 (∆t, φ, z) = ∞ and

lim|z|→∞,µz<0 (∆t, φ, z) = 0 by the monotone convergence and bounded convergence theorems,

respectively. Since w 6≡ 0 is increasing, there is some φ̄ > 0 such that w(φ) ≤ w(φ̄) < 0 for every

φ < φ̄. Then for all φ ≥ 0, there is some z̄ = z̄(∆t, φ) such that (∆t, φ, z) < φ̄ for |z| > z̄ and zµ <

0, and (Kw)(∆t, φ) ≤ (
∫ −z̄
−∞+

∫∞
z̄ )w((∆t, φ, z)) exp{−z2/2}√

2π
dz ≤ w(φ̄)

∫ −z̄
−∞

exp{−z2/2}√
2π

dz < 0. �

Lemma 6.6. Let ∆t > 0 and w(·) be as in Assumption 6.2. For every φ ≥ 0, there is some

y(φ) ∈ [0,∆t) such that y ∈ [y(φ),∆t) implies

φ <

(
1

λ
+

1

c

)
e−λy − e−λ∆t

∆t− y
− e−λ∆t (Kw)(∆t, φ)

∆t− y
− 1 and (Jyw)(∆t, φ) < 0.

Proof. Assume that there is some φ ≥ 0 and some sequence (yn)n≥1 in [0,∆t) increasing to ∆t such

that φ ≥
(

1
λ + 1

c

)
e−λyn−e−λ∆t

∆t−yn −e−λ∆t (Kw)(∆t,φ)
∆t−yn −1 for every n ≥ 1. Note that limn→∞

e−λyn−e−λ∆t

∆t−yn =

λe−λ∆t is finite, and Lemma 6.5 implies (Kw)(φ) < 0 and limn→∞
(Kw)(∆t,φ)

∆t−yn = −∞. Then taking

limits in the last inequality as n → ∞ gives φ ≥
(

1
λ + 1

c

)
λe−λ∆t +∞− 1 = ∞, which contradicts

with the finiteness of φ. Finally, (Jyw)(∆t, φ) < 0 follows from the first part of Proposition 6.3. �

Corollary 6.7. Let ∆t > 0 and w(·) be as in Assumption 6.2. Then limy↑∆t φ(∆t, y, w) =∞.

Proof. For every φ ≥ 0, there is some y(φ) ∈ [0,∆t) such that (Jyw)(∆t, φ) < 0 for all y ∈ [y(φ),∆t)

by Lemma 6.6, and therefore, limy↑∆t φ(∆t, y, w) ≥ φ. Letting φ ↑ ∞ proves the result. �

Recall from (4.2) that
∫ ∆t
y e−λu(ϕ(u, φ)− λ

c )du+e−λ∆t(Kw)(∆t, φ) = (Jw)(∆t, φ, y,∆t) for every

φ ≥ 0 and 0 ≤ y < ∆t. Since ∂
∂y (Jw)(∆t, φ, y,∆t) = −e−λy(ϕ(y, φ)− λ

c ) = −1− φ+ (1 + λ
c )e−λy,

we can rewrite the equivalent form of φ(∆t, y, φ) given by Proposition 6.3 as

φ(∆t, y, φ) = inf

{
φ ≥ 0;

∂

∂y
(Jw)(∆t, φ, y,∆t) ≤ 0 and (Jw)(∆t, φ, y,∆t) ≥ 0

}
.

Remark 6.8. The mappings (y, φ) 7→ (Jw)(∆t, φ, y,∆t) and (y, φ) 7→ ∂
∂y (Jw)(∆t, φ, y,∆t) are

jointly continuous in (y, φ) ∈ [0,∆t)×R+. Because φ(∆t, y, w) is finite by Proposition 6.3, we have

for every y ∈ [0,∆t) that φ(∆t, y, w) ≥ 0,

∂

∂y
(Jw)(∆t, φ, y,∆t)

∣∣∣∣
φ=φ(∆t,y,w)

≤ 0 and (Jw)(∆t, φ(∆t, y, w), y,∆t) ≥ 0.

Therefore, {(y, φ(∆t, y, w)); y ∈ [0,∆t)} belongs to the boundary of the closed set{
(y, φ) ∈ [0,∆t);

∂

∂y
(Jw)(∆t, φ, y,∆t) ≤ 0, (Jw)(∆t, φ, y,∆t) ≥ 0

}
.

Fix φ ∈ R. Since y 7→ ϕ(y, φ) is strictly increasing, y 7→ ∂
∂y (Jw)(∆t, φ, y,∆t) = −e−λy

(
ϕ(y, φ)− λ

c

)
on y ∈ R changes its sign exactly once and from positive to negative at y = y∗(φ) satisfying

ϕ(y∗(φ), φ)− λ

c
= 0 or y∗(φ) =

1

λ
ln

1 + λ
c

1 + φ
∈ R.
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Hence, y 7→ (Jw)(∆t, φ, y,∆t) is strictly increasing on (−∞, y∗(φ)] and strictly decreasing on

[y∗(φ),∞) and has global maximum at y = y∗(φ). Since ∂2

∂y2 (Jw)(∆t, φ, y,∆t) = −
(
1 + λ

c

)
λe−λy <

0, the mapping y 7→ (Jw)(∆t, φ, y,∆t) is also strictly concave.

Because φ 7→ ϕ(u, φ) and φ 7→ (Kw)(∆t, φ) are strictly increasing, φ 7→ (Jw)(∆t, φ, y,∆t) is

strictly increasing for every fixed y ∈ (−∞,∆t]. Note (Jw)(∆t, φ,∆t,∆t) = e−λ∆t(Kw)(∆t, φ) for

every φ ∈ R, and the locations of the maximums φ 7→ y∗(φ) form a decreasing function, which is

negative for every φ < λ/c, and y∗(λ/c) = 0.

Remark 6.9. Let ∆t > 0 and w(·) be as in Assumption 6.2. The followings will later be useful.

(i) Suppose that ∂
∂y (Jw)(∆t, φ0, y,∆t)|y=y0 ≤ 0 for some y0 ∈ (−∞,∆t] and φ0 ∈ R. Then

(Jw)(∆t, φ0, y0,∆t) > (Jw)(∆t, φ0, y,∆t) > (Jw)(∆t, φ, y,∆t) for every y ∈ (y0,∆t) and φ < φ0,

and since y∗(φ) < y∗(φ0) for all φ > φ0, ∂
∂y (Jw)(∆t, φ, y,∆t) < 0 for all y ∈ [y0,∆t) and φ > φ0.

(ii) Suppose that ∂
∂y (Jw)(∆t, φ0, y,∆t)|y=y0 = 0 for some y0 ∈ (−∞,∆t] and φ0 ∈ R. Then

∂
∂y (Jw)(∆t, φ, y,∆t) > 0 for every y ∈ (−∞, y0) and φ ≤ φ0, since y∗(φ) > y∗(φ0) ≡ y0 for every

φ < φ0 and y 7→ (Jw)(∆t, φ, y,∆t) is strictly increasing on y ∈ (−∞, y0) for φ ≤ φ0.

Theorem 6.10. Suppose ∆t > 0 and w : R+ 7→ R are as in Assumption 6.2. Then y 7→ φ(∆t, y, w)

on y ∈ [0,∆t) is either strictly increasing everywhere or first decreases and then increases. It

is strictly monotone at every y ∈ [0,∆t) where φ(∆t, y, w) > 0. At every y ∈ [0,∆t) where

y 7→ φ(∆t, y, w) is decreasing, it coincides with y 7→ e−λy(1+ λ
c )−1. The mapping y 7→ φ(∆t, y, w) is

strictly increasing on a nonempty open neighborhood in [0,∆t) of ∆t and is continuous everywhere.

Proof. Fix some y0 ∈ [0,∆t) and suppose that φ(∆t, y0, w) > 0. Note that we always have
∂
∂y (Jw)(∆t, φ, y,∆t)| y=y0

φ=φ(∆t,y0,w) ≤ 0.

Case I. Suppose ∂
∂y (Jw)(∆t, φ, y,∆t)| y=y0

φ=φ(∆t,y0,w) < 0. Then (Jw)(∆t, φ(∆t, y0, w), y0,∆t) = 0;

otherwise, φ(∆t, y0, w) can be further lowered. By Remark 6.9 (i) with φ0 = φ(∆t, y, w), 0 =

(Jw)(∆t, φ(∆t, y0, w), y0,∆t) > (Jw)(∆t, φ, y,∆t) for y ∈ (y0,∆t) and φ ≤ φ(∆t, y0, w). Thus,

φ(∆t, y, w) > φ(∆t, y0, w) for every y ∈ (y0,∆t), which, in the meantime, implies that

φ(∆t, y, w) > 0 and
∂

∂y
(Jw)(∆t, φ, y,∆t)

∣∣∣
φ=φ(∆t,y,w)

< 0 for every y ∈ (y0,∆t)(6.5)

by the second part of Remark 6.9 (i) with φ0 = φ(∆t, y0, w). Now (6.5) implies that Case I applies

to every y ∈ (y0,∆t) and that y 7→ φ(∆t, y, w) is strictly increasing on y ∈ [y0,∆t).

Case II. Suppose now that ∂
∂y (Jw)(∆t, φ, y,∆t)| y=y0

φ=φ(∆t,y0,w) = 0. Then by Remark 6.9 (ii)

with φ0 = φ(∆t, y0, w), we have ∂
∂y (Jw)(∆t, φ, y,∆t) > 0 for every y < y0 and φ ≤ φ(∆t, y0, w).

Therefore, φ(∆t, y, w) > φ(∆t, y0, w) for every y < y0. This implies φ(∆t, y, w) > 0 for ev-

ery y < y0, and by Case I ∂
∂y (Jw)(∆t, φ, y,∆t)|φ=φ(∆t,y,w) = 0 for every y < y0; otherwise,

∂
∂y (Jw)(∆t, φ, y,∆t)|φ=φ(∆t,y,w) < 0 and Case I would imply that φ(∆t, y, w) < φ(∆t, y0, w) and
∂
∂y (Jw)(∆t, φ, y,∆t)| y=y0

φ=φ(∆t,y0,w) < 0, which contradicts with the starting assumption of Case II.

Since now φ(∆t, y, w) > 0 and ∂
∂y (Jw)(∆t, φ, y,∆t)|φ=φ(∆t,y,w) = 0 for every y < y0, Case II ap-

plies to every y < y0, and we conclude that y 7→ φ(∆t, y, w) is strictly decreasing on y ∈ [0, y0].

For every y ∈ [0, y0], 0 = ∂
∂y (Jw)(∆t, φ, y,∆t)|φ=φ(∆t,y,w) = e−λy(ϕ(y, φ(∆t, y, w)) − λ

c ) implies

λ/c = ϕ(y, φ(∆t, y, w)) = eλy[φ(∆t, y, w) + 1]− 1 or φ(∆t, y, w) = e−λy(1 + λ
c )− 1.
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Corollary 6.7 implies that limy↑∆t φ(∆t, y, w) = +∞ > supy∈[0,∆t) e
−λy(1+ λ

c )−1 = λ
c , which im-

plies that φ(∆t, y, w) > 0 and ∂
∂y (Jw)(∆t, φ, y,∆t)|φ=φ(∆t,y,w) < 0 for some y ∈ [0,∆t); otherwise,

we would have φ(∆t, y, w) > 0 and ∂
∂y (Jw)(∆t, φ, y,∆t)|φ=φ(∆t,y,w) = 0 for every y ∈ [0,∆t), which

would imply that φ(∆t, y, w) = e−λy(1 + λ
c )− 1 ≤ λ/c for every y ∈ [0,∆t), which contradicts with

limy↑∆t φ(∆t, y, w) = +∞. Therefore, Case I implies that y 7→ φ(∆t, y, w) is strictly increasing in

some nonempty neighborhood in [0,∆t) of ∆t. Let us now define

D =
{
y ∈ [0,∆t); φ(∆t, y, w) > 0 and

∂

∂y
(Jw)(∆t, φ, y,∆t)

∣∣∣
φ=φ(∆t,y,w)

= 0
}
,

E =
{
y ∈ [0,∆t); φ(∆t, y, w) > 0 and

∂

∂y
(Jw)(∆t, φ, y,∆t)

∣∣∣
φ=φ(∆t,y,w)

< 0
}
.

E 6= ∅ by the previous paragraph. We also know that φ(∆t, y, w) ≥ [e−λy(1 + λ
c ) − 1]+|y=0 =

λ
c > 0, and ∂

∂y (Jw)(∆t, φ, y,∆t)| y=0
φ=φ(∆t,0,w) ≤ 0. If 0 ∈ E, then E = [0,∆t) by Case I above, and

y 7→ (Jw)(∆t, φ, y,∆t) is strictly increasing on y ∈ [0,∆t). If y 7→ (Jw)(∆t, φ, y,∆t) is not strictly

increasing on y ∈ [0,∆t), then we must have 0 /∈ E and ∂
∂y (Jw)(∆t, φ, y,∆t)| y=0

φ=φ(∆t,0,w) = 0 and

0 ∈ D. Hence, D is not empty in this case, either. Define y` := supD and yr := inf E. There is a

sequence (y
(n)
` )n≥1 in D increasing to y`, and on every [0, y

(n)
` ) 3 y, the mapping y 7→ φ(∆t, y, w) is

strictly decreasing. Therefore, y 7→ φ(∆t, y, w) is strictly decreasing on y ∈ [0, y`). Similarly, there is

a sequence (y
(n)
r )n≥1 in E decreasing to yr, and on every [y

(n)
r ,∆t) 3 y, the mapping y 7→ φ(∆t, y, w)

is strictly increasing. Therefore, y 7→ φ(∆t, y, w) is strictly increasing on y ∈ (yr,∆t).

We have 0 ≤ y` ≤ yr < ∆t, since otherwise y 7→ φ(∆t, y, w) would be both strictly increasing

and strictly decreasing on a nonempty set. If y` = yr, then y 7→ φ(∆t, y, w) firstly strictly decreases

and then strictly increases on [0,∆t) 3 y. Suppose y` < yr. Take any y` < y0 < yr. We claim that

φ(∆t, y0, w) = 0. Otherwise, φ(∆t, y0, w) > 0, and since ∂
∂y (Jw)(∆t, φ, y,∆t)| y=y0

φ=φ(∆t,y0,w) ≤ 0, we

must have either y0 ∈ D or y0 ∈ E. If y0 ∈ D, then y` < y0 contradicts with the definition of y`. If

y0 ∈ E, then y0 < yr contradicts with the definition yr. Thus, φ(∆t, y, w) = 0 for every y ∈ (y`, yr).

Finally, y 7→ φ(∆t, φ, y,∆t) is continuous by Remark 6.9. Hence, if y` = yr, then y` = limy↑y` ↓
φ(∆t, φ, y,∆t) = limy↓yr ↓ φ(∆t, φ, y,∆t) = yr is the unique global minimum of y 7→ φ(∆t, φ, y,∆t).

If y` < yr, then φ(∆t, φ, y,∆t) = 0 for every y ∈ [y`, yr], D = [0, y`] and E = [yr,∆t). In all of the

cases, y 7→ φ(∆t, φ, y,∆t) is strictly monotone at every y ∈ [0,∆t) where φ(∆t, φ, y,∆t) > 0. �

Remark 6.11. The mapping y 7→ φ(∆t, y, w) is either strictly increasing, or decreases first and

then increases. In the latter case, it is strictly monotone at every point where it is strictly positive.

Its decreasing part coincides with y 7→ e−λy(1 + λ
c )− 1; see the drawing on the left in Figure 2.

Finally, lim∆t→∞ ↓ φ(∆t, y, w) = [e−λy(1 + λ
c ) − 1]+ for y ∈ [0,∆t), since, for φ ≥ 0 and

0 ≤ y ≤ y0 < ∆t, (Jw)(∆t, φ, y,∆t) ≥ ∆t−y0− ( 1
λ + 1

c )−
1
c , and inf0≤y≤y0,φ≥0(Jw)(∆t, φ, y,∆t) ≥

∆t− y0 − 1
λ −

2
c →∞ as ∆t→∞; see the drawing on the right in Figure 2.

7. Numerical methods and their illustrations

For any t ≥ 0, if a change-detection alarm has not yet been raised before t, then minimum Bayes

risk infτ∈S(t)Rτ (p) is given in terms of γ(t) =
∑∞

n=0 1[tn,tn+1)(t)e
λ(t−tn)(Jt−tnvn+1)(∆tn+1,Φtn) by

(5.2) and an optimal alarm after time t may be raised at the stopping time σ0(t) of (6.3), where
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φ(∆t4, ·, w)

λ
c

y

φ

(a)

(c)

∆t0

y 7→ e−λy
(
1 + λ

c

)
− 1

(b)

y 7→ φ(∆t, y, w)

λ
c

y

φ

0

y 7→ e−λy
(
1 + λ

c

)
− 1

∆t3∆t2∆t1 ∆t4

φ(∆t1, ·, w) φ(∆t2, ·, w) φ(∆t3, ·, w)

Figure 2. The mapping y 7→ φ(∆t, y, w) on y ∈ [0,∆t) either (a) strictly increases, or (b) firstly

decreases strictly and then increases strictly, with unique maximum, or (c) firstly decreases strictly

until it hits zero, stays there for a while, and increases strictly afterwards. The drawing on the

righthand side illustrates that lim∆t→∞ ↓ φ(∆t, y, w) = [e−λy(1 + λ
c )− 1]+.

φ0(s) = inf{φ ≥ 0; (Js−tnvn+1)(∆tn+1, φ) = 0} for every s ∈ [tn, tn+1) and n ≥ 0. For the evalua-

tion of the minimum Bayes risks and implementation of optimal alarm times, one needs to calculate

the limit vn(·) = limm→∞ v
(m)
n (·) on R+ for n ≥ 0 of successive approximations (v

(m)
n (·))0≤n≤m,

m ≥ 0 defined by (4.5), and functions (Js−tnvn+1)(∆tn+1, ·) for s ∈ [tn, tn+1) and n ≥ 0.

In practice, vn(·) cannot be calculated exactly, but can be approximated by v
(m)
n (·) for some

m ≥ n with any desired uniform error margin ε > 0 for every n ≥ 0. Indeed, if Mn(ε) = min{m ≥
n; tm − tn ≥ 1

λ ln 1
cε} for every n ≥ 0 and ε > 0, then Theorem 4.6 guarantees supφ≥0 |vn(φ) −

v
(m)
n (φ)| ≤ ε for every m ≥Mn(ε), and by Lemma 4.1 (iii)

sup
φ≥0, s∈[tn,tn+1)

∣∣∣(Js−tnvn+1)(∆tn+1, φ)− (Js−tnv
(m)
n+1)(∆tn+1, φ)

∣∣∣
≤ e−λ∆tn+1 sup

φ≥0
|vn+1(φ)− v(m)

n+1(φ)| ≤ e−λ∆tn+1ε for every m ≥Mn+1(ε),

which also leads for every n ≥ 0 to the uniform approximation of γ(t), t ∈ [tk, tk+1) with∑∞
k=0 1[tk,tk+1)(t)e

λ(t−tk)(Jt−tkv
(mk+1)
k+1 )(∆tk+1,Φtk) as in

sup
t∈[tn,tn+1)

∣∣∣∣∣γ(t)−
∞∑
k=0

1[tk,tk+1)(t)e
λ(t−tk)(Jt−tkv

(mk+1)
k+1 )(∆tk+1,Φtk)

∣∣∣∣∣ ≤ ε,
where mk ≥Mk(ε) is any fixed finite integer for every k ≥ 0.

By replacing vn+1(·) in the definition of the optimal stopping boundary φ0(s) for every s ∈ [tn, tn+1)

and n ≥ 0 with v
(mn+1)
n+1 (·) for any fixed mn+1 ≥ Mn+1(ε), one also gets, instead of impractical

optimal alarm times σ0(t) for t ≥ 0, implementable nearly-optimal alarm times σε,δ(t), t ≥ 0.
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Input. Fix any ε > 0, δ ≥ 0, and n ≥ 0.

Step 1. Let mn+1 = dMn+1(ε)e be the smallest integer m ≥ n+1 such that tm−tn ≥ −(1/λ) ln(cε).

Step 2. Find v
(mn+1)
n (·) by calculating v

(mn+1)
mn+1 (·) ≡ 0 and v

(mn+1)
k (·) = (J0v

(mn+1)
k+1 )(∆tn+1, ·) for

k = mn+1 − 1, . . . , n+ 1, n successively.

Step 3. Calculate (Jt−tnv
(mn+1)
n )(∆tn+1, φ) for all t ∈ [tn, tn+1), 0 ≤ φ ≤ φ(∆tn+1, t− tn), where

φ(∆t, y) = max
{[
e−λy

(
1 +

λ

c

)
− 1
]+
,
( 1

λ
+

1

c

)e−λy − e−λ∆tn+1

∆tn+1 − y
+

1

c

e−λ∆t

∆t− y
− 1
}
,

and we know that (Jt−tnv
(mn+1)
n )(∆tn+1, φ) = 0 for φ ≥ φ(∆tn+1, t− tn).

Step 4. Find φ
(mn+1)
δ (s) = min{φ ≥ 0; (Js−tnv

(mn+1)
n )(∆tn+1, φ) ≥ −δe−λ(s−tn)} by a binary

search on [0, φ(∆tn+1, s− tn)] for every s ∈ [tn, tn+1).

Output. For every t ∈ [tn, tn+1), we obtain |γ(t) − eλ(t−tn)(Jt−tnv
(mn+1)
n+1 )(∆tn+1,Φtn)| ≤ ε, and

φ
(mn+1)
δ (t), t ∈ [tn, tn+1) is the critical boundary of (ε+ δ)-optimal rule σε,δ(t), t ∈ [tn, tn+1).

Figure 3. A numerical algorithm to calculate the minimum Bayes risk and the critical boundary

of a nearly-optimal optimal stopping rule between observation times.

Proposition 7.1. Let Mn(ε) and φ
(m)
ε (s) be defined as in Theorem 4.6 and (6.2), respectively, for

every n,m ≥ 0, ε > 0, and 0 ≤ s ≤ tm. Fix any ε > 0, δ ≥ 0, and mn ≥Mn(ε). Define

φε,δ(s) :=
∞∑
n=0

1[tn,tn+1)(s)φ
(mn+1)
δ (s), s ≥ 0,

σε,δ(t) := inf
{
s ≥ t;

∞∑
n=0

1[tn,tn+1)(s)Φtn ≥ φε,δ(s)
}
, t ≥ 0.

Then for every t ≥ 0, stopping time σε,δ(t) ∈ S(t) is (ε+δ)-optimal for infτ∈S(t)Rτ (·) in (5.2) if an

alarm has not been raised before time t; namely, γ(t) + ε+ δ ≥ E∞[
∫ σε,δ(t)
t e−λ(u−t)(Φu − λ

c )du|Ft].

Proof. Since φ
(m)
δ (s) ≤ φδ(s) for m ≥ 0, δ ≥ 0, and 0 ≤ s ≤ tm by Proposition 6.1, we have σε,δ(t) ≤

σδ(t) for every t ≥ 0. Then Corollary 5.9 and the optional sampling imply that the stopped process

{M(s ∧ σε,δ(t)) ≡ M(s ∧ σε,δ(t) ∧ σδ(t)),Fs; s ≥ t} is a RCLL P∞-martingale, and
∫ t

0 e
−λu(Φu −

λ
c )du+e−rtγ(t) = M(t) = E∞[M(s∧σε,δ(t))|Ft] = E∞[

∫ s∧σε,δ(t)
0 e−λu(Φu− λ

c )du+e−λ(s∧σε,δ(t))γ(s∧
σε,δ(t))|Ft], which gives γ(t) = E∞[

∫ s∧σε,δ(t)
t e−λ(u−t)(Φu− λ

c )du+ e−λ[(s∧σε,δ(t))−t]γ(s∧ σε,δ(t))|Ft].
As s ↑ ∞, γ(t) ≥ E∞[

∫ σε,δ(t)
t e−λ(u−t)(Φu − λ

c )du+ 1{σε,δ(t)<∞}e
−λ[σε,δ(t)−t]γ(σε,δ(t))|Ft] by Fatou.

Since mn+1 ≥ Mn+1(ε), we have γ(σε,δ(t)) ≥ γ(mn+1)(σε,δ(t)) − ε on {σε,δ(t) ∈ [tn, tn+1)} by

Proposition 5.2, and 1{σε,δ(t)<∞}γ(σε,δ(t)) ≥
∑∞

n=0 1[tn,tn+1)(σε,δ(t))
[
γ(mn+1)(σε,δ(t))− ε

]
≥ −δ−ε,

because the definition of σε,δ(t) implies that Φtn ≥ φε,δ(σε,δ(t)) = φ
(mn+1)
δ (σε,δ(t)) on {σε,δ(t) ∈

[tn, tn+1)}, which leads to γ(mn+1)(σε,δ(t)) ≥ −δ for every n ≥ 0 by definition of φ
(mn+1)
δ (·) in (6.2).

Thus, γ(t) ≥ E∞[
∫ σε,δ(t)
t e−λ(u−t)(Φu − λ

c )du|Ft]− ε− δ, which completes the proof. �

Figure 3 gives a numerical algorithm to find the nearly optimal stopping rules of Proposition 7.1.

For the numerical examples, we suppose that the lengths of successive observation intervals cycle

through some p ≥ 1 positive constants ∆t1, . . . ,∆tp. Figures 4 and 5 demonstrate the outputs of

the algorithm in Figure 3 applied to Wiener disorder problems with p = 1, namely, equally ∆t-

spaced observation intervals. Four columns of Figure 4 display for ∆t = 1, 10, 20, 32 the successive
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(i) Successive approximations to value function w((.))

(ii) Successive approximations to optimal stopping threshold φφ0((0)) at observation times

(iii) Optimal stopping boundary φφ0((.)) between observations

(iv) Contours of value function ((y,,  φφ)) →→ eλλy((J yw))((∆∆t,,  φφ)),,  0 ≤≤ y << ∆∆t,,  φφ ≥≥ 0
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Figure 4. Wiener disorder problem with equally ∆t-spaced observation intervals, λ = 0.1, µ = 1,

and c = 0.01.

approximations of value function w(·), successive approximations of optimal stopping threshold

φ0(0) at observation times, optimal stopping boundary φ0(y), y ∈ [0,∆t) between observations, and

the contours of value function (y, φ) 7→ eλyJy(∆t, φ) where y is the time since the last observation

and φ is the conditional odds-ratio calculated at the last observation time.

As time ∆t between observations increases, the number of iterations needed for an accurate value-

function approximation decreases, the value functions increase pointwise, the optimal stopping

regions expand, and optimal continuation regions shrink; compare the graphs along the row in

Figure 4 (i) and the superposition of the value functions in Figure 5 (i).

It is never optimal to raise an alarm at any observation time when the conditional odds-ratio is

less than λ/c = 10. If the conditional odds-ratio is greater than or equal to λ/c, waiting may still

be favorable (with the hope that the conditional odds-ratio will jump into the advantageous region

[0, λ/c) after a favorable observation), but this possibility vanishes rapidly as time ∆t between

observations is increased; compare the graphs in Figure 4 (ii).

As pointed out by Theorem 6.10, optimal stopping boundary between two adjacent observation

times either increases strictly or first decreases and then increases; it is strictly monotone whenever
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Figure 5. Wiener disorder problem with equally ∆t-spaced observation intervals, λ = 0.1, µ = 1,

and c = 0.01.

it does not vanish. As time ∆t between observations increases, optimal stopping boundary tends

to decrease more with the passing time, and this encourages early stopping in order to curb the

increasing risk of failing to detect the disorder time; see the graphs in Figure 4 (iii) for numerical

evidence and Remark 6.11 for rigorous justification.

In order to forgo the contribution of a very near new observation in resolving the ambiguity

about the unobservable disorder time, the odds of that the disorder must have already happened

must intuitively be very large. Therefore, one expects that the optimal stopping boundary increases

to infinity as time of next observation is nearing. All of the graphs in Figure 4 (iii) confirm this

intuition, which was also analytically established in Corollary 6.7.

Finally, the approximate contours of the value function (y, φ) 7→ eλy(Jyw)(∆t, φ) in Figure 4 (iv)

help visualize the changes in the process γ(t) = eλ(t−tn)(Jt−tnw)(∆t,Φtn), t ∈ [tn, tn+1) for every

n ≥ 0, which is fundamental for the calculation of minimum Bayes risks infτ∈S(t)Rτ (·) in (5.2) for

every t ≥ 0 and is essentially the conditionally minimum Bayes risk given the past observations if

an alarm has not yet been raised before time t ≥ 0

Suppose that the optimal stopping boundary is strictly increasing. Then t 7→ γ(t) is strictly

decreasing on t ∈ [tn, tn+1) if γ(tn) = (J0w)(∆t,Φtn) = w(Φtn) < 0 or Φtn < φ0(0). Otherwise, it

remains at zero for a while before it starts to decrease; see Figure 4 (iv) for ∆t = 1. Suppose now

that the optimal stopping boundary first decreases and then increases. If Φtn ≤ λ/c, then t 7→ γ(t),



26 SAVAS DAYANIK

(i) Successive approximations to value function w((q−−1))((.)) == v4n++q−−1((.)),,  1 ≤≤ q ≤≤ 4,,  n ≥≥ 0

(ii) Successive approximations to φφ0((t q−−1)) at observation times t4n++q−−1,,  1 ≤≤ q ≤≤ 4

(iii) Optimal stopping boundary φφ0((.)) between observations

(iv) Contours of value function ((y,,  φφ)) →→ eλλy((J yw))((∆∆t q,,  φφ)),,  0 ≤≤ y << ∆∆t q,,  φφ ≥≥ 0,,  1 ≤≤ q ≤≤ 4
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Figure 6. Wiener disorder problem with unequally spaced observation intervals, the lengths of

which cycle trough ∆t1 = 5, ∆t2 = 15, ∆t3 = 5, ∆t4 = 20, and λ = 0.1, µ = 1, and c = 0.01.

t ∈ [tn, tn+1) strictly increases; if it reaches to zero, it may stay there for a while, but it always

eventually starts to strictly decrease. Otherwise, it remains at zero for a while before it starts to

strictly decrease; see Figure 4 (iv) for ∆t = 10, 20, 32.

Figures 4 (iii) and 5 (ii) show that the following three cases are possible:

(i) An optimal alarm may sound only at some observation time. If the optimal stopping boundary

is increasing, then, whenever postponing an alarm is optimal, it remains so at least until after the

next observation. If ∆t = 1, then the optimal stopping boundary is increasing, and an alarm may

be raised only at observation times tn = n∆t, n ≥ 0.

(ii) An optimal alarm may sometimes sound strictly between some observation times. If the

optimal stopping boundary is not strictly increasing, then it must firstly decrease and then increase,

and it is strictly monotone wherever it does not vanish. Moreover, it starts from level λ/c > 0 and

its decreasing portion always coincides with t 7→ e−λt(1+λ/c)−1 independently of time ∆t between

observations; see Figure 5 (ii) and Theorem 6.10. Therefore, an optimal alarm time falls strictly

between two observation times, if the conditional odds-ratio calculated at the last observation lies

between the minimum of the optimal stopping boundary and its initial value, λ/c. Postponing an
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alarm at least until after the next observation is still optimal if the conditional odds-ratio at the

last observation is below the minimum of the optimal stopping boundary. If it is at or above λ/c,

then it is optimal to raise the alarm immediately after the last observation time. If ∆t = 10 or 20,

all three optimal alarm types may appear with positive probability.

(iii) An optimal alarm will always be set by the next observation time. This is a special case of

(ii), which occurs if the optimal stopping boundary vanishes some time between two observations.

If ∆t = 32, then optimal alarm will always sound before the next observation.

It is important to remember that one can always tell with certainty if optimal alarm will sound

before the next observation, and its precise time if it will. Figure 5 (iii) shows the sample paths of

conditional odds-ratio processes Φ and optimal alarm times for different times between observations,

∆t = 1, 20, 32. Observe also that if optimal stopping boundary is not strictly increasing, then it is

not differentiable at its minimum, since its left derivative at the minimum is the derivative of the

strictly decreasing function t 7→ e−λt(1 + λ
c )− 1, which is always strictly negative.

Finally Figure 6 illustrates the outcome of the numerical algorithm described in Figure 3 for the

Wiener disorder problem with unequal observation intervals, the lengths of which cycle through

∆t1 = 5, ∆t2 = 15, ∆t3 = 5, ∆4 = 20. Optimal stopping boundaries between observations are

strictly increasing over [t4n, t4n+1) ∪ [t4n+2, t4n+3), but firstly decreases and then increases strictly

over [t4n+1, t4n+2) ∪ [t4n+3,4n+4) for every n ≥ 0. Thus, if the alarm is not set before or at time

t4n (respectively, t4n+2), then it is optimal to wait at least until time t4n+1 (respectively, t4n+3) for

every n ≥ 0. However, an optimal alarm may sound some time strictly between t4n+1 and t4n+2 or

strictly between t4n+3 and t4n+4 for some n ≥ 0.

8. Calculation of false alarm probabilities, variational and general Bayesian

formulations

In this section, we shall show how one can calculate the probability of false alarm

pfa(p) = P
{
σ0(0) < Θ

∣∣∣Φ0 =
p

1− p

}
, 0 ≤ p < 1(8.1)

for the optimal alarm time σ0(0) = min{s ≥ 0;
∑∞

`=0 1[t`,t`+1)(s)Φt` ≥ φ0(s)} of (6.3), which is by

Proposition 2.1 and Theorem 5.7 an optimal stopping time for the problem in (2.5) and has the

smallest Bayes risk R(p) of (2.1) for every 0 ≤ p < 1.

Because φ0(s) equals φ(∆t`+1, s − t`, v`+1) for s ∈ [t`, t`+1) and ` ≥ 0, recall from Remark 6.11

and Figures 1 and 2 that the critical boundary s 7→ φ0(s) is continuous on every observation interval

[t`, t`+1), ` ≥ 0, either increases strictly everywhere or first decreases along s 7→ e−λ(s−t`)(1 + λ
c )−1

and then increases. Let us define the minimum

φ0,` := min{φ0(s); s ∈ [t`, t`+1)}, ` ≥ 0(8.2)

of φ0(·) on the observation interval [t`, t`+1) for every ` ≥ 0. Note that, when at time t = 0 the

surveillance starts, one can determine the exact time σ0(0) of the optimal alarm by only knowing
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the values φ0,`, ` ≥ 0. Indeed, we have

σ0(0) = σ0(t`) =


t`, Φt` ≥

(λ
c
∨ φ0,`

)
t` −

1

λ
log

1 + Φt`

1 + λ
c

,
(λ
c
∧ φ0,`

)
≤ Φt` <

λ

c

σ0(t`+1), Φt` < φ0,`


on {σ0(0) ≥ t`}, ∀` ≥ 0, P-a.s.

(8.3)

Let us introduce the “conditional probability of false alarm” process

CPFAn := P{σ0(tn) < Θ | Ftn , Θ > tn}(8.4)

=
E∞

[
Ztn∧Θ1{σ0(tn)<Θ} | Ftn , Θ > tn

]
E∞ [Ztn∧Θ | Ftn , Θ > tn]

= P∞{σ0(tn) < Θ | Ftn , Θ > tn}, n ≥ 0,

where Ztn∧Θ = 1 P-a.s. on {Θ > tn}. Note that CPFA0 = P{σ0(0) < Θ | F0, Θ > 0} =
pfa(p)
1−p |p= Φ0

1+Φ0

. We shall show that P-a.s. CPFAn = cpfan(Φtn) for every n ≥ 0 for some sequence

(cpfan(·))n≥0 of [0, 1]-valued functions, each element cpfan(·) of which is the pointwise uniform

limit of some suitable successive approximations
(
cpfa

(m)
n (·)

)
m≥0

. We will then be able calculate

the probability of false alarm by

pfa(p) = (1− p) cpfa0

( p

1− p

)
= (1− p) lim

m→∞
cpfa

(m)
0 (p) for every 0 ≤ p < 1.

To calculate the conditional probability in (8.4), we shall need the following lemma.

Lemma 8.1. Let (Ω,H,P) be a probability space, X be a bounded random variable, F be a sub

σ-algebra of H, and A be an F-measurable event. Then

E[X | F ∧ σ(A)] =
E[X1A | F ]

P(A | F)
1A +

E[X1Ω\A | F ]

P(Ω \A | F)
1Ω\A.

Therefore, E[X | F , A] = E[X1A | F ]/P(A | F).

Proof. Take a bounded F-measurable random variable Y and constants a and b. Then

E
[
Y (a1A + b1Ω\A)E[X | F ∨ σ(A)]

]
= E[Y (a1A + b1Ω\A)X] = aE[Y X1A] + bE[Y X1Ω\A]

= aE[Y E[X1A | F ]] + bE[Y E[X1Ω\A | F ]]

= aE
[
Y
E[X1A | F ]

P(A | F)
P(A | F)

]
+ bE

[
Y
E[X1Ω\A | F ]

P (Ω \A | F)
P (Ω \A | F)

]
= aE

[
E
(
Y
E[X1A | F ]

P(A | F)
1A

∣∣∣∣F)]+ bE
[
E
(
Y
E[X1Ω\A | F ]

P (Ω \A | F)
1Ω\A

∣∣∣∣F)]
= E

[
Y
E[X1A | F ]

P(A | F)
a1A +

E[X1Ω\A | F ]

P (Ω \A | F)
b1Ω\A

]
= E

[
Y (a1A + b1Ω\A)

(
E[X1A | F ]

P(A | F)
1A +

E[X1Ω\A | F ]

P (Ω \A | F)
1Ω\A

)]
,

which completes the proof of the lemma. �
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Because Ftn and Θ are independent under P∞, and σ0(tn) in (8.3) depends on Ftn through the

future values of the Markov process (Φt, t)t≥tn , Lemma 8.1 implies that

CPFAn = P∞{σ0(tn) < Θ | Ftn , Θ > tn} =
P∞{σ0(tn) < Θ | Ftn}
P∞{Θ > tn | Ftn}

=
P∞{σ0(tn) < Θ | Φtn}

P∞{Θ > tn}

=
(1 + Φ0)−1E∞

[
e−λσ0(tn) | Φtn

]
(1 + Φ0)−1e−λtn

= E∞
[
e−λ(σ0(tn)−tn)

∣∣∣Φtn

]
= cpfan(Φtn),

where for every φ ≥ 0 and n ≥ 0 we define

cpfan(φ) := E∞
[
e−λ(σ0(tn)−tn)

∣∣∣Φtn = φ
]

= 1[(λ
c
∨φ0,n),∞)(φ) +

1 + φ

1 + λ
c

1[(λ
c
∧φ0,n),λ

c
)(φ)

+ 1[0,φ0,φ0,n
)(φ)e−λ∆tn+1E∞[cpfan+1(Φtn+1) | Φtn = φ],

and the second equality follows from the second equality in (8.3). Using the explicit dynamics in

(1.2) of Φ and the definition in (4.3) of K operator, we can evaluate the expectation

E∞[cpfan+1(Φtn+1) | Φtn = φ] = E∞
[

cpfan+1

(


(
∆tn+1, φ,

∆Xn+1√
∆tn+1

))∣∣∣∣Φtn = φ

]
=

∫ ∞
∞

cpfan+1

(
(∆tn+1, φ, z)

)e−z2/2

√
2π

dz = (Kcpfan+1)(∆tn+1, φ).

The next proposition summarizes our findings up to now.

Proposition 8.2. Let L be the operator on bounded functions w : R+ 7→ [0, 1] defined by

(Lw)(y,∆t, φ) = 1[(λ
c
∨y),∞)(φ) +

1 + φ

1 + λ
c

1[(λ
c
∧y),λ

c
)(φ) + 1[0,y)(φ)e−λ∆t(Kw)(∆t, φ)

for every y,∆t, φ ≥ 0. Then the probability of false alarm pfa(p) in (8.1) equals (1− p)cpfa0( p
1−p)

for every 0 ≤ p < 1, where cpfan(·), n ≥ 0 are unique [0, 1]-valued functions satisfying cpfan(φ) =

(Lcpfan+1)(φ0,n,∆tn+1, φ) for every φ ≥ 0 and n ≥ 0, and each φ0,n is defined by (8.2).

To prove the uniqueness of cpfan(·), n ≥ 0, suppose that fn(·), n ≥ 0 be a sequence of [0, 1]-

valued functions satisfying fn(φ) = (Lfn+1)(φ0,n,∆tn, φ) for every φ ≥ 0 and n ≥ 0. Then we have

cpfan(φ)−fn(φ) = 1[0,φ0,φ0,n
)(φ)e−λ∆tn+1(K(cpfan+1−fn+1))(∆tn+1, φ) ≤ e−λ∆tn+1‖cpfan+1−fn+1‖

for every φ ≥ 0 and n ≥ 0. Similarly, fn(φ) − cpfan(φ) =≤ e−λ∆tn+1‖cpfan+1 − fn+1‖ for every

φ ≥ 0 and n ≥ 0. Therefore, ‖cpfan−fn‖ ≤ e−λ∆tn+1‖cpfan+1−fn+1‖ for every n ≥ 0. Reiterating

this inequality m ≥ 1 times leads to ‖cpfan − fn‖ ≤ e−λ(∆tn+1+...+∆tn+m)‖cpfan+m − fn+m‖ ≤
e−λ(∆tn+1+...+∆tn+m) for every n ≥ 0. Letting m ↑ ∞ implies that ‖cpfan− fn‖ = 0 for every n ≥ 0.

To calculate cpfan(·) for every n ≥ 0, we define the successive approximations

(8.5) cpfa(m)
m (·) ≡ 1, cpfa(m)

n (φ) := (Lcpfa
(m)
n+1)(φ0,n,∆tn+1, φ), φ ≥ 0, 0 ≤ n ≤ m − 1.

Proposition 8.3. For every φ ≥ 0 and n ≥ 0, the sequence (cpfa
(m)
n (φ))m≥n is decreasing and its

limit as m → ∞ coincides with cpfan(φ). Moreover, the convergence is uniform in φ ≥ 0; more

precisely, ‖cpfa
(m)
n − cpfan‖ ≤ e−λ(∆tn+1+...+∆tm) for every m > n.



30 SAVAS DAYANIK

Proof. For every m ≥ 0 and φ ≥ 0, we have 1 = cpfa
(m)
m (φ) ≥ cpfa

(m+1)
m (φ). Suppose that

cpfa
(m)
n (·) ≥ cpfa

(m+1)
n (·) for every 1 ≤ n ≤ m. Then

cpfa
(m)
n−1(φ) = (Lcpfa(m)

n )(φ0,n,∆tn+1, φ) ≥ (Lcpfa(m+1)
n )(φ0,n,∆tn+1, φ) = cpfa

(m+1)
n−1 (φ).

Hence by induction on n = m,m−1, . . . , 0, we conclude that {cpfa
(m)
n (φ); m ≥ n} is decreasing for

every fixed n ≥ 0 and φ ≥ 0. Therefore, limm→∞ cpfa
(m)
n (φ) exists, and by the bounded convergence

theorem it satisfies limm→∞ cpfa
(m)
n−1(φ) = (L limm→∞ cpfa

(m)
n )(φ0,n,∆tn+1, φ) for every φ ≥ 0 and

n ≥ 0. Because by Proposition 8.2 the [0, 1]-valued functions cpfan(·), n ≥ 0 uniquely satisfy

cpfan(φ) = (Lcpfan+1)(φ0,n,∆tn+1, φ) for every φ ≥ 0 and n ≥ 0, we conclude that cpfan(φ) =

limm→∞ cpfa
(m)
n (φ) for every φ ≥ 0 and n ≥ 0. Moreover,

cpfan(φ)− cpfa(m)
n (φ) = 1[0,φ0,n)(φ)e−λ∆tn+1

(
K(cpfan+1 − cpfa

(m)
n+1)

)
(∆tn+1, φ)

≤ e−λ∆tn+1‖cpfan+1 − cpfa
(m)
n+1‖ for every φ ≥ 0 and m > n.

Therefore, cpfa
(m)
n (φ)− cpfan(φ) ≤ e−λ∆tn+1‖cpfan+1− cpfa

(m)
n+1‖ for every φ ≥ 0 and m > n. Then

‖cpfan − cpfa
(m)
n ‖ ≤ e−λ∆tn+1‖cpfan+1 − cpfa

(m)
n+1‖ ≤ . . . ≤ e−λ(∆tn+1+...+∆tm)‖cpfam − cpfa

(m)
m ‖ ≤

e−λ(∆tn+1+...+∆tm) for every m > n ≥ 0. Hence, (cpfa
(m)
n (φ))m≥1 decreases to cpfan(φ) as m ↑ ∞

uniformly in φ ≥ 0. �

Remark 8.4. For every ε > 0, let M(ε) := min
{
m ≥ 1; ∆t1 + . . .+ ∆tm ≥ − 1

λ log ε
}

. Because

‖cpfa0 − cpfa
(M(ε))
0 ‖ ≤ ε by Proposition 8.3, we have supp∈[0,1]

∣∣(1 − p)cpfa
(M(ε))
0 ( p

1−p) − pfa(p)
∣∣ ≤

supp∈[0,1](1−p)
∣∣cpfa

(M(ε))
0 ( p

1−p)−cpfa( p
1−p)

∣∣ ≤ ‖cpfa
(M(ε))
0 −cpfa0‖ ≤ ε. Hence, we can approximate

the probability of false alarm pfa(·) in (8.1) uniformly in p with (1− p)cpfa
(M(ε))
0 ( p

1−p), which can

easily be calculated with successive approximations in (8.5).

Remark 8.5. Suppose that ∆tn = ∆t > 0 for every n ≥ 1; namely, all observation intervals have

the same length ∆t. Then φ0,n ≡ φ0,0 and cpfan(·) ≡ cpfa(·) are the same for all n ≥ 0. Moreover,

cpfa(·) is the unique [0, 1]-valued function satisfying cpfa(φ) = (Lcpfa)(φ0,0,∆t, φ) for every φ ≥ 0

and is the limit of successive approximations

cpfa(0)(·) ≡ 1, cpfa(n)(φ) = (Lcpfa(n−1))(φ0,0,∆t, φ), φ ≥ 0, n ≥ 1

with ‖cpfa − cpfa(n)‖ ≤ e−nλ∆t for every n ≥ 0. For every ε > 0, we now have M(ε) = d− log ε
λ∆t e,

and supp∈[0,1]

∣∣(1− p)cpfa(M(ε))( p
1−p)− pfa(p)

∣∣ ≤ ε.
8.1. Variational formulation. In certain applications, one seeks a strict and explicit control on

the probability of false alarms. For example, one may not want the probability of false alarm to

exceed a prespecified low number 0 < α < 1. If S(α) = {τ ∈ S; P{τ < Θ} ≤ α} denotes the

collection of all F-stopping times with false alarm probabilities less than or equal to α, then in the

variational formulation of the Wiener disorder problem one seeks an alarm time τ in S(α) which

has the smallest expected detection delay time E[(τ −Θ)+].

The solutions of the variational and Bayesian formulations are closely related. For every c > 0

and every sequence of observation times t1 < t2 < . . ., the Bayes optimal alarm time σ0(0) for the
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Figure 7. On the left φ0,0 = min{φ0(s); s ∈ [0,∆t)} and on the right φ0,0/(1 + φ0,0) are plotted

for a range of unit cost c of detection delay and common length ∆t of all observation intervals

(λ = 0.1 and µ = 1).

problem in (2.1) is also optimal for the variational formulation when α equals P{σ0(0) < Θ}, which

can be numerically calculated by Remark 8.4 or 8.5. Indeed, for every τ ∈ S(α) ⊆ S, the inequality

P{σ0(0) < Θ}+ cE[(σ0(0)−Θ)+] ≤ P{τ < Θ}+ cE[(τ −Θ)+]

implies that E[(σ0(0) − Θ)+] ≤ (1/c)(P{τ < Θ} − P{σ0(0) < Θ}) + E[(τ − Θ)+] = (1/c)(P{τ <
Θ} − α) + E[(τ − Θ)+] ≤ E[(τ − Θ)+] or E[(σ0(0) − Θ)+] ≤ E[(τ − Θ)+], and since σ0(0) ∈ S(α),

we conclude that

inf
τ∈S(α)

E[(τ −Θ)+] = E[(σ0(0)−Θ)+] =

[
1− p+ (1− p)c V

(
p

1− p

)
− α

]
1

c

where the second equation follows from Proposition 2.1.

It is unclear if for every 0 < α < 1 there are always some c > 0 and t1 < t2 < . . . such that the

optimal alarm time of the Bayesian formulation has the probability of false alarm exactly equal to

α. A quick and effective solution of the variational formulation will be to tabulates the probability

of false alarms of Bayes optimal alarm times on a fine grid of cost c > 0 and the lengths ∆tn, n ≥ 1

of observation intervals.

Figures 7 and 8 illustrate this practical approach when observation intervals have some common

length ∆t. In those numerical illustrations, we set λ = 0.1 and µ = 1. For every fixed c > 0 and

∆t > 0, we solve the Bayesian formulation and find for the Bayes optimal alarm time σ0(0) the

minimum threshold φ0,0 = min{φ0(s); s ∈ [0,∆t)}; see Figure 7. We then calculate the probability

of false alarm of σ0(0) as described in Remark 8.5. Figure 8 display the contourplots of false alarm

probabilities and expected detection delay times of Bayes optimal alarm times for every pair of c

and ∆t values. One can in principle spot the solution of the variational formulation by an inspection

of the pictures in Figures 7 and 8. For example, if we are certain that the disorder has not happened
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Probability of false alarm
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Figure 8. The probability of false alarms (on the left) and expected detection delay times (on

the right) of Bayes optimal alarm times for prior probabilities p = 0, 1/6, 1/3, 1/2 of a change at

or before time zero and for a range of unit cost c of detection delay and equal observation interval

length ∆t (λ = 0.1 and µ = 1).

yet (namely, p = 0), and if we want the probability of false alarm to be less than or equal to 1/50,

then we can choose any pair (∆t, c) located on the contour labeled with “0.02” in the upper left

corner of the picture on the left in Figure 8. For the pair (∆t, c) we picked, we can read from the

upper left corner of the picture on the right in the same figure the minimum expected detection

delay time and find the minimum critical threshold φ0,0 from the picture on the left in Figure 7.
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Appendix A. Selected proofs

A.1. Derivation of the dynamics in (1.2) of the conditional odds-ratio process Φ. Because

Θ is independent of X and has zero-modified exponential distribution with parameters p ∈ [0, 1)

and rate λ > 0 under P∞, we have

Φt =
eλt

1− p
E∞

[
Zt(Θ)1{Θ≤t} | Ft

]
=

eλt

1− p

[
pZt(0) + (1− p)

∫ t

0
λe−λuZt(u)du

]
Suppose that tn−1 ≤ t < tn for some n ≥ 1. Since Zt(u) = Ztn−1(u) for every u ≥ 0 and

Ztn−1(u) = 1 for every tn−1 ≤ u < tn, we have Φt equals

eλt

1− p

[
pZtn−1(0) + (1− p)

∫ t

0
λe−λuZtn−1(u)du

]
=

eλt

1− p

[ 1− p
eλtn−1

Φtn−1 + (1− p)
(
e−λtn−1 − e−λt

)]
= eλ(t−tn−1)Φtn−1 + eλ(t−tn−1) − 1 = eλ(t−tn−1)(Φtn−1 + 1)− 1 = ϕ(t− tn−1,Φtn−1).
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On the other hand, Φtn−1 = eλtn−1

1−p [pZtn−1(0)+(1−p)
∫ tn−1

0 λe−λuZtn−1(u)du]. Because Ztn−1(u) =

1 for every u ≥ tn−1, we have

Ztn(u) = Ztn−1(u) exp
{∆Xnµ[tn − (u ∨ tn−1)]+

tn − tn−1
− µ2([tn − (u ∨ tn−1)]+)2

2(tn − tn−1)

}
, u ≥ 0

and

Φtn =
eλtn

1− p

[(
pZtn−1(0) + (1− p)

∫ tn−1

0
λe−λuZtn−1(u)du

)
exp

{
∆Xnµ−

µ2

2
∆tn

}
+ (1− p)

∫ tn

tn−1

λe−λu exp
{∆Xnµ(tn − u)

tn − tn−1
− µ2(tn − u)2

2(tn − tn−1)

}
du
]

= exp
{
µ∆Xn −

µ2

2
∆tn

}
eλ(tn−tn−1)Φtn−1

+

∫ tn

tn−1

λeλ(tn−u) exp
{∆Xnµ(tn − u)

tn − tn−1
− µ2(tn − u)2

2(tn − tn−1)

}
du,

which gives (1.2) after a change of variable in the integral on the righthand side.

A.2. Proof of Lemma 4.1. (i) If w(·) ≥ −1/c, then (Jw)(∆t, φ, y, r) ≥ −1
c

∫ ∆t
y λe−λtdt −

1
ce
−λ∆t = −1

c

(
e−λy − e−λ∆t

)
− 1

ce
−λ∆t = −1

ce
−λy for every ∆t > 0, φ ≥ 0, 0 ≤ y ≤ ∆t, and r ≥ 0.

Then (Jyw)(∆t, φ) = infr≥y(Jw)(∆t, φ, y, r) ≥ −(1/c)e−λy, and (Jyw)(∆t, φ) ≤ (Jw)(∆t, φ, y, y) =

0; therefore, −1/c ≤ eλy(Jyw)(∆, φ) ≤ 0 for every ∆t > 0, φ ≥ 0, and 0 ≤ y ≤ ∆t.

Both φ 7→ ϕ(∆t, φ) and φ 7→ (∆t, φ, z) are increasing affine functions for every fixed ∆t >

0 and z ∈ R. If w(·) is nondecreasing, concave, and continuous, then so are (Kw)(∆t, ·) and

(Jw)(∆t, ·, y, r) for every fixed ∆t > 0, 0 ≤ y ≤ ∆t, and r ≥ 0 by the dominated convergence.

Therefore, (Jyw)(∆t, ·) = infr≥y(Jw)(∆t, ·, y, r) is also nondecreasing and concave. The continuity

on (0,∞) of (Jyw)(∆t, ·) follows from its concavity on [0,∞). It is also continuous at φ = 0,

because limφ↘0 (Jyw)(∆t, φ) = infφ>0 infr≥y (Jw)(∆t, φ, y, r) = infr≥y infφ>0 (Jw)(∆t, φ, y, r) =

infr≥y (Jw)(∆t, 0, y, r) = (Jyw)(∆t, 0), since (Jyw)(∆t, ·) and (Jw)(∆t, ·, y, r) are nondecreasing.

Let us now prove that (Jyw)(∆t, φ) vanishes for large φ ≥ 0. For every φ > λ/c and u ≥ 0, note

that ϕ(u, φ) > λ/c and
∫ r
y e
−λu(ϕ(u, φ)−λ/c)du > 0 for every r > y. Moreover, there is some finite

φ(∆t, y) > λ/c such that
∫ ∆t
y e−λu(ϕ(u, φ) − λ

c )du + e−λ∆t(Kw)(∆t, φ) ≥
∫ ∆t
y (φ + 1 − e−λu(1 −

λ
c ))du− e−λ∆t

c = (φ+ 1)(∆t− y) + (1 + λ
c ) 1
λ(e−λy− e−λ∆t)− 1

ce
−λ∆t > 0 for every φ > φ(∆t, y) and

(Jyw)(∆t, φ) = {infr∈[y,∆t]

∫ r
y e
−λu(ϕ(u, φ)− λ

c )du}∧ [
∫ ∆t
y e−λu(ϕ(u, φ)− λ

c )du+e−λ∆t(Kw)(∆t, φ)]

= 0 for every φ > φ(∆t, y).

(ii) Clearly, if w1(·) ≤ w2(·), then (Kw1)(∆t, φ) ≤ (Kw2)(∆t, φ) for every ∆t > 0 and φ ≥ 0,

which implies that (Jw1)(∆t, φ, y, r) ≤ (Jw2)(∆t, φ, y, r) for every ∆t > 0, φ ≥ 0, 0 ≤ y ≤ ∆t, and

r ≥ 0, and taking infimum of both sides over r ≥ y yields the result.

(iii) Let w3(·) and w4(·) be two bounded functions. Fix ∆t > 0 and 0 ≤ y ≤ ∆t. Then

for every φ ≥ 0, (Jyw3)(∆t, φ) and (Jyw4)(∆t, φ) are finite, and there is ri(φ, ε) ≥ y such that

(Jywi)(∆t, φ) + ε ≥ (Jwi)(∆t, φ, y, ri(φ, ε)) for φ ≥ 0, ε > 0, i = 3, 4. Therefore,

(Jyw3)(∆t, φ)− (Jyw4)(∆t, φ) ≤ (Jw3)(∆t, φ, y, r4(φ, ε))− (Jw4)(∆t, φ, y, r4(φ, ε)) + ε

= 1[∆t,∞)(r4(φ, ε))e−λ∆t [(Kw3)(∆t, φ)− (Kw4)(∆t, φ)] + ε ≤ e−λ∆t|w3(φ)− w4(φ)|+ ε.
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Because ε > 0 is arbitrary, this leads to (Jyw3)(∆t, φ) − (Jyw4)(∆t, φ) ≤ e−λ∆t|w3(φ) − w4(φ)|.
Changing the order of w3(·) and w4(·) and replacing r4(∆t, φ) with r3(∆t, φ) in the last displayed

equation similarly gives (Jyw4)(∆t, φ)−(Jyw3)(∆t, φ) ≤ e−λ∆t|w3(φ)−w4(φ)|+ε, and we conclude

that |(Jyw4)(∆t, φ) − (Jyw3)(∆t, φ)| ≤ e−λ∆t|w3(φ) − w4(φ)| for every ∆t > 0, 0 ≤ y ≤ ∆t, and

φ ≥ 0. Taking the supremum of both sides over φ ≥ 0 proves (iii).

(iv) Because (Kw)(∆t, φ) ≤ 0, the mapping

r 7→ (Jw)(∆t, φ, y, r) =


∫ r

y
e−λu

(
ϕ(u, φ)− λ

c

)
du, y ≤ r < ∆t∫ ∆t

y
e−λu

(
ϕ(u, φ)− λ

c

)
du+ e−λ∆t(Kw)(∆t, φ), r ≥ ∆t


is lower semi-continuous, and its infimums over r ∈ [y,∞) and the compact interval r ∈ [y,∆t] are

the same. Since the mapping is lower semi-continuous, (4.6) follows.

Since (Jw)(∆t, φ, y, r) = (Jw)(∆t, φ, 0, r) −
∫ y

0 e
−λu(ϕ(u, φ) − λ

c )du, we have (Jyw)(∆t, φ) =

infr∈[y,∆t](Jw)(∆t, φ, 0, r) −
∫ y

0 e
−λu(ϕ(u, φ) − λ

c )du. Because y 7→
∫ y

0 e
−λu(ϕ(u, φ) − λ/c)du is

continuous, we only need to establish that y 7→ infr∈[y,∆t](Jw)(∆t, φ, 0, r) is continuous.

For convenience, let us define f(r) := (Jw)(∆t, φ, 0, r) and F (y) := minr∈[y,∆t] f(r) for every

r, y ∈ [0,∆t]. Since r 7→ f(r) is lower semi-continuous, we will show that y 7→ F (y) is left-

continuous. Take any 0 ≤ u < v ≤ ∆t. Then

0 ≥ F (u)− F (v) = min{ min
s∈[u,v]

f(s)− F (v), 0} ≥ min
s∈[u,v]

f(s)− f(v).(A.1)

Fix v ∈ (0,∆t] and show that F (·) is left-continuous at v. Since f(·) is lower semi-continuous at v,

for every ε > 0 there is some δ > 0 such that |x−v| ≤ δ implies f(x) > f(v)−ε. Therefore, for every

(v− δ)+ ≤ u < v we have mins∈[u,v] f(s) ≥ f(v)− ε and 0 ≥ F (u)−F (v) ≥ mins∈[u,v] f(s)−f(v) ≥
f(v)− ε− f(v) = −ε; namely, F (·) is left-continuous at v.

Since r 7→ f(r) is right-continuous, y 7→ F (y) is also right-continuous. In (A.1), fix u ∈ [0,∆t)

and show that F (·) is right-continuous at u. Since f(·) is right-continuous at u, for all ε > 0 there is

δ > 0 such that u < x < (u+ δ)∧∆t implies |f(x)− f(u)| < ε/2. Thus for all u < v < (u+ δ)∧∆t

we have mins∈[u,v] f(s) ≥ f(u) − ε/2 and f(v) < f(u) + ε/2; therefore, 0 ≥ F (u) − F (v) ≥
mins∈[u,v] f(s)− f(v) ≥ f(u)− ε

2 − [f(u) + ε
2 ] = −ε. Hence, y 7→ F (y) is continuous.

(v) For y0 ≤ y ≤ r ≤ z ≤ y1, adding
∫ r
y e
−λu (ϕ(u, φ)− λ/c) du to 0 > (Jrw)(∆t, φ) gives∫ r

y
e−λu

(
ϕ(u, φ)− λ

c

)
du > inf

r̃≥r

[ ∫ r̃∧∆t

y
e−λu

(
ϕ(u, φ)− λ

c

)
du+ 1[∆t,∞)(r̃)e

−λ∆t(Kw)(∆t, φ)
]

≥ inf
r̃≥y

[ ∫ r̃∧∆t

y
e−λu

(
ϕ(u, φ)− λ

c

)
du+ 1[∆t,∞)(r̃)e

−λ∆t(Kw)(∆t, φ)
]

= (Jyw)(∆t, φ).

Since r 7→
∫ r
y e
−λu (ϕ(u, φ)− λ

c

)
du is continuous on r ∈ [y, z], its minimum on r ∈ [y, z] is attained,

say at some r0 ∈ [y, z]. Because the inequalities also hold for r = r0, we have

inf
r∈[y,z]

∫ r∧∆t

y
e−λu

(
ϕ(u, φ)− λ

c

)
du = min

r∈[y,z]

∫ r

y
e−λu

(
ϕ(u, φ)− λ

c

)
du > (Jyw)(∆t, φ),

and (Jyw)(∆t, φ) = infr≥z[
∫ r∧∆t
y e−λu

(
ϕ(u, φ)− λ

c

)
du+ 1[∆t,∞)(r)e

−λ∆t(Kw)(∆t, φ)] equals
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y
e−λu

(
ϕ(u, φ) − λ

c

)
du + inf

r≥z

[ ∫ r∧∆t

z
e−λu

(
ϕ(u, φ) − λ

c

)
du + 1[∆t,∞)(r)e

−λ∆t(Kw)(∆t, φ)
]

which is
∫ z
y e
−λu
(
ϕ(u, φ)− λ

c

)
du+ (Jzw)(∆t, φ) and completes the proof of (v) and the lemma.

A.3. Proof of Proposition 5.5. By Theorem 5.1, −1/c ≤ γ(m)(t) ≤ 0 is P∞-a.s. bounded, and

since

E∞Φu = E∞
[E∞[Zu1{Θ≤u} | Fu]

E∞[Zu1{Θ>u} | Fu]

]
=

E∞[Zu1{Θ≤u}]

(1− p)e−λu
≤ E∞[Zu]

(1− p)e−λu
=

eλu

1− p
,

we have E∞|M (m)(t)| ≤ E∞[
∫ t

0 e
−λuΦudu] + 1

c

∫ t
0 λe

−λudu+ 1
ce
−λt ≤

∫ t
0

1
1−pdu+ 1

c = t
1−p + 1

p <∞,

and M (m)(t) is integrable under P∞ for every 0 ≤ t ≤ tm.

Fix some m ≥ 1, 0 ≤ t ≤ tm, τ ∈ S(t), and ε ≥ 0. Then there exists some 0 ≤ k ≤ m−1 such that

tk ≤ t < tk+1. Let us prove by induction on n = k+1, k+2, . . . ,m that E∞[M (m)(tn∧τ∧σ(m)
ε (t))] =

E∞[M (m)(t)] for every k + 1 ≤ n ≤ m, ε ≥ 0.

Basis case. Because E∞[M (m)(tk+1 ∧ τ ∧ σ
(m)
ε (t))]− E∞[M (m)(t)] equals

E∞
[ ∫ tk+1∧τ∧σ

(m)
ε (t)

t
e−λu

(
Φu−

λ

c

)
du+e−λ(tk+1∧τ∧σ

(m)
ε (t))γ(m)(tk+1∧τ∧σ(m)(t))−e−λtγ(m)(t)

]
,

the basis case n = k + 1 will be established if the displayed expectation equals zero. Since

γ(m)(tk+1) = (J0v
(m)
k+2)(∆tk+2,Φtk+1

) = v
(m)
k+1(Φtk+1

), γ(m)(t) = eλ(t−tk)(Jt−tkv
(m)
k+1)(∆tk+1,Φtk), and

γ(m)(τ∧σ(m)
ε (t)) = eλ([τ∧σ(m)

ε (t)]−tk)(J
[τ∧σ(m)

ε (t)]−tk
v

(m)
k+1)(∆tk+1,Φtk) on {τ∧σ(m)

ε (t) < tk+1} because

P∞-a.s. τ ∧ σ(m)
ε (t) ≥ t ≥ tk, we can rewrite the displayed expectation as

E∞
[ ∫ tk+1∧τ∧σ

(m)
ε (t)

t
e−λu

(
ϕ(u− tk,Φtk)− λ

c

)
du+ 1{τ∧σ(m)

ε (t)≥tk+1}
e−λtk+1v

(m)
k+1(Φtk+1

)

+ 1{τ∧σ(m)
ε (t)<tk+1}

e−λtk(J(τ∧σ(m)(t))−tkv
(m)
k+1)(∆tk+1,Φtk)− e−λtk(Jt−tkv

(m)
k+1)(∆tk+1,Φtk)

]
.

There is some Ftk -measurable nonnegative r.v. Rk such that tk+1∧τ∧σ
(m)
ε (t) = (tk+Rk)∧tk+1, {τ∧

σ
(m)
ε (t) ≥ tk+1} = {tk +Rk ≥ tk+1}, and (τ ∧ σ(m)

ε (t))1{τ∧σ(m)
ε (t)<tk+1}

= (tk +Rk)1{τ∧σ(m)
ε (t)<tk+1}

.

Since Φtk+1
= (∆tk+1,Φtk ,

∆Xk+1√
∆tk+1

), last displayed expectation equals e−λtk times expectation of

(A.2) (Jv
(m)
k+1)(∆tk+1,Φtk , t− tk, Rk ∧∆tk+1)

+ 1[0,∆tk+1)(Rk)(JRkv
(m)
k+1)(∆tk+1,Φtk)− (Jt−tkv

(m)
k+1)(∆tk+1,Φtk),

which, we shall show, P∞-a.e. vanishes. Since σ
(m)
ε (t) = min{s ≥ t; γ(m)(s) > −ε}, we have

0 > −ε ≥ γ(m)(s) = eλ(s−tk)(Js−tkv
(m)
k+1)(∆tk+1,Φtk) or 0 > (Js−tkv

(m)
k+1)(∆tk+1,Φtk) for every

t ≤ s < tk+1 ∧ σ
(m)
ε (t) ∧ τ ≡ tk+1 ∧ (tk +Rk) or for every t− tk ≤ s− tk < Rk ∧∆tk+1.

Basis case with Rk < ∆tk+1. On {Rk < ∆tk+1}, we have 0 > (Js−tkv
(m)
k+1)(∆tk+1,Φtk) for

t− tk ≤ s− tk < Rk, and by Lemma 4.1 (v) with y0 = t− tk, y1 = Rk − δ, ∆t = ∆tk+1, φ = Φtk ,

y = y0, z = y1, and w = v
(m)
k+1, we conclude (Jt−tkv

(m)
k+1)(∆tk+1,Φtk) =

∫ Rk−δ
t−tk e−λu(ϕ(u,Φtk)−λ

c )du+

(JRk−δv
(m)
k+1)(∆tk+1,Φtk) for all 0 < δ < Rk − (t− tk). By Lemma 4.1 (iv), (Jyv

(m)
k+1)(∆tk+1,Φtk) is
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continuous at y = Rk ∈ [0,∆tk+1], and δ ↓ 0 gives (Jt−tkv
(m)
k+1)(∆tk+1,Φtk) =

∫ Rk
t−tk e

−λu(ϕ(u,Φtk)−
λ
c )du+ (JRkv

(m)
k+1)(∆tk+1,Φtk). Therefore, the r.v. in (A.2) equals zero P∞-a.s. on {Rk < ∆tk+1}.

Basis case with Rk ≥ ∆tk+1. On {Rk ≥ ∆tk+1}, we have 0 > (Js−tkv
(m)
k+1)(∆tk+1,Φtk) for every

t − tk ≤ s − tk ≤ ∆tk+1 ∧ Rk = ∆tk+1. By Lemma 4.1 (v) with y0 = t − tk, y1 = ∆tk+1 − δ,
∆t = ∆tk+1, φ = Φtk , y = y0, z = y1, and w = v

(m)
k+1, we conclude that (Jt−tkv

(m)
k+1)(∆tk+1,Φtk) =∫ ∆tk+1−δ

t−tk e−λu(ϕ(u,Φtk) − λ
c )du + (J∆tk+1−δv

(m)
k+1)(∆tk+1,Φtk) for every 0 < δ < ∆tk+1 − t + tk ≡

tk+1− t. By Lemma 4.1 (iv), y 7→ (Jyv
(m)
k+1)(∆tk+1,Φtk) is continuous on [0,∆tk+1] 3 y, and letting

δ ↓ 0 above implies that on {Rn ≥ ∆tn+1} (Jt−tkv
(m)
k+1)(∆tk+1,Φtk) =

∫ ∆tk+1

t−tk e−λu
(
ϕ(u,Φtk)− λ

c

)
du+

(J∆tk+1
v

(m)
k+1)(∆tk+1,Φtk) = (Jv

(m)
k+1)(∆tk+1,Φtk , t− tk,∆tk+1) and shows that the random variable

in (A.2) equals zero P∞-a.s. on {Rk ≥ tk+1}. This completes the proof of the basis case n = k+ 1.

Inductive step. Suppose that E∞[M (m)(tn ∧ τ ∧ σ(m)
ε (t))] = E∞[M (m)(t)] for some k + 1 ≤ n ≤

m−1 and show that it also holds for n+1. Since E∞[M (m)(tn+1∧τ ∧σ(m)
ε (t))]−E∞[M (m)(tn∧τ ∧

σ
(m)
ε (t))] equals E∞[1{τ∧σ(m)

ε (t)≥tn}
(M (m)(tn+1 ∧ τ ∧ σ(m)

ε (t)) −M (m)(tn))], the result follows from

the induction hypothesis, if the last expectation equals zero. Because γ(m)(tn+1) = v
(m)
n+1(Φtn+1)

and γ(m)(τ ∧ σ(m)
ε (t)) = eλ(τ∧σ(m)

ε (t)−tn)(J
τ∧σ(m)

ε −tn
v

(m)
n+1)(∆tn+1,Φtn) on {tn ≤ τ ∧ σ(m)

ε (t) < tn+1},

we have E∞[1{τ∧σ(m)
ε (t)≥tn}

(M (m)(tn+1 ∧ τ ∧ σ(m)
ε (t))−M (m)(tn))] =

E∞
[
1{τ∧σ(m)

ε (t)≥tn}

(∫ tn+1∧τ∧σ(m)
ε (t)

tn

e−λu
(
ϕ(u− tn,Φtn)− λ

c

)
du

+ 1{τ∧σ(m)
ε (t)≥tn+1}

e−λtn+1v
(m)
n+1(Φtn+1)

+ 1{τ∧σ(m)
ε (t)<tn+1}

e−λtn(J
τ∧σ(m)

ε −tn
v

(m)
n+1)(∆tn+1,Φtn)− e−λtnv(m)

n (Φtn)
)]
,

and since there is an Ftn-mble r.v. Rn such that [tn+1 ∧ τ ∧ σ(m)
ε (t)]1{τ∧σ(m)

ε (t)≥tn}
= [tn+1 ∧ (tn +

Rn)]1{τ∧σ(m)
ε (t)≥tn}

and {τ ∧σ(m)
ε (t) ≥ tn+1} = {τ ∧σ(m)

ε (t) ≥ tn, tn+Rn ≥ tn+1}, last displayed ex-

pectation equals e−λtn times the expectation of 1{τ∧σ(m)
ε (t)≥tn}

[(Jv
(m)
n+1)(∆tn+1,Φtn , 0, Rn∧∆tn+1)+

1[0,∆tn+1)(Rn)(JRnv
(m)
n+1)(∆tn+1,Φtn)− v(m)

n (Φtn)] which vanishes P∞-a.s. as in the basis case.

A.4. Proof of Corollary 5.6. Fix any m ≥ 1, 0 ≤ t ≤ u ≤ v ≤ tm, and ε ≥ 0. Let F

be a Fu-mble event, and define F-stopping time τ := u1F + v1Ω\F . Then by Proposition 5.5

E∞[M (m)(v ∧ σ(m)
ε (t))] = E∞[M (m)(t)] = E∞[M (m)(τ ∧ σ(m)

ε (t))] = E∞[M (m)(u ∧ σ(m)
ε (t))1F ] +

E∞[M (m)(v ∧ σ(m)
ε (t))1Ω\F ], and E∞[M (m)(u ∧ σ(m)

ε (t))1F ] = E∞[M (m)(v ∧ σ(m)
ε (t))1F ]. Since

F ∈ Fu is arbitrary, we have M (m)(u ∧ σ(m)
ε (t)) = E∞(M (m)(v ∧ σ(m)

ε (t)) | Fu), P∞-a.s.
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